
 

ELECTROSTATICS 
 
 

QUICK REVISION (Important Concepts & Formulas) 
 
Charge 
Quantization: Charge is always in the form of an integral multiple of electronic charge 

and never its fraction. 
q = ±ne where n is an integer and e    = 1.6 × 10–19 coulomb 

= 1.6 × 10–19 C. 
Charge on an electron/proton is the minimum charge. 

Charge on an electron is –ve. e = –1.6 × 10–19 C. 
Charge on a proton is +ve. e = +1.6 × 10–19 C. 
Total charge = ± ne. 

 

A particle/body is positively charged because it loses electrons or it has shortage of electrons. 
 

A particle is negatively charged because it gains electrons or it has excess of electron. 
 
Conservation: The total net charge of an isolated physical system always remains constant. Charge 

can neither be created nor destroyed. It can be transferred from one body to another. 
 
Coulomb's inverse square law 
Coulomb’s law states that the force of attraction or repulsion between two point charges is directly 
proportional to the product of the charges and inversely proportional to the square of the distance 
between them. The direction of forces is along the line joining the two point charges. 

 
Let q1 and q2 be two point charges placed in air or vacuum at a distance r apart (see above Figure). 
Then, according to Coulomb’s law, 
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where k is a constant of proportionality. In air or vacuum, 
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  where F denotes the force between two charges q1 and q2 separated by a distance r 

in free space. 0  is a constant known as permittivity of free space. Free space is vacuum and may be 

deemed to be air practically and 
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One Coulomb is defined as the quantity of charge, which when placed at a distance of 1 metre in air 
or vacuum from an equal and similar charge, experiences a repulsive force of 9 × 109 N. 

 
If free space is replaced by a medium, then 0  is replaced by ( 0 K) or ( 0 r  ) where K is known as 

dielectric constant or relative permittivity or specific inductive capacity (S.I.C.) or dielectric 
coefficient of the medium/material/matter. Thus 

1 2 1 2 1 2
2 2 2

0 0

1 1 1. . .
4 4 4 r

q q q q q qF
r K r r   

    

 rK or 
 

    

K = 1 for vacuum (or air), K =   for conductor/metal. 
 0  = 8.85 × 10–12 C2N–1m–2 . 
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Vector form of the law (q1 and q2 are like charges) 
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If 21r  is a unit vector pointing from q2 to q1, then 
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   = force on q1 by q2 

When q1q2 > 0 for like charges. 
If 12r  is a unit vector pointing from q1 to q2, then 
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
   = force on q2 by q1 

When q1q2 > 0 for like charges. 
 
Intensity/strength of electric field 
Intensity at a point is numerically equal to the force acting on a unit positive charge placed at the 

point. 

It is a vector quantity. 

The units of intensity E are NC–1, volt/metre. 

The dimensions of E are [MLT–3A–1]. 

Intensity due to a charge q at distance r 

(i) 2
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It acts in the direction in which a +ve charge moves. 
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 , if point is in the medium. 

 

Potential (V) and intensity (E) 

(i) dVE
dr

  when potential varies with respect to distance. 

(ii) potential difference 
distance

VE
r

  , when potential difference is constant. 

(iii) Potential at a point distance r from charge q. 
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(iv) 
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  in medium 

(v) Potential is a scalar quantity 
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From positively charged surface, E


 acts outwards at right angles i.e. along outward drawn normal. 

 
Intensity is equal to flux (number of electric lines of force) crossing unit normal area. 
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Electric lines of force 
Electric lines of force start from positive charge and terminate on negative charge. 
From a positively charged conducting surface lines of force are normal to surface in outward 

direction. 
Electric lines of force about a negative point charge are radial, inwards and about a positive point 

charge are radial, outwards. 
Electric lines of force are always perpendicular to an equipotential surface. 
These lines of force contract along the length but expand at right angles to their length. There is 

longitudinal tension and lateral pressure in a line of force. Contraction shows attraction between 
opposite charges while expansion indicates that similar charges repel. 

The number of electric lines of force (flux) passing through unit normal area at any point indicates 
electric intensity at that point. 

For a charged sphere these lines are straight and directed along radius. 
These may be open or closed curves. They are not necessarily closed though the magnetic lines of 

force are closed. 
Two lines of force never intersect or cut each other. 
Lines of force are parallel and equally spaced in a uniform field. 
Tangent to the curve at a point shows direction of field. 
 
Gauss law 
For a closed surface enclosing a net charge q, the net electric flux   emerging out is given by 
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If a dipole is enclosed by a closed surface, flux  is equal to zero. 
Here the algebraic sum of charges (+q – q = 0) is zero. 

 
The flux will come out if +ve charge is enclosed. The flux will enter if negative charge is enclosed. 
 
Flux from a cube 

(i) If q is at the centre of cube, total flux ( ) = 
0

q

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(ii) From each face of cube, flux = 
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Electric field due to a charged shell 

(i) At an external point, 2
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This is the same as the field due to a point charge 
placed at the centre. 
(ii) At a point on surface of shell, this is Emax . 
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Again the shell behaves like a point charge placed at the 
centre. 
(iii) At an inside point (r’ < R), E = 0. 
Thus a charge q placed inside a charged shell does not 
experience any force due to the shell. 

 

Gaussian surface 
(i) For a sphere or spherical shell a concentric sphere. 
(ii) For a cylinder or an infinite rod a coaxial cylinder. 
(iii) For a plate a cube or a cuboid. 



Potential and intensity due to a charged conducting sphere (or shell) 
At a point outside the charged sphere 

(i) Intensity, 2
0
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  (r > radius of sphere R) 

It is a vector quantity. 

