Differential Equations

Question 1.
Find the order and degree of the following differential equations.
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Here we eliminate the radical sign. Squaring both sides we get,
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Question 2.

Find the differential equation of the following
(Jy=cx+c-c3

(i) y = c(x - ¢)?

(iii) xy = c2

(iv) x2 + y2 = a2

Solution:

(y=cx+c-c3.... (D)

Here c is a constant which has to be eliminated



Differentiating w.r.t x, % o (2)
Using (2) in (1) we get,
3
Y = (ﬁ) T+ % — (j;i) which is the required differential equation.
(i) y = c(X = )2 woo.e. (1)

We have to eliminate c

Differentiating w.r.t x ,we get, % =2cx—0) ... (2)

Dividing (2) by (1) we get
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(or) [%] - dxy %JrSyz:O is the required differential equation
(i) xy =
Differentiating w.r.t x ,we get,
% +y =0 is the required differential equation

(iv) o+ yz =&
Differentiating w.r.t x ,we get,

2x+ 2yﬁ=ﬂ
dx
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(or) x+ y? = () 1s the required differential equation
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Question 3.
Form the differential equation by eliminating a and f from (x - a)2 + (y - )% =12
Solution:

x-aP+-py= r N ¢}

Differentiating w.r:.t x we get,
2x—a)+20=pf)— =10
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Apgain differentiating w.rr x,
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The above equation becomes,
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Using (3) in (2) we get
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Now using (3) an(i (4) in (1) we get

i

J,‘

(or) w—(y'zﬂ) = 2

(y“)2 243 2 TEYA
(I+y"=)y =r=0")
2P 232
d
= [lq{-dlj ] =r [—‘;J is the required differential equation
Question 4.
Find the differential equation of the family of all straight lines passing through the
origin.
Solution:

The general equation for a family of lines passing through the origin is
Y = MX ....... (1)
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Using (2) in (1)



y (;—ij x is the required differential equation

Question 5.

Form the differential equation that represents all parabolas each of which has a
latus rectum 4a and whose axes are parallel to the x-axis.

Solution:

Equation of parabola whose axis is parallel to the x-axis with latus rectum 4a is
(v-B)2=4a(x-A) .cue. (D)

Here (o, B) is the vertex of the parabola.

Differentiating (1) w.r.t x, we get

2
dy [ay) |_
2 ( —ﬂ)-{—i'xT'l'[E) ]—0 ..... (3}
From (2) we have, dy
-8) ol 2;2
a
h g
Using this in (3) we get dx
2a dy [@Jz
B
dx 3
d'y (dyY _ L : ,
(or)2a—s5-+| — | =0 is the required differential equation
dx dx

Question 6.

Find the differential equation of all circles passing through the origin and having
their centers on the y-axis.

Solution:
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The circles pass through the origin. They have their centres at (o, a)

The circles have radius a. so the equation of the family of circles is given by
x2 + (y-a)? = az

X2 +y2-2ay+aZ=a?

X2 +yZ=2ay ....... (1)
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their centres on the y-axis.

Question 7.
Find the differential equation of the family of a parabola with foci at the origin and
axis along the x-axis.



Solution:
The given family of parabolas have foci at the origin and axis along the x-axis.
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The equation of such family of parabolas is given by
y2=4a(x +a) ...... (1)
Differentiating w.r.t x,

2y i = 4q
dx
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Using (2) in (1) gives
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y=2x + y(ﬁ) is the required differential equation.
Question 8.
Solve: (1-x)dy-(1+y)dx=0
Solution:

(1-x)dy-(1+y)dx=0
Separating the variables,
(1-x)dy=(1+y)dx

dy _  dz
I+y  1-zx

Integrating, we get
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log(y +1) =-log(1-x) +logc
log(y + 1) +log(1-x) =logc
+1)(A-x)=c

Question 9.

Solve:

(i) j—g =d}r sin 2x

(ii) log(52) = ax + by

Solution:

() % = y sin 2x

Separating the variables, % = sin 2x dx

Integrating, we get

j% dy = [sin 2x dx

logy = — ngz + ¢ is the required solution

(ii) log (%) =ax+by
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Integrating, we get
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Question 10.

Find the curve whose gradient at any point P(x, y) on it is

through the origin.
Solution:

The gradient at any point P (X, y) on the curve is given by dz

According to the problem
dy z—a

dr = y-b

Separating the variables,
(y-b)dy=(x-a)dx

Integrating,
J(y-Db) dy = J(x-a) dx
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The curve passes through the origin, y =0, x =0
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= c = 5
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(y-0) _ (x-a)f b -a
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(or) (y - b)2 = (x - a)%2 + b2 - a2 is the required equation of the curve.
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