PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

DPP - 12

Class - 10th

Topic - Word Problems

- Q.1 The numerator of a fraction is 4 less than the denominator. If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is eight times the numerator. Find the fraction.
- **Q.2** A fraction becomes 9/11 if **2** is added to both numerator and the denominator. If **3** is added to both the numerator and the denominator it becomes 5/6. Find the fraction.
- Q.3 A fraction becomes 1/3 if 1 is subtracted from both its numerator and denominator. If 1 is added to both the numerator and denominator, it becomes 1/2. Find the fraction.
- **Q.4** If we add 1 to the numerator and subtract 1 from the denominator, a fraction becomes 1. It also becomes 1/2 if we only add 1 to the denominator. What is the fraction?
- Q.5 The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes 12. Find the fraction.

DPP - 12

Class - 10th

Topic - Word Problems

Sol.1 Let's assume the numerator of the fraction to be x and the denominator of the fraction to be y.

So, the required fraction is x/y.

From the question it's given as,

The numerator of the fraction is 4 less the denominator.

Thus, the equation so formed is,

$$x = y - 4$$

$$\Rightarrow$$
 $x - y = -4$...(i)

And also it's given in the question as,

If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is

8 times the numerator.

Putting the above condition in an equation, we get

$$y + 1 = 8(x - 2) \Rightarrow y + 1 = 8x - 16 \Rightarrow 8x - y = 1 + 16$$

$$\Rightarrow 8x - y = 17$$
 ...(ii)

Solving (i) and (ii),

Subtracting the equation (ii) from (i), we get

$$(x - y) - (8x - y) = -4 - 17$$

$$\Rightarrow$$
 x - y - 8x + y = -21 \Rightarrow -7x = -21

$$\Rightarrow$$
 x = 21/7 \Rightarrow x = 3

Substituting the value of x = 3 in the equation (i), we find y

$$3 - y = -4 \Rightarrow y = 3 + 4 \Rightarrow y = 7$$

Therefore, the fraction is 3/7.

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Sol.2 Let's assume the numerator of the fraction to be x and the denominator of the fraction to be y. So, the required fraction is x/y.

From the question it's given as, If 2 is added to both numerator and the denominator, the fraction becomes 9/11. Thus, the equation so formed is,

$$x + 2y + 2 = 9/11 \Rightarrow 11(x + 2) = 9(y + 2)$$

$$\Rightarrow 11x + 22 = 9y + 18 \Rightarrow 11x - 9y = 18 - 22$$

$$\Rightarrow 11x - 9y + 4 = 0$$
 ...(i)

And also it's given in the question as,

If 3 is added to both numerator and the denominator, the fraction becomes 5/6, Expressing the above condition in an equation, we have

$$x + 3y + 3 = 56$$

$$\Rightarrow 6(x+3) = 5(y+3)$$

$$\Rightarrow$$
 6x + 18 = 5y + 15

$$\Rightarrow$$
 6x - 5y = 15 - 18

 \Rightarrow 6x - 5y + 3 = 0

Solving (i) and (ii), to find the fraction

By using cross-multiplication method, we have

$$\frac{x}{-9*3-(-5)*4} = \frac{y}{11*3-6*4} = \frac{1}{11*(-5)-6*(-9)}$$

...(ii)

$$\Rightarrow \frac{x}{-27 + 20} \Rightarrow \frac{-y}{33 - 24} = \frac{1}{-55 + 54}$$

$$\Rightarrow \frac{x}{-7} = \frac{-y}{9} = \frac{1}{-1}$$

$$\Rightarrow \frac{x}{7} = \frac{y}{9} = 1$$

$$x = 7, y = 9$$

Hence, the required fraction is 7/9.

Sol.3 Let's assume the numerator of the fraction to be x and the denominator of the fraction to be y.

So, the required fraction is x/y.

From the question, it's given that:

If 1 is subtracted from both the numerator and the denominator, the fraction becomes 1/3.