(ii) Potential, 
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It is a scalar quantity. 
 
At a point on the surface of charged sphere 

(i) Intensity, 2
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 (r = radius of sphere R) 

It is a vector quantity. 

(ii) Potential, 
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It is a scalar quantity. 
 
At a point inside the sphere (r < radius of sphere) 
(i) Intensity E = zero. 

(ii) Potential, 
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Potential is constant inside the sphere. This is same as potential at the surface of sphere. 
 
At the centre of sphere 
(i) Intensity E = zero. 

(ii) Potential, 
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At infinity 
(i) Intensity E = zero. 
(ii) Potential V = zero. 
 
Electric field and potential due to charged nonconducting sphere 
Outside the sphere when r > radius of sphere R 


(i) Electric intensity, 2
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   It is a vector quantity. 

(ii) Electric potential, 
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   It is a scalar quantity. 

 
On the surface of the sphere where r = R 

(i) Electric intensity, 2
0
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   It is a vector quantity. 

(ii) Electric potential, 
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   It is a scalar quantity. 

 
Inside the sphere when r < R 

(i) Electric intensity, 3
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Vectorially, 3
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 (ii) Electric potential, 
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At the centre of sphere when r = 0 
(i) Electric intensity E = zero. 

(ii) Electric potential, 
0
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Potential at centre = 3
2

 × potential at surface 

At infinity 
(i) Intensity = zero. 
(ii) Potential = zero. 
 
Electric dipole 
Two equal and opposite charges (q) each, separated by a small distance (l) constitute an electric dipole. 
Many of the atoms/molecules are dipoles. 
(i) Dipole moment, ( )p q l 

 
 

(ii) Dipole moment is a vector quantity. 
(iii) The direction of p


is from negative charge to positive charge. 

(iv) Unit of dipole moment = coulombmetre = Cm. 
(v) Dimension of dipole moment = [ATL]. 
 
Intensity of electric field due to a dipole 
(i) Along axis at distance r from centre of dipole 
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   Direction of E is along the direction of dipole moment. 

(ii) Along equator of dipole at distance r from centre 
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   Direction of E is anti-parallel to direction of p. 

(iii) At any point along direction q 
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The direction of E makes an angle   with the line joining the point with centre of dipole where tan  

= 1
2

tan . 

 
Torque on a dipole 

 
Two forces [qE and (–qE)] equal, opposite and parallel, separated by a distance constitute a couple. 



torque (


) = p E 
 

 
| | sinpE 


 
 

This direction of 


  is perpendicular to the plane containing p


 and E


. The torque tends to align the 
dipole in the direction of field. 
When dipole is parallel to electric field, it is in stable equilibrium. When it is antiparallel to electric 
field, it is in unstable equilibrium. 
Torque is maximum when   = 90°. Dipole is perpendicular to E. Therefore maximum torque = pE. 
 
Potential energy of dipole in uniform electric field 
Workdone in rotating the dipole from an angle 1  to angle 2 . 
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(i) If 1 = 0 and 2  = 180°, W = 2pE. 
(ii) If 1  = 0 and 2  = 90°, W = pE. 
 
Potential energy of dipole, when it is turned through an angle q from field direction is 
U = –pEcos  = - p


 × E


 
(i) If   = 0, U = –pE. 
The dipole orients itself parallel to field. 
(ii) If   = 90°, U = 0. 
(iii) If   = 180°, U = pE. 
 
Variation of potential energy of dipole with angle  , between E


 and p


, is shown in the figure. 

 
(i) Potential energy is negative from 0 to  /2 and 3 /2 to 2 . They are regions of stable equilibrium of 
dipole. 
(ii) Potential energy is positive from  /2 to 3 /2. This is the region of unstable equilibrium of the 
dipole. 
 
Dipole in non-uniform electric field 
In non-uniform electric field, the two ends of dipole are acted upon by forces qE1 and –qE2 . They are 
not equal as E1   E2 in non-uniform field. Hence a force and a torque both act on the dipole. 

Force acting on the dipole can be represented by d EF p
dr

 
 

 

Broadly speaking, 
Net force = (qE1 – qE2) along direction of greater field intensity. 
On account of net force upon dipole, it may undergo linear motion. 
In a non-uniform electric field, a dipole may, therefore, undergo rotation as well as linear motion. 



Potential energy of charge system 
For two point charges q1 and q2 separated by a distance r, electrostatic potential energy U is given by 
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For n charges, consider all pairs with due regard of signs of charges, positive or negative. 
S.I. unit of energy = joule (J) 
Another popular unit is electron volt (eV). 

1 eV = 1.6 × 10–19 joule. 
 
Charged soap bubble 

For equilibrium of a charged soap bubble, pressure due to surface tension = 4T
r

 acting inwards. 

Electric pressure due to charging = 
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 acting outwards. 

At equilibrium, 
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  where s = surface density of charge 
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Here air pressures, inside and outside the bubble, are supposed to be same. 
 
Behaviour of a conductor in an electrostatic field 
In the case of a charged conductor 
(i) Charge resides only on the outer surface of conductor. 
(ii) Electric field at any point inside the conductor is zero. 
(iii) Electric potential at any point inside the conductor is constant and equal to potential on the surface 
of the conductor, whatever be the shape and size of the conductor. 
(iv) Electric field at any point on the surface of charged conductor is directly proportional to the surface 
density of charge at that point, but electric potential does not depend upon the surface density of charge. 
 
