PARABOLA

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. Latus rectum of the parabola whose focus is (3, 4) and whose tangent at vertex has the equation $x + y = 7 + 5\sqrt{2}$ is -

(D) 15

2. Directrix of a parabola is x + y = 2. If it's focus is origin, then latus rectum of the parabola is equal to -

(A) $\sqrt{2}$ units (B) 2 units (C) $2\sqrt{2}$ units (D) 4 units

3. Which one of the following equations represents parametrically, parabolic profile?

(A)
$$x = 3 \cos t$$
; $y = 4 \sin t$
(B) $x^2 - 2 = -\cos t$; $y = 4 \cos^2 \frac{t}{2}$

(C)
$$\sqrt{x} = \tan t$$
; $\sqrt{y} = \sec t$ (D) $x = \sqrt{1 - \sin t}$; $y = \sin \frac{t}{2} + \cos \frac{t}{2}$

4. Let C be a circle and L a line on the same plane such that C and L do not intersect. Let P be a moving point such that the circle drawn with centre at P to touch L also touches C. Then the locus of P is -

- (A) a straight line parallel to L not intersecting C
- (B) a circle concentric with C

(A)

- (C) a parabola whose focus is centre of C and whose directrix is L.
- (D) a parabola whose focus is the centre of C and whose directrix is a straight line parallel to L.
- 5. If $(t^2, 2t)$ is one end of a focal chord of the parabola $y^2 = 4x$ then the length of the focal chord will be-

(A)
$$\left(t+\frac{1}{t}\right)^2$$
 (B) $\left(t+\frac{1}{t}\right)\sqrt{\left(t^2+\frac{1}{t^2}\right)}$ (C) $\left(t-\frac{1}{t}\right)\sqrt{\left(t^2+\frac{1}{t^2}\right)}$ (D) none

- 6. From the focus of the parabola $y^2 = 8x$ as centre, a circle is described so that a common chord of the curves is equidistant from the vertex and focus of the parabola. The equation of the circle is -(A) $(x - 2)^2 + y^2 = 3$ (B) $(x - 2)^2 + y^2 = 9$ (C) $(x + 2)^2 + y^2 = 9$ (D) $x^2 + y^2 - 4x = 0$
- 7. The point of intersection of the curves whose parametric equations are $x = t^{2}+1$, y = 2t and x = 2s, y = 2/s is given by -

$$(A) (4, 1) (B) (2, 2) (C) (-2, 4) (D) (1, 2)$$

8. If M is the foot of the perpendicular from a point P of a parabola y²= 4ax to its directrix and SPM is an equilateral triangle, where S is the focus, then SP is equal to (A) a
(B) 2a
(C) 3a
(D) 4a

9. Through the vertex 'O' of the parabola y² = 4ax, variable chords OP and OQ are drawn at right angles. If the variable chord PQ intersects the axis of x at R, then distance OR :
(A) varies with different positions of P and Q
(B) equals the semi latus rectum of the parabola

- (A) varies with different positions of P and Q (b) equals the semi fatus rectum of the parabola
- (C) equals latus rectum of the parabola
 (D) equals double the latus rectum of the parabola
 10. The triangle PQR of area 'A' is inscribed in the parabola y² = 4ax such that the vertex P lies at the vertex of the parabola and the base QR is a focal chord. The modulus of the difference of the ordinates of the points Q and
 - paraoola and the base QR is a local chord. The modulus of the difference of the ordinates of the points Q as R is -

(A)
$$\frac{A}{2a}$$
 (B) $\frac{A}{a}$ (C) $\frac{2A}{a}$ (D) $\frac{4A}{a}$

- Point P lies on y² = 4ax & N is foot of perpendicular from P on its axis. A straight line is drawn parallel to the axis to bisect NP and meets the curve in Q. NQ meets the tangent at the vertex in a point T such that AT = k NP, then the value of k is : (where A is the vertex)
 (A) 3/2
 (B) 2/3
 (C) 1
 (D) none
- 12. The tangents to the parabola $x = y^2 + c$ from origin are perpendicular then c is equal to -
 - (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) $\frac{1}{4}$
- 13. The locus of a point such that two tangents drawn from it to the parabola $y^2 = 4ax$ are such that the slope of one is double the other is -

(A)
$$y^2 = \frac{9}{2}ax$$
 (B) $y^2 = \frac{9}{4}ax$ (C) $y^2 = 9ax$ (D) $x^2 = 4ay$

14. T is a point on the tangent to a parabola y² = 4ax at its point P. TL and TN are the perpendiculars on the focal radius SP and the directrix of the parabola respectively. Then (A) SL = 2 (TN)
(B) 3 (SL) = 2 (TN)
(C) SL = TN
(D) 2 (SL) = 3 (TN)