Thus, the equation so formed is,

$$\frac{x-1}{y-1} = \frac{1}{3}$$

$$\Rightarrow 3(x-1) = (y-1) \Rightarrow 3x - 3 = y - 1$$

$$\Rightarrow 3x - y - 2 = 0 \qquad ...(i)$$

And also, it's given in the question as,

If 1 is added to both the numerator and the denominator, the fraction becomes 12 . Expressing the above condition in an equation, we have

$$(x+1)/(y+1) = 1/2$$

$$\Rightarrow 2(x+1) = (y+1)$$

$$\Rightarrow 2x + 2 = y + 1$$

$$\Rightarrow 2x - y + 1 = 0$$
 ...(ii)

Solving (i) and (ii), to find the fraction

By using cross-multiplication, we have

$$\frac{x}{(-1)*1-(-1)*(-2)} = \frac{-y}{3*1-2*(-2)} = \frac{1}{3*(-1)-2*(-1)}$$

$$\Rightarrow \frac{x}{-1-2} \Rightarrow \frac{-y}{3+4} = \frac{1}{-3+2}$$

$$\Rightarrow \frac{x}{-3} = \frac{-y}{7} = \frac{1}{-1}$$

$$\Rightarrow \frac{x}{3} = \frac{y}{7} = 1 \Rightarrow x = 3, y = 7$$

Hence, the required fraction is 3/7.

Sol.4 Let's assume the numerator of the fraction to be x and the denominator of the fraction to be y.

So, the required fraction is x/y.

From the question, it's given that:

If 1 is added to the numerator and 1 is subtracted from the denominator, the fraction becomes 1.

Thus, the equation so formed is,

$$\frac{x+1}{y-1} = 1$$

$$\Rightarrow (x+1) = (y-1)$$

$$\Rightarrow x+1-y+1=0$$

$$\Rightarrow x-y+2=0 \qquad ...(i)$$

And also, it's given in the question as,

If 1 is added to the denominator, the fraction becomes 12.

Expressing the above condition in an equation, we have

$$x/(y + 1) = 1/2 \Rightarrow 2x = (y + 1)$$

 $\Rightarrow 2x - y - 1 = 0$...(ii)

Solving (i) and (ii), to find the fraction

By using cross-multiplication, we have

$$\frac{x}{(-1)*(-1) - (-1)*2} = \frac{y}{1*(-1) - 2*2} = \frac{1}{1*(-1) - 2*(-1)}$$

$$\Rightarrow \frac{x}{1+2} \Rightarrow \frac{-y}{-1-4} = \frac{1}{-1+2}$$

$$\Rightarrow \frac{x}{3} = \frac{-y}{-5} = \frac{1}{1}$$

$$\Rightarrow \frac{x}{3} = \frac{y}{5} = 1$$

$$\Rightarrow x = 3, y = 5$$

Hence, the required fraction is 3/5.

Sol.5 Let's assume the numerator of the fraction to be x and the denominator of the fraction to be y.

So, the required fraction is x/y.

From the question, it's given that:

The sum of the numerator and denominator of the fraction is 12.

Thus, the equation so formed is,

$$x + y = 12 \Rightarrow x + y - 12 = 0$$

And also, it's given in the question as,

If the denominator is increased by 3, the fraction becomes 1/2.

Putting this as an equation, we get

$$x/(y+3) = 1/2$$

$$\Rightarrow 2x = (y + 3)$$

$$\Rightarrow 2x - y - 3 = 0$$

The two equations are,

$$x + y - 12 = 0$$

$$2x - y - 3 = 0$$

Adding (i) and (ii), we get

$$x + y - 12 + (2x - y - 3) = 0$$

$$\Rightarrow$$
 3x - 15 = 0 \Rightarrow x = 5

Using x = 5 in (i), we find y

$$5 + y - 12 = 0$$

$$\Rightarrow$$
 y = 7

Therefore, the required fraction is 5/7.