Capacitance 
When a conductor is given a charge, its potential gets raised. The quantity of charge given to a 
conductor is found to be directly proportional to the potential raised by it. If q is the charge given to 
conductor and V is potential raised due to it, then q   V or q = CV, where C is a constant, known as 
capacitance of the conductor. 
 

Capacitance = charge
potential

. 

 



Unit of capacitance is farad. 
1F = 1 coulomb/volt. 
1 Farad = 9 x 1011 stat farad. 
Dimensions of capacitance are [M–1L–2T4A2]. 
 
Capacity of an isolated spherical conductor : Capacitance of an isolated spherical conductor of radius 
a placed in a medium of dielectric constant K, 

04C Ka  farad 
For vacuum or air, K = 1, hence 
 0 04C a  farad. 
i.e., capacitance of a spherical conductor µ radius. 
Capacitor is a pair of two conductors of any shape which are close to each other and have equal and 
opposite charges. 
 
A capacitor is an arrangement which can store sufficient quantity of charge. 
 
The quantity of charge that can be given to a capacitor is limited by the fact that every dielectric medium 
becomes conducting at a certain value of electric field. 
 
Capacitance of a capacitor is 
(i) Directly proportional to the area of the plates (A). 
(ii) Inversely proportional to distance between plates (d) –1 . 
(iii) Directly proportional to dielectic constant of the medium filled between its plates (K). 
 
Parallel plate capacitor : Capacitance of a parallel plate capacitor filled completely with some 
dielectric medium. 

0K AC
d
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  

For air and vacuum, K = 1. 
0 AC
d


  

Capacitance of a parallel plate capacitor filled with dielectric slab of thickness t is given by 
0
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Capacitance of a parallel plate capacitor filled with a conducting slab of thickness t is given by 
0
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The plates of a parallel plate capacitor attract each other with a force 
2

02
QF
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  

 

Capacitance of a spherical condenser/capacitor, is 04 abC K
b a

     
 

when a and b are the radii of inner and outer spheres respectively. 
 
Dielectrics are of two types : Nonpolar and polar. The nonpolar dielectrics (like N2, O2, benzene, 
methane) etc. are made up of nonpolar atoms / molecules, in which the centre of mass of negative 
coincides with the centre of mass of negative charge of the atom / molecule. 
 



The polar dielectrics (like H2O, CO2 , NH3 , HCl) etc. are made up of polar atoms / molecules, in which 
the centre of mass of positive charge does not coincide with the centre of mass of negative charge of the 
atom / molecule. 
 
A non-polar dielectric can be polarized by applying an external electric field on the dielectric. 
 
The effective electric field E


 in a polarised dielectric is given by 0 pE E E 

  
 where 0E


 is strength of 

external field applied and pE


 is intensity of induced electric field set up due to polarization. It is equal 
to surface density of induced charge.  
The ratio E0 / E = K, dielectric constant. 
 
When a dielectric slab is placed between the plates of a parallel plate capacitor, the charge induced on its 
sides due to polarization of dielectric is 

( 1)
i

Kq q
K


  

Capacitors in series: Equivalent capacitance of a series combination of capacitors is 

1 2 3

1 1 1 1 ..........
C C C C
     

In series combination of capacitors, charge is same on each capacitor and is equal to charge supplied by 
source CV = C1V1 = C2V2 = ... 
 
Capacitors in parallel : Equivalent capacitance of a parallel combination of capacitors is Cp = C1 + C2 
+ C3 +.... 
 
In parallel combination of capacitors, potential difference is same across each capacitor and is equal to 

applied potential difference  31 2

1 2 3

..........qq qq
C C C C
     

Electric potential energy stored in a charged conductor or capacitor is 
2

21 1 1
2 2 2

qU CV qV
C

    

The electric potential energy of capacitor resides in the dielectric medium between the plates of the 
condenser. 
 
When two charged conductors are connected together, the redistributed charges on them are in the ratio 
of their capacitance. 
 
When two charged conductors having charges q1 and q2 and capacitances C1 and C2 are connected 

together, then after redistribution of charges, the common potential is 1 2 1 1 2 2

1 2 1 2

q q C V C VV
C C C C

 
 

 
 where 

V1 and V2 are the initial potentials of the charged conductors. 
 
In case of charged capacitors, when plates of same polarity are connected together, common potential  

1 1 2 2
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C V C VV
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


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But when plates of opposite polarity are connected together, then common potential is 1 1 2 2

1 2

C V C VV
C C



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Total energy stored in any grouping of capacitors is equal to sum of the energies stored in individual 
capacitors. 
 



If n charged drops, each of capacity C, charged to potential V with charge q, surface density   and 
potential energy U coalesce to form a single drop, then for such a drop, 
total charge = nq 
total capacity = n1/3C 
potential = n2/3V 
Surface density of charge = n1/3 , 
and total potential energy = n2/3U. 
 
Sharing of charges 
(i) Common potential : When two capacitors at different potentials V1 and V2 are connected, charged q1 
(= C1V1) and q2 (= C2V2) are redistributed till a common potential V is reached. Then 

1 2 1 1 2 2

1 2 1 2

total charge
total capacity

q q C V C VV
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 (ii) Loss of energy : During sharing of charges, energy is lost; mostly as heat, partly as cracking noise 
and partly as sparking light. 
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VERY SHORT ANSWER TYPE QUESTIONS (1 MARK) 
1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at 

every point? Give reason. 
Ans. The work done in moving a charge from one point to another on an equipotential surface is 
zero. If electric field is not normal, it will have a non-zero component along the surface which would 
cause work to be done in moving a charge on an equipotential surface. 
 