15. The equation of the circle drawn with the focus of the parabola $(x - 1)^2 - 8y = 0$ as its centre and touching the parabola at its vertex is :

(A)
$$x^2 + y^2 - 4y = 0$$
(B) $x^2 + y^2 - 4y + 1 = 0$ (C) $x^2 + y^2 - 2x - 4y = 0$ (D) $x^2 + y^2 - 2x - 4y + 1 = 0$

- 16. Length of the normal chord of the parabola, $y^2 = 4x$, which makes an angle of $\frac{\pi}{4}$ with the axis of x is-
 - (A) 8 (B) $8\sqrt{2}$ (C) 4 (D) $4\sqrt{2}$
- 17. Tangents are drawn from the point (-1, 2) on the parabola $y^2 = 4x$. The length , these tangents will intercept on the line x = 2:
 - (A) 6 (B) $6\sqrt{2}$ (C) $2\sqrt{6}$ (D) none of these
- **18.** Locus of the point of intersection of the perpendiculars tangent of the curve $y^2 + 4y 6x 2 = 0$ is:(A) 2x 1 = 0(B) 2x + 3 = 0(C) 2y + 3 = 0(D) 2x + 5 = 0

19. Tangents are drawn from the points on the line x - y + 3 = 0 to parabola y² = 8x. Then the variable chords of contact pass through a fixed point whose coordinates are(A) (3, 2)
(B) (2, 4)
(C) (3, 4)
(D) (4, 1)

- **20.** The line 4x 7y + 10 = 0 intersects the parabola, $y^2 = 4x$ at the points A & B. The co-ordinates of the point of intersection of the tangents drawn at the points A & B are :
 - (A) $\left(\frac{7}{2}, \frac{5}{2}\right)$ (B) $\left(-\frac{5}{2}, \frac{7}{2}\right)$ (C) $\left(\frac{5}{2}, \frac{7}{2}\right)$ (D) $\left(-\frac{7}{2}, \frac{5}{2}\right)$
- 21. From the point (4, 6) a pair of tangent lines are drawn to the parabola, y² = 8x. The area of the triangle formed by these pair of tangent lines & the chord of contact of the point (4, 6) is
 (A) 2
 (B) 4
 (C) 8
 (D) none
- 22. TP & TQ are tangents to the parabola, y²=4ax at P & Q. If the chord PQ passes through the fixed point (-a, b) then the locus of T is -
 - (A) ay = 2b(x b) (B) bx = 2a(y a) (C) by = 2a(x a) (D) ax = 2b(y b)

23.	If the tangent at the point P (x_1,y_1) to the parabola $y^2 = 4ax$ meets the parabola $y^2 = 4a(x + b)$ at Q & R, then							
	the mid point of QR is -							
	(A) $(x_1 + b, y_1 + b)$	(B) (x ₁ - b, y ₁ - b)	(C) (x ₁ , y ₁)	(D) $(x_1 + b, y_1)$				
24.	Let PSQ be the focal chord	of the parabola, $y^2 = 8x$. If	the length of SP=6 then, l(Se	Q) is equal to(where S is the				
	focus) -							
	(A) 3	(B) 4	(C) 6	(D) none				
25.	Two parabolas $y^2 = 4a(x - x)$	l_1 and $x^2 = 4a(y - l_2)$ alwa	Iways touch one another , the quantities l_1 and l_2 are both					
	variable. Locus of their poi	int of contact has the equati	ion -					
	(A) $xy = a^2$	(B) $xy = 2a^2$	(C) $xy = 4a^2$	(D) none				
<u>SELE</u>	CT THE CORRECT ALT	CERNATIVES (ONE OR 1	MORE THAN ONE CORF	RECT ANSWERS)				
26.	Equation $x^2 - 2x - 2y + 5$	= 0 represents -						
	(A) a parabola with vertex	(1, 2)	(B) a parabola with vertex $(2, 1)$					
	(C) a parabola with directrix $y = \frac{3}{2}$		(D) a parabola with directrix $y = \frac{2}{5}$					
27.	The normals to the parabo	la $y^2 = 4ax$ from the point	(5a, 2a) are -					
	(A) $y = -3x + 33a$	(B) $x = -3y + 3a$	(C) y = x - 3a	(D) $y = -2x + 12a$				
28.	The equation of the lines jo	ining the vertex of the parab	pola $y^2 = 6x$ to the points on it whose abscissa is 24, is -					
	(A) $2y + x + 1 = 0$	(B) $2y - x + 1 = 0$	(C) $x + 2y = 0$	(D) $x - 2y = 0$				
29.	The equation of the tangen	It to the parabola $y^2 = 9x w$	which passes through the point (4, 10) is -					
	(A) $x + 4y + 1 = 0$	(B) $x - 4y + 36 = 0$	(C) $9x - 4y + 4 = 0$	(D) $9_X + 4_y + 4 = 0$				
30.	Consider the equation of a	parabola $v^2 = 4ax$ (a ≤ 0)	which of the following is false -					
	Consider the equation of a	paraoona y Tan, (a o)						
	(A) tangent at the vertex is	x = 0	(B) directrix of the parabola	a is $x = 0$				
	(A) tangent at the vertex is (C) vertex of the parabola i	x = 0 is at the origin	(B) directrix of the parabola(D) focus of the parabola i	a is x = 0 s at (-a, 0)				

