ELECTROCHEMISTRY

ELECTRODE POTENTIAL

For any electrode \rightarrow oxidiation potential = – Reduction potential

- $E_{cell} = R.P$ of cathode R.P of anode
- $E_{cell} = R.P.$ of cathode + O.P of anode
- E_{cell} is always a +ve quantity & Anode will be electrode of low R.P
- E^{o}_{Cell} = SRP of cathode SRP of anode.
- O Greater the SRP value greater will be oxidising power.

GIBBS FREE ENERGY CHANGE :

$$\Delta G = - nFE_{cell}$$

 $\Delta G^{\circ} = - nFE^{\circ}_{cell}$

NERNST EQUATION : (Effect of concentration and temp of an emf of cell)

$$\Rightarrow \quad \Delta G = \Delta G^{\circ} + RT \ \ell nQ \qquad \text{(where Q is raection quotient)}$$

$$\Delta G^{\circ} = -RT \ \ell n \ K_{eq}$$

$$E_{cell} = E^{\circ}_{cell} - \frac{RT}{nF} \ \ell n \ Q$$

$$E_{cell} = E^{\circ}_{cell} - \frac{2.303 RT}{nF} \log Q$$

$$E_{cell} = E^{\circ}_{cell} - \frac{0.0591}{n} \log Q \qquad [At 298 \ K]$$
At chemical equilibrium
$$\Delta G = 0 \qquad ; \qquad E_{cell} = 0.$$

О

$$E_{cell}^{o} = \frac{0.0591}{n} \log K_{eq}$$

 $\log K_{eq} = \frac{nE_{cell}^{o}}{0.0591}$.

For an electrode M(s)/Mⁿ⁺.

$$E_{M^{n+}/M} = E^{o}_{M^{n+}/M} - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}]}.$$

CONCENTRATION CELL : A cell in which both the electrods are made up of same material.

For all concentration cell $E^{o}_{cell} = 0$.

(a) Electrolyte Concentration Cell :

eg. Zn(s) / Zn²⁺ (c₁) || Zn²⁺ (c₂) / Zn(s)
E =
$$\frac{0.0591}{2} \log \frac{C_2}{C_1}$$

(b) Electrode Concentration Cell :

eg. Pt, H₂(P₁ atm) / H⁺ (1M) / H₂ (P₂ atm) / Pt
$$E = \frac{0.0591}{2} \log \left(\frac{P_1}{P_2}\right)$$

DIFFERENT TYPES OF ELECTRODES :

1.Metal-Metal ion Electrode M(s)/Mⁿ⁺.
$$M^{n+} + ne^- \longrightarrow M(s)$$
 $E = E^o + \frac{0.0591}{n} \log[M^{n+}]$ 2.Gas-ion ElectrodePt /H₂(Patm) /H⁺ (XM)

as a reduction electrode
$$H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(Patm) = E^\circ - 0.0591 \log \frac{P_{H_2}^{\frac{1}{2}}}{[H^+]}$$

3. Oxidation-reduction Electrode Pt / Fe²⁺, Fe³⁺

as a reduction electrode $Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$

$$E = E^{\circ} - 0.0591 \log \frac{[Fe^{2+}]}{[Fe^{3+}]}$$

4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Clas a reduction electrode AgCl(s) + $e^- \longrightarrow Ag(s) + Cl^-$

$$O \qquad \mathsf{E}_{\mathsf{CI}^{-}/\mathsf{AgCI}/\mathsf{Ag}} = \mathsf{E}_{\mathsf{CI}^{-}/\mathsf{AgCI}/\mathsf{Ag}}^{\mathsf{0}} - \mathbf{0.0591 \log [CI^{-}]}.$$

CALCULATION OF DIFFERENT THERMODYNAMICS FUNCTION OF CELL REACTION

O $\Delta G = -n F E_{cell}$

$$\mathbf{O} \qquad \mathbf{S} = -\left[\frac{\mathbf{dG}}{\mathbf{dT}}\right]_{\mathbf{p}} \qquad (\text{At costant pressure}).$$

$$\mathbf{O} \qquad \Delta \mathbf{S} = -\left[\frac{\mathbf{d}(\Delta \mathbf{G})}{\mathbf{d}\mathsf{T}}\right]_{\mathsf{P}} = \mathsf{n}\mathsf{F}\left(\frac{\mathbf{d}}{\mathbf{d}\mathsf{t}}(\mathsf{E}_{\mathsf{cell}})\right)_{\mathsf{p}}$$

Q $\left[\frac{\partial E}{\partial T}\right]_{p}$ = Temperature cofficient of e.m.f of the cell.