2. Figure shows the field lines due to a positive point charge. Give the sign of potential energy 
difference of a small negative charge between the points Q and P. 

 
Ans. 1 2

0

1 .
4 '

q qU
r

  

Here, Q PU U  
Therefore, Q PU U is negative 

 
3. Why do the electrostatic field lines not form closed loops? 

Ans. The electrostatic field lines start from positive charge and end on negative charge. 

 
 
4. Why do the electric field lines never cross each other? 

Ans. If the field lines cross each other, then at the point of intersection, there will be two directions 
for the same electric field which is not possible. 
 

5. Figure shows the field lines on a positive charge. Is the work done by the field in moving a 
small positive charge from Q to P positive or negative? Give reason. 

Important Questions & Answers 



 

 
Ans. The work done by the field is negative. This is because the charge is moved against the force 
exerted by the field. 

 
6. At what position is the electric dipole in uniform electric field in its most stable equilibrium 

position? [AI 2008] 
Ans. When   = 0° between P


and E


 

 
7. If the radius of the Gaussian surface enclosing a charge is halved, how does the electric flux 

through the Gaussian surface change? [AI 2008] 
Ans. The electric flux remains the same, as the charge enclosed remains the same. 

 
8. Define the term electric dipole moment of a dipole. State its S.I. unit. [AI 2008] 

Ans. Strength of an electric dipole is measured by its electric dipole moment, whose magnitude is 
equal to product of magnitude of either charge and separation between the two charges i.e., .2p q a

 
 

and is directed from negative to positive charge, along the line joining the two charges. Its SI unit is 
Cm. 

 
9. A charge ‘q’ is placed at the centre of a cube of side l. What is the electric flux passing through 

each face of the cube? [AI 2012] 

Ans. Flux through whole of the cube, 
0

q


  

Flux through each face of the cube, 
0

'
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q


   

10. Two charges of magnitudes –2Q and +Q are located at 
points (a, 0) and (4a, 0) respectively. What is the electric 
flux due to these charges through a sphere of radius ‘3a’ 
with its centre at the origin? [AI 2013] 

Ans.  
0 0

2insideq QElectric flux 
 


    

 
11. What is the electrostatic potential due to an electric dipole at an equatorial point? [AI 2009] 

Ans. Zero 
 
12. Name the physical quantity whose S.I. unit is J C–1 . Is it a scalar or a vector quantity? [AI 

2010] 
Ans. J C–1 is the S.I. unit of electrostatic potential. It is a scalar quantity. 
 

13. What is the value of the angle and between the vectors p


and E


 for which the potential energy 
of an electric dipole of dipole moment p


, kept in an external electric field E


, has the 

maximum value. 



Ans. Potential energy = . cosp E pE   
 

 
Therefore, Potential energy is the maximum when 0cos 1 . . 180i e or         

 
14. A point charge Q is placed at point O as shown in the figure. Is the potential difference VA – VB 

positive, negative or zero, if Q is (i) positive (ii) negative? [AI 2011] 

 
Ans. (i) If Q is positive, VA – VB  is positive. 
(ii) If Q is negative, VA – VB  is negative. 

 
 
SHORT ANSWER TYPE QUESTIONS (2 MARKS/3 MARKS) 
 
15. Define electric flux. Write its S.I. unit. 

A charge q is enclosed by a spherical surface of radius R. If the radius is reduced to half, how would 
the electric flux through the surface change? [AI 2009] 
Ans.  Electric flux linked with a surface is the number of electric lines of force cutting through the 
surface normally. It’s SI unit is Nm2C–1 or Vm on decreasing the radius of spherical surface to half 
there will be no effect on the electric flux. 

 
16. A positive point charge (+q) is kept in the vicinity of an uncharged conducting plate. Sketch 

electric field lines originating from the point on to the surface of the plate. Derive the 
expression for the electric field at the surface of a charged conductor. [AI 2009] 
Ans.  Let us consider an infinite plane sheet of charge of uniform charge density where q is charge in 
area A on sheet of charge. 

q
A

   

  
Let P be any point on the one side of sheet and P’ on the other side of sheet, at same distance r from 
it. We draw a Gaussian cylindrical surface S of cross section area A cutting through the plane sheet 
of charge, such that points P and P’ lie on its plane faces. Then electric flux linked with cylindrical 
surface S is 



 
This gives the electric field intensity at any point near or on the surface of the infinite thin plane 
sheet of charge. 

 
17. A parallel plate capacitor is charged by a battery. After some time the battery is disconnected 

and a dielectric slab of dielectric constant K is inserted between the plates. How would (i) the 
capacitance, (ii) the electric field between the plates and (iii) the energy stored in the capacitor, 
be affected? Justify your answer. [AI 2009] 
Ans.  (i) On filling the dielectric constant of K in the space between the plates, capacitance of 
parallel plate capacitor becomes K times i.e. C = KC0 
(ii) As the battery was disconnected, so the charge on the capacitor remains the same i.e. Q = Q0. So, 

the electric field in the space between the plates becomes 0 0 0

0 0

E Q EE or E
KA KA K 

     i.e. electric 

field becomes 1
K

 times. 

(iii) Energy stored in capacitor becomes 
22

0
0

1 1 1
2 2 2

QQU or U U
C KC

       i.e. becomes 1
K

 times. 