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	С	В	D	Α	В	В	D	С	C	В	D	A	С	D
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	В	D	С	C	Α	С	С	Α	C	A,C	C,D	C,D	B,C	B,D

EXTRA PRACTICE QUESTIONS ON PARABOLA

<u>SELEC</u>	CT THE CORRECT ALT	ERNATIVES (ONE OR M	ORE THAN ONE CORF	RECT ANSWERS)
1.	The straight line joining	any point P on the parab	ola $y^2 = 4ax$ to the vertex	and perpendicular from the
	focus to the tangent at F	P, intersect at R, then the	equation of the locus of ${\rm F}$	R is -
	(A) $x^2 + 2y^2 - ax = 0$	(B) $2x^2 + y^2 - 2ax = 0$	(C) $2x^2 + 2y^2 - ay = 0$	(D) $2x^2 + y^2 - 2ay = 0$
2.	Let A be the vertex and	L the length of the latus re	ectum of parabola, y ² – 2y	-4x - 7 = 0. The equation
	of the parabola with poin	nt A as vertex, 2L as the	length of the latus rectum	and the axis at right angles
	to that of the given curv	ve is -		
	(A) $x^2 + 4x + 8y - 4 =$	0	(B) $x^2 + 4x - 8y + 12$	= 0
	(C) $x^2 + 4x + 8y + 12$	= 0	(D) $x^2 + 8x - 4y + 8 =$	- 0
3.	The parametric coordina	tes of any point on the p	parabola $y^2 = 4ax$ can be	-
	(A) (at ² , 2at)	(B) $(at^2, -2at)$	(C) (asin ² t, 2asint)	(D) (asint, 2acost)
4.	PQ is a normal chord of the drawn parallel to AQ mee	the parabola $y^2 = 4ax$ at P, ting the x-axis in R. Then	A being the vertex of the path of of AR is -	parabola. Through P a line is
	(A) equal to the length of	the latus rectum		
	(B) equal to the focal dista	ance of the point P.		
	(C) equal to twice the foca	al distance of the point P.		
	(D) equal to the distanc	e of the point P from the	e directrix	
5.	The length of the chord	of the parabola $y^2 = x w$	which is bisected at the po	int (2, 1) is-
	(A) $5\sqrt{2}$	(B) 4√ <u>5</u>	(C) $4\sqrt{50}$	(D) 2√5
6.	If the tangents and norm (x_2, y_2) respectively, then	nals at the extremities of 1 -	a focal chord of a parab	ola intersect at (x_1, y_1) and
	(A) $x_1 = x_2$	(B) $x_1 = y_2$	(C) $y_1 = y_2$	(D) $x_2 = y_1$
7.	Locus of the intersection	of the tangents at the en	nds of the normal chords o	of the parabola $y^2 = 4ax$ is -
	(A) $(2a + x)y^2 + 4a^3 = 0$	0	(B) $(x + 2a)y^2 + 4a^2 = 0$	1
	(C) $(y + 2a)x^2 + 4a^3 = 0$		(D) none	
8.	The locus of the mid po parabola whose	int of the focal radii of a	variable point moving on	the parabola, $y^2 = 4ax$ is a
	(A) latus rectum is half t	he latus rectum of the or	iginal parabola	
	(B) vertex is (a/2, 0)			
	(C) directrix is y-axis			
	(D) focus has the co-ord	inates (a, 0)		
9.	The equation of a straigh	t line passing through the	point (3, 6) and cutting the	curve $y = \sqrt{x}$ orthogonally
	(A) $4x + v - 18 = 0$	(B) $x + v - 9 = 0$	(C) $4x - v - 6 = 0$	(D) none
10.	The tangent and normal a	t P (t), for all real positive t	t, to the parabola $v^2 = 4ax$	meet the axis of the parabola
	in T and G respectively, th	hen the angle at which the	tangent at P to the parabola	a is inclined to the tangent at
	P to the circle through the	e points P, T and G is -		
	(A) cot ⁻¹ t	(B) $\cot^{-1}t^2$	(C) tan ⁻¹ t	(D) $\sin^{-1}\left(\frac{t}{\sqrt{1+t^2}}\right)$

