0

Question 1.

Find the order and degree of the following differential equations.

(i)
$$\frac{dy}{dx} + 2y = x^{3}$$

(ii) $\frac{d^{3}y}{dx^{3}} + 3\left(\frac{dy}{dx}\right)^{3} + 2\frac{dy}{dx} =$
(iii) $\frac{d^{2}y}{dx^{2}} = \sqrt{y - \frac{dy}{dx}}$
(iv) $\frac{d^{3}y}{dx^{3}} = 0$
(v) $\frac{d^{2}y}{dx^{2}} + y + \left(\frac{dy}{dx} - \frac{d^{3}y}{dx^{3}}\right)^{\frac{3}{2}} = 0$
(vi) $(2 - y'')^{2} = y''^{2} + 2y'$
(vii) $\left(\frac{dy}{dx}\right)^{3} + y = x - \frac{dx}{dy}$

Solution:

(i)
$$\frac{dy}{dx} + 2y = x^3$$

Highest order derivative is $\frac{dy}{dx}$
Power of $\frac{dy}{dx}$ is 1
 \therefore order = 1 Degree =1
(ii) $\frac{d^3y}{dx^3} + 3\left(\frac{dy}{dx}\right)^3 + 2\frac{dy}{dx} = 0$
Highest order derivative is $\frac{d^3y}{dx^3}$
Power of $\frac{d^3y}{dx^3}$ is 1
 \therefore order = 3 Degree =1
 $d^2w = \sqrt{-dx}$

$$(iii)\frac{d^2y}{dx^2} = \sqrt{y - \frac{dy}{dx}}$$

Here we eliminate the radical sign. Squaring both sides we get,

$$\left(\frac{d^2 y}{dx^2}\right)^2 = y - \frac{dy}{dx}$$

$$\therefore \text{ order} = 2, \quad \text{Degree} = 2$$
(iv) $\frac{d^3 y}{dx^3} = 0$
order = 3, $\text{Degree} = 1$

(v)
$$\frac{d^2 y}{dx^2} + y + \left(\frac{dy}{dx} - \frac{d^3 y}{dx^3}\right)^{\frac{3}{2}} = 0$$

Here we eliminate the radical sign

For this write the equation as
$$\frac{d^2 y}{dx^2} + y = -\left(\frac{dy}{dx} - \frac{d^3 y}{dx^3}\right)^{\frac{3}{2}}$$

Squaring both the sides, we get $\left(\frac{d^2 y}{dx^2} + y\right)^2 = \left(\frac{dy}{dx} - \frac{d^3 y}{dx^3}\right)^3$
 \therefore Order = 3, Degree = 3

(vi)
$$(2 - y'')^2 = y''^2 + 2y'$$

 $4 - 4y'' + (y'')^2 = (y'')^2 + 2y'$
 $\Rightarrow 4 - 4y'' = 2y'$

 \therefore order = 2, Degree =1

(vii)
$$\left(\frac{dy}{dx}\right)^3 + y = x - \frac{dx}{dy}$$

multiplying the equation by $\frac{dy}{dx}$
 $\left(\frac{dy}{dx}\right)^4 + y\frac{dy}{dx} = x\frac{dy}{dx} - 1$

 \therefore Order = 1, Degree = 4

Question 2.

Find the differential equation of the following

(i) $y = cx + c - c^{3}$ (ii) $y = c(x - c)^{2}$ (iii) $xy = c^{2}$ (iv) $x^{2} + y^{2} = a^{2}$ **Solution:** (1)

(i) $y = cx + c - c^3$ (1) Here c is a constant which has to be eliminated Differentiating w.r.t x, $\frac{dy}{dx} = c$ (2) Using (2) in (1) we get, $y = \left(\frac{dy}{dx}\right)x + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ which is the required differential equation.