 
18. A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q. A charge q 

is placed at the centre of the shell. 
(a) What is the surface charge density on the (i) inner surface, (ii) outer surface of the shell? 
(b) Write the expression for the electric field at a point x > r 2 from the centre of the shell. [AI 
2010] 

Ans. (a) (i) Surface charge density on the inner surface of shell is 2
14in

q
r





  

 

(ii) Surface charge density on the outer surface of shell is 2
24out

Q q
r





  



 
 

(b) Using, Gauss’s law, 2
0

1( ) .
4

Q qE x
x


  

19. Explain the meaning of the statement ‘electric charge of a body is quantized’. 
Ans. The electric charge of a body is quantized means that the charge on a body can occur in some 
particular values only. Charge on any body is the integral multiple of charge on an electron because 
the charge of an electron is the elementary charge in nature. The charge on any body can be 
expressed by the formula 
q ne  ,  where, n = number of electrons transferred and e = charge on one electron. 
The cause of quantization is that only integral number of electrons can be transferred from one body 
to other. 

 
20. Why can one ignore quantization of electric charge when dealing with macroscopic, i.e., large 

scale charges? 
Ans. We can ignore the quantization of electric charge when dealing with macroscopic charges 
because the charge on one electron is 1.6 x 10–19 C  in magnitude, which is very small as compared 
to the large scale change. 

 
21. An electrostatic field line is a continuous curve. That is, a field line cannot have sudden breaks. 

Why not? 
Ans. An electrostatic field line represents the actual path travelled by a unit positive charge in an 
electric field. If the line have sudden breaks it means the unit positive test charge jumps from one 
place to another which is not possible. It also means that electric field becomes zero suddenly at the 
breaks which is not possible. So, the field line cannot have any sudden breaks. 

 
22. Explain why two field lines never cross each other at any point? 

Ans. If two field lines cross each other, then we can draw two tangents at the point of intersection 
which indicates that (as tangent drawn at any point on electric line of force gives the direction of 
electric field at that point) there are two directions of electric field at a particular point, which is not 
possible at the same instant. Thus, two field lines never cross each other at any point. 

 

23. Show that the electric field at the surface of a charged conductor is given by  
0

E n





  where 

  is the surface charge density and is a unit vector normal to the surface in the outward 
direction. [AI 2010] 
Ans.  Consider an elementary area S  on the surface of the charged conductor. Enclose this area 
element with a cylindrical gaussian surface as shown in figure. 
Now electric field inside a charged conductor is zero. Therefore, direction of field, just out side S  
will be normally outward i.e. in direction of n . 
According to Gauss’s theorem, total electric flux coming out is 

 
 

0

. SE S 



 

 [ E


  is electric field at the surface] 



0

0

cos 0 SE S 


   

0

E 


   

 
24. Using Gauss’s law obtain the expression for the electric field due to a uniformly charged thin 

spherical shell of radius R at a point outside the shell. Draw a graph showing the variation of 
electric field with r, for r > R and r < R. [AI 2011] 
Ans.  Consider a thin spherical shell of radius R carrying charge Q. To find the electric field outside 
the shell, we consider a spherical Gaussian surface of radius r (> R), concentric with given shell. 
The electric field E


  is same at every point of Gaussian surface and directed radially outwards (as is 

unit vector n  so that q = 0°) 

According to Gauss’s theorem, 
0

. .
s s

QE d s E nd s


  
   
   

0
s

Qor E ds


   

2
2

0 0

1(4 )
4

Q QE r E
r


 

     

 
Hence, electric field outside a charged thin spherical shell 
is the same as if the whole charge Q is concentrated at the 
centre. 
The variation of electric field E


  with distance from 

centre of a uniformly charged spherical shell is shown in figure. 

 
 
25. Draw 3 equipotential surfaces corresponding to a field that uniformly increases in magnitude 

but remains constant along Z direction. How are these surfaces different from that of a 
constant electric field along Z direction? [AI 2009] 
Ans. For constant electric field, equipotential surfaces are equidistant for same potential difference 
between these surfaces. For increasing electric field, separation between equipotential surfaces 
decreases, in the direction of increasing field, for the same potential difference between them. 



 
 
26. A network of four capacitors each of 12  F capacitance is connected to a 500 V supply as 

shown in the figure. Determine (a) equivalent capacitance of the network and (b) charge on 
each capacitor. 

 
Ans. Here C1 , C2 and C3 are in series, hence their equivalent capacitance is C’ given by 

1 2 3

1 1 1 1
'C C C C
    

12' ' 4
3

C F C F     

 
The circuit can be redrawn as shown, above. Since C’ and C4 are in parallel 

4' 4 12 16netC C C F F F         

 
 



(b) Since C’ and C4 are in parallel, potential difference across both of them is 500 V. 
Charge across C4 is Q4  = C4 × 500 C 

= 12 × 10–6 × 500 C = 6 mC 
and Charge across C’, Q’   = C’ × 500 C 

= 4 × 10–6 × 500 C = 2 mC 
C1 , C2 , C3 are in series, charge across them is same, which is Q’ = 2 mC 

 
27. Figure shows two identical capacitors C1 and C2 , each of 1  F capacitance connected to a 

battery of 6 V. Initially switch S is closed. After sometime S is left open and dielectric slabs of 
dielectric constant K = 3 are inserted to fill completely the space between the plates of the two 
capacitors. How will the (i) charge and (ii) potential difference between the plates of the 
capacitors be affected after the slabs are inserted? 

