Surface Tension

- Force of cohesion:- It is force between two molecules of similar nature.
- Force of adhesion:- It is the force between two molecules of different nature.
- **Molecular range:** The maximum distance between two molecules so that the force of attraction between them remains effective is called molecular range.
- **Sphere of influence:** Sphere of influence of any molecule is the sphere with molecule as its center and having a radius equal to molecular range (=10⁻⁷ cm).
- **Surface film:** Surface film of a liquid is defined as the portion of liquid lying on the surface and caught between two parallel planes situated molecular range apart.
- Surface tension:-

Surface tension is the property of a liquid by virtue of which its free surface behaves like a stretched membrane and supports, comparatively heavier objects placed over it. It is measured in terms of force of surface tension.

- Force of surface tension:- It is defined as the amount of force acting per unit length on either side of an imaginary line drawn over the liquid surface.
 - (a) T = Force/length = F/l
 - (b) T = Surface energy/Surface area = W/A

Units:- S.I – Nm⁻¹

C.G.S- dyne cm⁻¹

- Additional force:-
 - (a) For a cylindrical rod:- $F = T \times 2\pi r$ (Here r is the radius of cylindrical rod)
 - (b) For a rectangular block:- $F = T \times 2(I+d)$ (Here *I* is the length and *d* is the thickness of the rectangular block)
 - (c) For a ring:- $F = T \times 2 \times 2\pi r$ (Here *r* is the radius of cylindrical rod)

• Surface energy:-

Potential energy per unit area of the surface is called surface energy.

(a) Expansion under isothermal condition:-

To do work against forces of surface tension:-

 $W = T \times A$ (Here A is the total increase in surface area)

To supply energy for maintaining the temperature of the film:-

E = T + H

(b) Expansion under adiabatic conditions:-

E = *T*

Force of surface tension is numerically equal to the surface energy under adiabatic conditions.

• Drops and Bubbles:-

- (a) Drop:- Area of surface film of a spherical drop of radius R is given by, $A = 4\pi R^2$
- (b) Bubble:- The surface area of the surface films of a bubble of radius R is, $A = 2 \times 4\pi R^2$

• Combination of *n* drops into one big drop:-

(a) $R = n^{1/3}r$ (b) $E_i = n (4\pi r^2 T), E_f = 4\pi R^2 T$ (c) $E_f / E_i = n^{-1/3}$ (d) $\Delta E / E_i = [1 - (1/n^{1/3})]$ (e) $\Delta E = 4\pi R^2 T (n^{1/3} - 1) = 4\pi R^3 T (1/r - 1/R)$

- Angle of contact:- Angle of contact, for a pair of solid and liquid, is defined as the angle between tangent to the liquid surface drawn at the point of contact and the solid surface inside the liquid.
 - (a) When $\vartheta < 90^{\circ}$ (acute):-

 $F_a > F_c/\sqrt{2}$

- (i) Force of cohesion between two molecules of liquid is less than the force of adhesion between molecules of solid and liquid.
- (ii) Liquid molecules will stick with the solid, thus making solid wet.
- (iii) Such liquid is put in the solid tube; it will have meniscus concave upwards.

- (b) When $\theta > 90^{\circ}$ (obtuse):-F_a<F_c/V2
 - (i) Force of cohesion between two molecules of liquid is less than the force of adhesion between molecules of solid and liquid.
 - (ii) In this case, liquids do not wet the solids.
 - (iii) Such liquids when put in the solid tube will have a meniscus convex upwards.
- (c) When $\vartheta = 90^{\circ}$:-?

 $F_a = F_c / \sqrt{2}$

The surface of liquid at the point of contact is plane. In this case force of cohesion and adhesion are comparable to each other.

(d) $\cos\vartheta_{\rm c} = T_{\rm sa} - T_{\rm sl}/T_{\rm la}$

Here, T_{sa} , T_{sl} and T_{la} represent solid-air, solid-liquid and liquid-air surface tension respectively). Here ϑ_c is acute if $T_{sl} < T_{sa}$ while ϑ_c is obtuse if $T_{sl} > T_{sa}$.

• Capillarity:-

Capillarity is the phenomenon, by virtue of which the level of liquid in a capillary tube is different from that outside it, is called capillarity.

Weight of liquid, $W = V\rho g = \pi r^2 [h+(r/3)]\rho g$ (Here *r* is the radius meniscus)

If weight of meniscus is taken into account, the force of surface tension will be,

 $\mathsf{T} = [r(h+(r/3))\rho g]/2\cos\vartheta$

For fine capillary, force of surface tension, $T = rh\rho g/2 \cos \vartheta$

So height, $h = 2T \cos \vartheta / r\rho g$

This signifies, height of liquid risen (or depressed) in a capillary tube varies inversely as the radius of tube. Smaller the diameter of capillary tube, greater is the rise of liquid in it.

• Tube of insufficient length:

 $Rh = 2T/\rho g$

As, T, ρ and g are all constant, Rh = Constant

Smaller the value of *h*, greater will be the value of *R*. But liquid will never flow.

• Effect of temperature affecting surface tension of liquids:-

Surface tension of a liquid decreases with an increase in its temperature.

 $\mathsf{T}_{\theta} = \mathcal{K} \left(\vartheta_c \text{-} \vartheta \right)$

Here T_{θ} is the surface tension at a particular temperature ϑ while ϑ_c is the critical temperature of the liquid and *K* is constant.

• General formula for excess pressure:-

 $P_{\text{excess}} = T[1/R_1 + 1/R_2]$

• Excess pressure in liquid drop:-

 $P_{excess} = 2T/R$, Here *R* is the radius of liquid drop.

• Excess pressure for an air bubble in liquid drop:-

 $P_{\text{excess}} = 2T/R$

• Excess pressure in soap bubble:-

 $P_{excess} = 4T/R$, Here *R* is the radius of soap bubble.

- Pressure inside an air bubble at a depth h in a liquid:- P_{in} = P_{atm}+ hdg + (2T/R)
- Forces between two plates with thin water film separating them:-
 - (a) $\Delta P = T (1/r 1/R)$
 - (b) F = AT(1/r 1/R)
 - (c) If separation between plate is d, then $\Delta P = 2T/d$ and F = 2AT/d
- Radius of curvature of common film:- $R_{\text{comon}} = rR/R-r$
- **Capillary depression**, $h = 2T \cos (\pi \theta)/rdg$
- Shape of liquid surface:-
 - (a) Plane surface (as for water silver) if $F_{adhesive} > F_{cohesive}/\sqrt{2}$
 - (b) Concave surface (as for water glass) if $F_{adhesive} > F_{cohesive}/V2$
 - (c) Convex surface (as for mercury-glass) if $F_{adhesive} < F_{cohesive}/V2$
- Increase in temperature:-

 $\Delta \theta = 3T/\rho s (1/r - 1/R)$ or $\Delta \theta = 3T/\rho s J (1/r - 1/R)$