$E = a + bT + CT^2 + \dots$

$$\mathbf{O} \qquad \Delta \mathbf{H} = \mathbf{n} \mathbf{F} \left[\mathbf{T} \left(\frac{\partial \mathbf{E}}{\partial \mathbf{T}} \right)_{\mathbf{p}} - \mathbf{E} \right]$$

O ΔCp of cell reaction

$$Cp = \frac{dH}{dT}$$
$$\Delta Cp = \frac{d}{dT} (\Delta H)$$
$$\Delta C_{p} = n F T \frac{d^{2}E_{cell}}{dT^{2}}$$

O <u>ELECTROLYSIS</u> :

(a) K^+ , Ca⁺², Na⁺, Mg⁺², Al⁺³, Zn⁺², Fe⁺², H⁺, Cu⁺², Ag⁺, Au⁺³.

Increasing order of deposition.

(b) Similarly the anion which is strogner reducing agent(low value of SRP) is liberated first at the anode.

----->

 $SO_4^{2-}, NO_3^-, OH^-, CI^-, Br^-, I^-$ Increasing order of diposition

FARADAY'S LAW OF ELECTROLYSIS :

First Law :

w = zq w = Z it Z = Electrochemical equivalent of substance

Second Law :

$$W \alpha E \qquad \frac{W}{E} = \text{constant} \qquad \frac{W_1}{E_1} = \frac{W_2}{E_2} = \dots$$
$$\frac{W}{E} = \frac{i \times t \times \text{current efficiency factor}}{96500} .$$

$$CURRENT EFFICIENCY = \frac{\text{actual mass deposited/produced}}{\text{Theoritical mass deposited/produced}} \times 100$$

O CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE

$$E^{\circ}_{Cu^{2+}/Cu} - \frac{0.0591}{2} \log \frac{1}{Cu^{2+}} = E^{\circ}_{Fe^{2+}/Fe} - \frac{0.0591}{2} \log \frac{1}{Fe^{2+}}$$

Condition for the simultaneous deposition of Cu & Fe on cathode.

CONDUCTANCE :

Conductance = $\frac{1}{\text{Resistance}}$ Ŧ Specific conductance or conductivity : T $K = \frac{1}{\rho}$ (Reciprocal of specific resistance) K = specific conductance Equivalent conductance : Ŧ $\lambda_{\mathsf{E}} = \frac{\mathsf{K} \times 1000}{\mathsf{Normality}}$ unit : -ohm⁻¹ cm² eq⁻¹ Molar conductance : Ŧ $\lambda_m = \frac{K \times 1000}{Molarity}$ unit : -ohm⁻¹ cm² mole⁻¹ specific conductance = conductance × $\frac{\ell}{a}$ KOHLRAUSCH'S LAW: Variation of $\lambda_{_{eq}}$ / $\lambda_{_{M}}$ of a solution with concentration : Strong electrolyte (i) $\lambda_{M}^{c} = \lambda_{M}^{\infty} - b \sqrt{c}$

(ii) Weak electrolytes : $\lambda_{a} = n_{+} \lambda_{+}^{a} + n_{-} \lambda_{-}^{a}$ where λ is the molar conductivity $n_{+} = No$ of cations obtained after dissociation per formula unit $n_{-} = No$ of anions obtained after dissociation per formula unit

APPLICATION OF KOHLRAUSCH LAW:

1. Calculation of λ_{M}^{0} of weak electrolytes :

 $\lambda^{o}_{M (CH_{3}COOHi)} = \lambda^{o}_{M (CH_{3}COONa)} + \lambda^{o}_{M (HCI)} - \lambda^{o}_{M (NaCI)}$

2. To calculate degree of diossociation of a week electrolyte

$$\alpha = \frac{\lambda_{\rm m}^{\rm c}}{\lambda_{\rm m}^{\rm o}} \qquad ; \qquad {\rm K}_{\rm eq} = \frac{{\rm c}\alpha^2}{(1-\alpha)}$$

3. Solubility (S) of sparingly soluble salt & their K_{sp}

$$\begin{split} \lambda_{\rm M}^{\ \ c} &= \lambda_{\rm M}^{\ \ \infty} \quad = \quad \kappa \, \times \, \frac{1000}{\text{solubility}} \\ K_{\rm sp}^{\ \ } &= S^2. \end{split}$$

O **IONIC MOBILITY**: It is the distance travelled by the ion per second under the potential gradient of 1 volts per cm. It's unit is $cm^2 s^{-1} v^{-1}$.

Absolute ionic mobility :

$$\begin{split} \lambda_c^0 &\simeq \mu_c & ; & \lambda_a^0 &\simeq \mu_a \\ \lambda_c^0 &= \mathsf{F} \mu_c^0 & ; & \lambda_a^0 &= \mathsf{F} \times \mu_a^0 . \end{split}$$

Ionic Mobility
$$\mu = \frac{v \longrightarrow \text{speed}}{(V / \ell) \longrightarrow \text{potential gradient}}$$

Transport Number :

$$\mathbf{t}_{c} = \begin{bmatrix} \mu_{c} \\ \mu_{c} + \mu_{a} \end{bmatrix}, \qquad \mathbf{t}_{a} = \begin{bmatrix} \mu_{a} \\ \mu_{a} + \mu_{c} \end{bmatrix}.$$

Where $t_c = Transport$ Number of cation & $t_a = Transport$ Number of anion