 
Ans. When the switch S is closed, the two capacitors in parallel will be charged by the same 

potential difference V. 
So, charge on capacitor C1 
q1 = C1V  = 1 × 6 = 6 mC 
and charge on capacitor C2 
q2 = C2 V = 1 × 6 = 6 mC 
 q = q1 + q2 = 6 + 6 = 12 mC. 
When switch S is opened and dielectric is introduced. Then 

 
 

Capacity of both the capacitors becomes K times 
i.e., C’1 = C’2 = KC = 3 × 1 = 3 mF 
Capacitor A remains connected to battery 
 V’1 = V = 6 V 
q’1 = Kq = 3 x 6 mC = 18 m C 
Capacitor B becomes isolated 
 q’2 = q2 or C’2 V’2 = C2V2 or (KC)V’2 = CV 

2
6' 2
3

VV V
K

    

28. A test charge ‘q’ is moved without acceleration from A to C along the path from A to B and 
then from B to C in electric field E as shown in the figure. (i) Calculate the potential difference 
between A and C’. (ii) At which point (of the two) is the electric potential more and why? [AI 
2012] 



 

 
Ans. In the relation 

(2 6)
C AV VdVE E

dr
 

      
 

(i)VC – VA = 4E (ii) Hence VC > VA 
Also electric field is directed from points of high potential to low potential. 

 
29. Deduce the expression for the electrostatic energy stored in a capacitor of capacitance ‘C’ and 

having charge ‘Q’. How will the (i) energy stored and (ii) the electric field inside the capacitor 
be affected when it is completely filled with a dielectric material of dielectric constant ‘K’? [AI 
2012] 

Ans. Potential difference between the plates of capacitor qV
C

  

Work done to add additional charge dq on the capacitor 

dW = V × dq = q
C

 × dq 

  Total energy stored in the capacitor 
2

0

1
2 2

Q q QU dW dq
C

     

When battery is disconnected 

(i) Energy stored will be decreased or energy stored =  1
K

 times the initial energy. 

(ii) Electric field would decrease 

or ' EE
K

  

Alternatively, if a student attempts to answer by keeping the battery connected, then 
(i) energy stored will increase or become K times the initial energy. 
(ii) electric field will not change. 

 

30. Draw the equipotential surfaces due to an electric dipole. Locate the points where the potential 
due to the dipole is zero. 
Ans. 



 
Alternatively Any point on the equatorial plane (AB) of the dipole. 
 

31. A slab of material of dielectric constant K has the same area as that of the plates of a parallel 
plate capacitor but has the thickness d/2, where d is the separation between the plates. Find out 
the expression for its capacitance when the slab is inserted between the plates of the capacitor. 
[AI 2013] 
Ans.  
Capacitance of a capacitor partially filled with a dielectric 

0 AC td t
K




 
 

0 02
( 1)

2 2

A AKC d d d Kd
K

 
  

 
 

 

 

32. A capacitor, made of two parallel plates each of plate area A and separation d, is being charged 
by an external ac source. Show that the displacement current inside the capacitor is the same 
as the current charging the capacitor. [AI 2013] 
Ans. The displacement current within capacitor plates 

0
E

d
dI
dt


  

0 0
E

q qwhere EA A
A


 

    

0

0
d d

dqI I I
dt




    

 
33. A point charge (+Q) is kept in the vicinity of uncharged conducting plate. Sketch electric field 

lines between the charge and the plate. 
Ans. 

 



The lines of force start from + Q and terminate at metal place inducing negative charge on it. 
The lines of force will be perpendicular to the metal surface. 

 
34. Derive the expression for the electric field of a dipole at a point on the equatorial plane of the 

dipole. 
Ans. It is the product of magnitude of either charge and the distance between the two equal and 
opposite charges. Alternatively, 

2p q aa


 
It is a vector quantity. 

1 1 1cos cos 2 cosE E E E      

2 2 2 2 1/ 2
0

2 .
4 ( ) ( )

q aE
r a r a


   

2 2 3/ 2 2 2 3/ 2
0 0

2 1 2
4 ( ) 4 ( )

qa qaE
r a r a 

 
 

 

2 2 3/ 2
0

1 2
4 ( )

pE where p qa
r a

 


   

 
 
 
 
 
35. Using Gauss’ law deduce the expression for the electric field due to a uniformly charged 

spherical conducting shell of radius R at a point (i) outside and (ii) inside the shell. Plot a graph 
showing variation of electric field as a function of r > R and r < R. (r being the distance from 
the centre of the shell) 
Ans.  
By Gauss Law, r > R (outside) 

0

. qE d S



 
  

0

qE d S


 


  

2
2

0 0

14
4

q qE r E
r


 

     

Similarly, r < R (inside) 

0

qE d S





  

As inside the shell q = 0 
24 0E R   
0, 0As R E    

 
 

 
 
 
 

 



36. Two infinitely large plane thin parallel sheets having surface charge densities 1  and 2  ( 1  > 

2  ) are shown in the figure. Write the magnitudes and directions of the net fields in the 
regions marked II and III. 

 
Ans. (i) Net electric field in region II = 1 2

0

1 ( )
2

 


  

Direction of electric field in from sheet A to sheet B. 
 

(ii) Net electric field in region III = 1 2
0

1 ( )
2

 


  

Direction is away from the two sheets i.e. towards right side. 
 