(ii) $y = c(x - c)^2$ (1) We have to eliminate c

Differentiating w.r.t x ,we get, $\frac{dy}{dx} = 2c(x - c) \dots (2)$

Dividing (2) by (1) we get

Using (3) in (1) we get dx

$$y = \left[\frac{\frac{x \, dy}{dx} - 2y}{\frac{dy}{dx}}\right] \left[x - \left(\frac{\frac{x \, dy}{dx} - 2y}{\frac{dy}{dx}}\right)\right]^{2}$$
$$y = \frac{\left(\frac{x \, dy}{dx} - 2y\right)}{\frac{dy}{dx}} \left[\frac{\frac{x \, dy}{dx} - \frac{x \, dy}{dx} + 2y}{\frac{dx}{dx}}\right]^{2}$$

$$y = \frac{\left(\frac{x \, dy}{dx} - 2y\right)}{\frac{dy}{dx}} \left[\frac{\frac{x \, dy}{dx} - \frac{x \, dy}{dx} + 2y}{\left(\frac{dy}{dx}\right)^2}\right]^2$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^3 y = \left(\frac{x \, dy}{dx} - 2y\right) (4 y^2)$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^3 = 4xy \frac{dy}{dx} + 8y^2$$

(or) $\left(\frac{dy}{dx}\right)^3 - 4xy \frac{dy}{dx} + 8y^2 = 0$ is the required differential equation

 $(iii) xy = c^2$

Differentiating w.r.t x ,we get,

$$\frac{x \, dy}{dx} + y = 0$$
 is the required differential equation

 $(iv) x^2 + y^2 = a^2$

Differentiating w.r.t x ,we get,

$$2x + 2y \frac{dy}{dx} = 0$$

(or) $x + y \frac{dy}{dx} = 0$ is the required differential equation

Question 3.

Form the differential equation by eliminating α and β from $(x - \alpha)^2 + (y - \beta)^2 = r^2$ Solution:

$$1 + (y - \beta) \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

$$(y - \beta) \frac{d^2 y}{dx^2} = -1 - \left(\frac{dy}{dx}\right)^2$$

For convenience we use $y' = \frac{dy}{dx}$ and $y'' = \frac{d^2 y}{dx^2}$
The above equation becomes,

$$(y - \beta) y'' = -(1 + y'^2)$$

$$y - \beta = -\frac{(1 + y'^2)}{y''} \dots (3)$$

Using (3) in (2) we get

$$(x - \alpha) - \frac{(1 + y'^2)}{y''}y' = 0$$

(or)(x - \alpha) = $\frac{(1 + y'^2)}{y''}y'$ (4)

Now using (3) and (4) in (1) we get

$$\left[\frac{\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}y^{\prime}\right]^{2} + \left[\frac{-\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}\right]^{2} = r^{2}$$
(or)
$$\frac{\left(1+y^{\prime 2}\right)^{2}}{\left(y^{\prime \prime}\right)^{2}}\left(y^{\prime 2}+1\right) = r^{2}$$

$$(1+y^{\prime 2})^{3} = r^{2}\left(y^{\prime \prime}\right)^{2}$$

$$\Rightarrow \qquad \left[1+\left(\frac{dy}{dx}\right)^{2}\right]^{3} = r^{2}\left(\frac{d^{2}y}{dx^{2}}\right)^{2}$$
is the required differential equation

Question 4.

Find the differential equation of the family of all straight lines passing through the origin.

Solution:

The general equation for a family of lines passing through the origin is y = mx (1) Differentiating w.r.t x,

 $\frac{dg}{dx} = m \dots (2)$

Using (2) in (1)

 $y = (\frac{dy}{dx}) \times is$ the required differential equation

Question 5.

Form the differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to the x-axis.

Solution:

Equation of parabola whose axis is parallel to the x-axis with latus rectum 4a is $(y - \beta)^2 = 4a(x - \alpha)$ (1)

Here (α, β) is the vertex of the parabola.