(A) $\cot^{-1}t$	(B) $\cot^{-1}t^2$ ((C) tan ⁻¹ t	(D)
------------------	----------------------	-------------------------	-----

11.	A variable circle is described to passes through the point (1, 0) and tangent to the curve $y = tan(tan^{-1}x)$. The locus of the centre of the circle is a parabola whose -								
	(A) length of the latus	rectum is $2\sqrt{2}$	(B) axis of symmetry	(B) axis of symmetry has the equation $x + y = 1$					
	(C) vertex has the co-o	ordinates (3/4, 1/4)	(D) none of these						
12.	AB, AC are tangents to B and C respectively o	b a parabola $y^2 = 4ax$. $p_1 p_2$ on any tangent to the curve	p_2 and p_3 are the lengths e, then p_2 , p_1 , p_3 are in-	of the perpendiculars from A,					
1.0	(A) A.P.	(B) G.P.	(C) H.P.	(D) none of these					
13.	OP and OQ as diameter at P and Q on the par	of the parabola, $y^2 = 4ax$ or intersect in R. If θ_1 , θ_2 a rabola and by OR then the	two chords OP and OQ and ϕ are the angles made e value of $\cot\theta_1 + \cot\theta_2 =$	are drawn and the circles on e with the axis by the tangent =					
	(A) – 2tanø	(B) – $2\tan(\pi - \phi)$	(C) 0	(D) 2cot¢					
14.	Two parabolas have the slope of their common	e same focus. If their direct chord is -	rices are the x-axis & th	e y-axis respectively, then the					
	(A) 1	(B) -1	(C) 4/3	(D) 3/4					
15.	Tangent to the parabola y at T. Q is any point on the foot of perpendicular from	2 = 4ax at point P meets the is tangent and N is the foot n Q on the directrix then -	e tangent at vertex A, at p of perpendicular from Q or	oint B and the axis of parabola in SP, where S is focus. M is the					
	(A) B bisects PT	(B) B trisects PT	(C) $QM = SN$	(D) $QM = 2SN$					
16.	If the distance between a t then possible values of gr	tangent to the parabola y^2 = adient of either of them are	4 x and a parallel normal -	to the same parabola is $2\sqrt{2}$,					
	(A) –1	(B) +1	(C) $-\sqrt{\sqrt{5}-2}$	(D) $+\sqrt{\sqrt{5}-2}$					
17.	If two distinct chords of a parabola $x^2 = 4ay$ passing through (2a, a) are bisected on the line $x + y = 1$, then length of latus rectum can be -								
	(A) 2	(B) 1	(C) 4	(D) 5					
18.	If PQ is a chord of parab PSQ (S is focus) is a pa	oola x ² = 4y which subtends urabola whose -	right angle at vertex. Th	en locus of centroid of triangle					
	(A) vertex is $(0, 3)$		(B) length of LR is $4/$	$^{\prime 3}$					
19	(C) axis is $x = 0$ Identify the correct states	ment(s) -	(D) langent at the ver	10×10^{-5}					
19.	(A) In a parabola vertex is	s the mid point of focus and	foot of directrix.						
	(B) $P(at_1^2, 2at_1)$ & $Q(at_1^2, 2at_1)$	$at_2^2, 2at_2$) are two points on	$y^2 = 4ax$ such that $t_1t_2 = -$	-1, then normals at P and Q are					
	perpendicular.								
	(C) There doesn't exist an	y tangent of $y^2 = 4ax$ which	n is parallel to x-axis.						
20	(D) At most two normals For parabola $u^2 = 4ax$ cor	can be drawn to a parabola	from any point on its pla	ne. of AABC is (b. k.) & centroid					
20.	of triangle formed by the p following is always true -	point of intersection of tange	nts at A, B, C has coordir	mates (h_2, k_2) , then which of the					
			$(a) k^2 = \frac{4a}{b} (b + 2b)$	$(p) k^2 = \frac{4a}{(2b + b)}$					
	$(A) 2K_1 = K_2$	(D) $K_1 = K_2$	(c) $\kappa_1 = \frac{1}{3} (\pi_1 + 2\pi_2)$	(D) $n_1 = \frac{3}{3} (2n_1 + n_2)$					

ANSWER KEY										
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	A,B	A,B	С	D	С	А	A,B,C,D	А	C,D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	B,C	В	A	A,B	A,C	A,B,C,D	A,B	A,B,C	A,B,C	B,C