37. In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10–3 m2 

and the separation between the plates is 3 mm. 
(i) Calculate the capacitance of the capacitor. 
(ii) If this capacitor is connected to 100 V supply, what would be the charge on each plate? 
(iii) How would charge on the plates be affected, if a 3 mm thick mica sheet of K = 6 is inserted 
between the plates while the voltage supply remains connected? 
Ans. Here, A = 6 × 10–3 m2, d = 3 mm = 3 × 10–3 m 

(i) Capacitance, 
12 3

120
3

8.85 10 6 10 17.7 10
3 10

AC F
d
  




  
   


 

 
(ii) Charge, Q = CV 12 1017.7 10 100 17.7 10C C       
 
(iii) New charge, Q’ = KQ = 10 106 17.7 10 106.2 10C C       

 
38. In a parallel plate capacitor with air between the plates, each plate has an area of 5 × 10–3 m2 

and the separation between the plates is 2.5 mm. 
(i) Calculate the capacitance of the capacitor. 
(ii) If this capacitor is connected to 100 V supply, what would be the charge on each plate? 
(iii) How would charge on the plates be affected, if a 2.5 mm thick mica sheet of K = 8 is 
inserted between the plates while the voltage supply remains connected? 
Ans. Here, A = 5 × 10–3 m2, d = 2.5 mm = 2.5 × 10–3 m 

(i) Capacitance, 
12 3

120
3

8.85 10 5 10 17.7 10
2.5 10

AC F
d
  




  
   


 

 

(ii) Charge, Q = CV 12 1017.7 10 100 17.7 10C C       
 

(iii) New charge, Q’ = KQ = 10 108 17.7 10 141.6 10C C       



39. Two equal balls having equal positive charge ‘q’ coulombs are suspended by two insulating 
strings of equal length. What would be the effect on the force when a plastic sheet is inserted 
between the two? 
Ans. Force will decrease. 
Reason: Force between two charges each ‘q’ in vacuum is 

2

0 2
0

1 .
4

qF
r

  

On inserting a plastic sheet (a dielectric K > 1) 

Then 
2

2
0

1 .
4

qF
K r

  i.e. Force 0FF
K

  

The force between charged balls will decrease. 
 
40. A parallel plate capacitor of capacitance C is charged to a potential V. It is then connected to 

another uncharged capacitor having the same capacitance. Find out the ratio of the energy 
stored in the combined system to that stored initially in the single capacitor. 
Ans. The charge on the capacitor q = CV and initial energy stored in the capacitor 

2
2

1
1 1
2 2

qU CV
C

   ----------- (i) 

 
(a) If another uncharged capacitor is connected in series then the same amount of the charge will 
transfer as shown in figure. 

 
Keeping charge constant, and final voltage v��2v 

2 2 21 1
2 2f

q q qU
C C C

    

2 2

: : 2 :1
2f i

q qU U
C C

   

41. Deduce the expression for the torque acting on a dipole of dipole moment p


 in the presence of 
a uniform electric field E


. 

Ans. Expression for torque 

 
An electric dipole having charges ± q, and of size 2a is placed in uniform electric field E


 as shown 

in figure. The forces, acting on the charges are +q E


 and -q E


 . 
The net force on the dipole is  F


= +q E


 + (-q E


 ) = 0 

Both forces provides an equivalent torque with magnitude 
t =| qE | x Perpendicular distance (AC) 



= q | E| .2a sin  
= | P | | E | sin  
The direction of the torque can be given by p E  

  
 

 
42. Consider two hollow concentric spheres, S1 and S2 , enclosing charges 2Q and 4Q respectively 

as shown in the figure. (i) Find out the ratio of the electric flux through them. (ii) How will the 
electric flux through the sphere S1 change if a medium of dielectric constant ‘ r  ’ is introduced 
in the space inside S1 in place of air? Deduce the necessary expression. 

 
Ans. Using Gauss’s Theorem 

0

( ). q TE ds



 
  

Electric flux through sphere S1 = 1
0

2( )q


  

 

Electric flux through sphere S2 = 
0 0

(2 4 ) 6Q Q Q
 


   

Ratio = 01

0

2
1

6 3

Q

Q





   

If a medium of dielectric constant K(= r  ) is filled in the sphere S1, electric flux through 

sphere, 1
0 0

2 2'
r

Q Q
K


  

   

 
43. “For any charge configuration, equipotential surface through a point is normal to the electric 

field.” Justify. 
Ans. The work done in moving a charge from one point to another on an equipotential surface is 
zero. If electric field is not normal to the equipotential surface, it would have non-zero component 
along the surface. In that case work would be done in moving a charge on an equipotential surface. 

 
44. An electric dipole of length 4 cm, when placed with its axis making an angle of 60° with a 

uniform electric field, experiences a torque of 4 3 Nm. Calculate the potential energy of the 
dipole, if it has charge ±8 nC. 
Ans. Torque, t = pE sin q 
4 3  = pE sin 60° 

34 3 8
2

pE pE     



Now, potential energy, U = -pE cos   = – 8 cos 60° = -8 ´ 1
2

 = -4 J 

45. Given a uniform electric field E


 = 5 × 103 i  N/C, find the flux of this field through a square of 
10 cm on a side whose plane is parallel to the y-z plane. What would be the flux through the 
same square if the plane makes a 30° angle with the x-axis? 
Ans. Here, E


 = 5 × 103 i  N/C, i.e. field is along positive direction of x-axis. 

Surface area, A = 10 cm × 10 cm = 0.10 m × 0.10 m = 10–2 m- 
 
(i) When plane parallel to y - z plane, the normal to plane is along x axis. Hence 
   = 0° 
  = EA cos  = 5 x 103 x 10-2cos0° = 50NC–1m2 
 
(ii) When the plane makes a 30° angle with the x-axis, the normal to its plane makes 60° angle with 
x-axis. Hence 
  = 60° 
  = EA cos  = 5 x 103 x 10-2 cos 60° = 25 NC–1m2 

 
46. The electric field inside a parallel plate capacitor is E. Find the amount of work done in 

moving a charge q over a closed rectangular loop abcda. 

 
Ans. Work done in moving a charge q from a to b = 0 
Work done in moving a charge q from c to d = 0 
This is because the electric field is perpendicular to the displacement. 
Now, work done from b to c = – work done from d to a 
Therefore, total work done in moving a charge q over a closed loop = 0. 

