CBSE Class 12 Maths 2024-25

Chapter 1 Relations and Functions

Competency-Based Questions

Multiple Choice Questions:

Q1. Given below is a relation R from the set $X = \{x,y,z\}$ to itself.

 $R = \{(x, x), (x,y), (y, x), (y,z), (x, z)\}$

Which of the following is true about the relation R?

- 1. R is reflexive and transitive but not symmetric.
- 2. R is symmetric and transitive but not reflexive.
- 3. R is transitive but neither reflexive nor symmetric.
- 4. R is not reflexive, not symmetric and not transitive.

Ans. 4. R is not reflexive, not symmetric and not transitive.

Q2. A and B are two sets with m elements and n elements respectively (m < n).

How many onto functions can be defined from set A to B?

- 1.0
- 2. m!
- 3. n!
- 4. n^m

Ans. 1. 0

Q3. Three students Aabha, Bhakti and Chirag were asked to define a function, f, from set $X = \{1, 3, 5, 7, 9\}$ to set $Y = \{2, 4, 6, 8\}$. Their responses are shown below:

Aabha: $f = \{(1, 2), (1, 4), (1, 6), (1, 8)\}$

Bhakti: $f = \{(1, 2), (3, 4), (5, 6), (7, 8)\}$

Chirag: $f = \{(1, 4), (3, 4), (5, 4), (7, 4), (9, 4)\}$

Who defined a function correctly?

- 1. only Chirag
- 2. only Aabha and Bhakti
- 3. only Bhakti and Chirag
- 4. only Chirag and Aabha

Ans. 1. only Chirag

Q4. Which of the following is an equivalence relation on the set $P = \{1, 4, 9\}$?

1.
$$R^1 = \{(1, 1), (4, 4), (9, 9)\}$$

2.
$$R^2 = \{(1, 1), (4, 4), (1, 4), (4, 1)\}$$

3.
$$R^3 = \{(4, 4), (9, 9), (1, 1), (9, 1), (1, 9), (1, 4), (4, 1)\}$$

4.
$$R^4 = \{(1, 4), (4, 4), (9, 4), (4, 1), (1, 1), (9, 9), (9, 1)\}$$

Ans. 1.
$$R^1 = \{(1, 1), (4, 4), (9, 9)\}$$

Q5. The power set of a set $A = \{a, b\}$ is the set of all subsets of A. These subsets are given by:

$$P(A) = { \emptyset, { a }, { b }, { a, b } }$$

A relation R is defined on P(A) as $R = \{ (r, s) : r \subseteq s \}$

Which of the following is the correct representation of R in its roster form?

Q6. Consider an operation * defined on the set { a,b,c } given by the following operation table.

* a	b	С
a a	a 🎚	a
b a		
c a	а 🛚	а

Which of the following is true about the operation *?

- 1. * is not a binary operation
- 2. * is a binary operation that is commutative but not associative
- 3. * is a binary operation that is associative but not commutative
- 4. * is a binary operation that is both commutative and associative

Ans. 4. * is a binary operation that is both commutative and associative

O7. If $f(x) = x^3 + 1$ and f(g(x)) = x, then which of the following is g(1)?

- 1.0
- 2. 1
- 3, 2

4. (cannot be determined without knowing what is g (x))

Ans. 1. 0

Q8. A relation R on set $G = \{All \text{ the students in a certain mathematics class} \}$ is defined as, $R = \{(x, y): x \text{ and } y \text{ have the same mathematics teacher}\}$.

Which of the following is true about R?

- 1. R is reflexive and transitive but not symmetric.
- 2. R is transitive and symmetric but not reflexive.
- 3. R is reflexive and symmetric but not transitive.
- 4. R is an equivalence relation.

Ans. 4. R is an equivalence relation.

Assertion & Reason Type Question:

Q9. f: $X \rightarrow X$ is a function on the finite set X.

Given below are two statements based on the above context - one labelled Assertion (A) and the other labelled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R).

Assertion (A): If f is onto, then f is one-one and if f is one-one, then f is onto.

Reason (R): Every one-one function is always onto and every onto function is always one-one.

- 1. Both (A) and (R) are true and (R) is the correct explanation for (A).
- 2. Both (A) and (R) are true but (R) is not the correct explanation for (A).
- 3. (A) is true but (R) is false.
- 4. Both (A) and (R) are false.

Ans. 3. (A) is true but (R) is false.

Free Response Questions:

Q10. State whether the following statement is true or false. Justify your answer.

"The sine function is bijective in nature when the domain is set from 0 to 4n."

Ans. Writes False (F)

Writes that the sine function is onto but not one-one (gives an example such as $sin(\pi/2) = sin(5\pi/2) = 1$), therefore it is not bijective in nature.

Q11. State whether the following statement is true or false. Justify your answer.

"A function f(x) = In x is invertible for all values of x."

Ans. Writes True (T)

Writes that the logarithmic function is both onto and one-one. Hence, its inverse exists.

(Award full marks for any other logical explanation.)

Q12.
$$A = \{1, 3, 5, 7, ...\}$$

 $B = \{2, 4, 6, 8, ...\}$

Define a function from A to B that is neither one-one nor onto.

Ans. Defines a function from A to B that is neither one-one nor onto. For example, f: A-> B defined by f(x) = 4 for all $x \in A$.

Q13. X and Y are two sets with their number of elements being k and I respectively (k < 1), Find the number of onto functions that can be defined from set X to Y. Explain your answer.

Ans. Writes that the number of onto functions from set X to Y is zero.

Reasons that, since set Y contains more elements than set X, at least one element of Y will always remain unmapped.

Q14. Shreyas and Simran are playing a game in which they are trying to guess relations on set $A = \{-2, -3\}$. Simran tells Shreyas that she is thinking of an equivalence relation.

Shreyas guesses the relation as $R = \{(-2, -3), (-3, -2), (-3, -3)\}$.

Could Shreyas be correct? Justify your answer.

Ans. Writes that Shreyas is not correct.

Writes that Shreyas' relation is not reflexive as (-2, -2) is not a part of it.

Writes that, since the relation is not reflexive, it cannot be an equivalence relation.

Q15. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two functions.

- (i) If f is not one-one, can g of be one-one?
- (ii) If f is not onto, can go f be onto?

Justify your answer.

Ans.

- (i) Writes that go f cannot be one-one, since g of is one-one implies f is one-one.
- (ii) Writes that g of can be onto, since g of is onto implies g is onto and there is no restriction on f to be one-one or onto.

Q16. Express the relation R in roster form.

Ans. Expresses the relation R in roster form as $R = \{(D, S), (D, C), (D, K), (S, C), (S, K), (C, K)\}.$

Q17. Is R a reflexive relation? Justify your answer.

Ans. Writes yes.

Justifies the answer. For example, the cost of every chocolate is equal to its own cost i.e. $(x,x) \in R$, for every $x \in A$.

Q18. Is R a symmetric relation? Justify your answer.

Ans. Writes no.

Justifies the answer. For example, (D, S) E R but (S, D) R. Hence, R is not symmetric.

Q19. Is R a transitive relation? Justify your answer.

Ans. Writes yes.

Justifies the answer. For example:

Let (x, y) and (y,z) ER

=> cost of x \leq cost of y and cost of y \leq cost of z

Uses the above set of inequalities to show that cost of $x \le \cos z$. Hence, concludes that $(x, z) \in R$.

Q20. Define a function from set A to set B.

Ans. Defines a function from set A to set B. For example:

f: A -> B, defined by, $f(x) = \cos t \circ f x$.

(Award full marks if any function is written correctly in set-builder form or in roster form.)