 
47. Obtain the expression for the energy stored per unit volume in a charged parallel plate 

capacitor. 
Ans. When a capacitor is charged by a battery, work is done by the charging battery at the 
expense of its chemical energy. This work is stored in the capacitor in the form of electrostatic 
potential energy. 
Consider a capacitor of capacitance C. Initial charge on capacitor is zero. Initial potential difference 
between capacitor plates = zero. Let a charge Q be given to it in small steps. When charge is given to 
capacitor, the potential difference between its plates increases. Let at any instant when charge on 

capacitor be q, the potential difference between its plates qV
C

  

 
Now work done in giving an additional infinitesimal charge dq to capacitor 

qdW Vdq V dq
C

    

The total work done in giving charge from 0 to Q will be equal to the sum of all such 
infinitesimal works, which may be obtained by integration. Therefore total work 



2 2 2

0 0

1 1 0
2 2 2
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Q Q Q
q q Q QW Vdq dq
C C C C

   
       

   
   

If V is the final potential difference between capacitor plates, then Q = CV 
2

2( ) 1 1
2 2 2

CVW CV QV
C

    

This work is stored as electrostatic potential energy of capacitor i.e., 

Electrostatic potential energy, 
2

21 1
2 2 2
QU CV QV
C

    

Energy density: Consider a parallel plate capacitor consisting of plates, each of area A, 
separated by a distance d. If space between the plates is filled with a medium of dielectric 
constant K, then 

Capacitance of capacitor, 0K AC
d


  

 
If   is the surface charge density of plates, then electric field strength between the plates 

0
0

E K E
K
  


    

Charge on each plate of capacitor Q =   A = 0K EA  

 Energy stored by capacitor, 
22
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0
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K EAQU K E Ad
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d





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 
 
 

 

But Ad = volume of space between capacitor plates 

 Energy stored, 2
0

1
2

U K E Ad  

Electrostatic Energy stored per unit volume, 2
0

1
2e

Uu K E
Ad

   

This is expression for electrostatic energy density in medium of dielectric constant K. 

In air or free space (K = 1), therefore energy density, 2
0

1
2eu E  

 
48. Two charged spherical conductors of radii R1 and R2 when connected by a conducting wire 

acquire charges q1 and q2 respectively. Find the ratio of their surface charge densities in terms 
of their radii. 
Ans. When two charged spherical conductors are connected by a conducting wire, they acquire the 
same potential. 

1 2

1 2

1 2 1 1

1 2 2 2

kq kq
R R

q q q R
R R q R



   
 

Hence, the ratio of surface charge densities 
1

2 2
1 1 1 2

2
22 2 1

2
2

4

4

q
R q R

q q R
R

 




   

49. Derive the expression for the capacitance of a parallel plate capacitor having plate area A and 
plate separation d. 
Ans. 



 
In the region between the plates the net electric field is equal to the sum of the electric fields due to 
the two charged plates. Thus, the net electric field is given by 

0 0 02 2
E   

  
    

The electric field is constant in the region between the plates. Therefore, the potential 
difference between the plates will be 

0

dV Ed 


   

Now, capacitance 0QQC
V d




   

 

Surface charge density Q
A

  , where A is the area of cross-section of the plates. 

0 0Q A AC
Qd d
 

   

 
2

1 1 2 2
2

2 2 1 1

R R R
R R R




     

50. Derive an expression for the energy stored in a parallel plate capacitor. On charging a parallel 
plate capacitor to a potential V, the spacing between the plates is halved, and a dielectric 
medium of Er = 10 is introduced between the plates, without disconnecting the d.c. source. 
Explain, using suitable expressions, how the 
(i) capacitance, 
(ii) electric field and 
(iii) energy density of the capacitor change. 
Ans. 

(i) 0 0
0 0

2 2 2 10

2

k A k AC kC Cd d
 

      

020C C   
(ii) As battery remains connected so, potential difference 
V remains same across the capacitor. 



 

2

2

V VE d d
    02E E   

 

(iii) Initial energy density = 2
0 0

1
2

E  

Final energy density  = 2
0

1
2

E  

2
0 0

1 (2 )
2

E  2
0 0

14
2

E   

or Final energy density = 4 Initial energy density. 
 
51. Derive the expression for the electric potential at any point along the axial line of an electric 

dipole ? 
Ans. Electric Potential due to an electric dipole at axial point. Consider an electric dipole AB, having 
charges – q and + q at points A and B respectively. The separation between the charges is 2l. 

 
Electric dipole moment, .2p q l


, directed from – q to + q. 

Consider a point P on the axis of dipole at a distance r from 
mid-point O of dipole. 
The distance of point P from charge + q is BP =r – l  
The distance of point P from charge - q is AP =r + l 
Let V1 and V2 be the potentials at P due to charges + q and - q respectively. Then 

1
0

1
4 ( )

qV
r l




 and 2
0

1
4 ( )

qV
r l





 

 
Resultant potential at P due to dipole 

1 2
0 0

1 1
4 ( ) 4 ( )

q qV V V
r l r l 


   

 
 

0 0

1 1 ( ) ( )
4 ( ) ( ) 4 ( )( )

q q r l r lV
r l r l r l r l 

     
            

 

2 2
0

1 .2
4 ( )

q lV
r l

 


 

As q . 2l = p (dipole moment) 

 2 2
0

1
4 ( )

pV
r l




 

If point P is far away from the dipole, then r > >l 

 2
0

1
4

pV
r

  

 