Differentiating (1) w.r.t x, we get

$$2(y - \beta) \frac{dy}{dx} = 4a$$
 (2)

Again, differentiating (2) w.r.t x, we get

$$2\left[\left(y-\beta\right)\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right] = 0 \qquad \dots (3)$$

From $(\overline{2})$ we have,

$$(y - \beta) \frac{dy}{dx} = 2 a$$
$$y - \beta = \frac{2a}{\frac{dy}{dx}}$$
we get

Using this in (3) we get

$$\frac{2a}{\left(\frac{dy}{dx}\right)}\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

(or) $2a\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$ is the required differential equation

Question 6.

Find the differential equation of all circles passing through the origin and having their centers on the y-axis.

Solution:

The circles pass through the origin. They have their centres at (o, a) The circles have radius a. so the equation of the family of circles is given by $x^2 + (y - a)^2 = a^2$ $x^2 + y^2 - 2ay + a^2 = a^2$ $x^2 + y^2 = 2ay$ (1) Differentiating w.r.t x,

dx

Using (2) in (1)

$$x^{2} + y^{2} = 2y \left[\frac{x + y \frac{dy}{dx}}{\frac{dy}{dx}} \right]$$
$$x^{2} \frac{dy}{dx} + y^{2} \frac{dy}{dx} = 2xy + 2y^{2} \frac{dy}{dx}$$
$$\Rightarrow (x^{2} - y^{2}) \frac{dy}{dx} = 2xy$$

 $\frac{dy}{dx} = \frac{2xy}{x^2 - y^2}$ is the required differential equation of all circles passing through origin and having

their centres on the y-axis.

Question 7.

Find the differential equation of the family of a parabola with foci at the origin and axis along the x-axis.

Solution:

The given family of parabolas have foci at the origin and axis along the x-axis.

The equation of such family of parabolas is given by

 $y^2 = 4a(x + a) \dots (1)$ Differentiating w.r.t x,

Using (2) in (1) gives

⇒

$$y^{2} = 2y \frac{dy}{dx} \left[x + \frac{y}{2} \frac{dy}{dx} \right]$$

(or) $y = 2 \frac{dy}{dx} \left(x + \frac{y}{2} \frac{dy}{dx} \right)$

 $y=2xrac{dy}{dx}+y\Big(rac{dy}{dx}\Big)^2$ is the required differential equation.

Question 8.

Solve: (1 - x) dy - (1 + y) dx = 0Solution: (1 - x) dy - (1 + y) dx = 0Separating the variables, (1 - x)dy = (1 + y) dx

$$rac{dy}{1+y} = rac{dx}{1-x}$$

Integrating, we get

$$\int \frac{1}{1+y} dy = \int \frac{1}{1-x} dx$$

log(y + 1) = -log(1 - x) + log clog(y + 1) + log(1 - x) = log c(y + 1) (1 - x) = c

Question 9.

Solve:

(i)
$$\frac{dy}{dx} = y \sin 2x$$

(ii) $\log(\frac{dy}{dx}) = ax + by$

Solution:

(i) $\frac{dy}{dx} = y \sin 2x$

Separating the variables, $\frac{dy}{y} = \sin 2x \, dx$

Integrating, we get

$$\int \frac{1}{y} \, dy = \int \sin 2x \, dx$$

log y = $-\frac{\cos 2x}{2} + c$ is the required solution

(ii)
$$\log\left(\frac{dy}{dx}\right) = ax + by$$

 $\Rightarrow \qquad \frac{dy}{dx} = e^{ax + by}$
 $\Rightarrow \qquad \frac{dy}{dx} = e^{ax} e^{by}$
 $\frac{dy}{dx} = e^{ax} e^{by}$
 $\frac{dy}{e^{by}} = e^{ax} dx$

Integrating, we get

$$\int \frac{1}{e^{by}} dy = \int e^{ax} dx$$
$$\int e^{-by} dy = \int e^{ax} dx$$
$$\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + c$$
$$\frac{e^{ax}}{a} = -\frac{e^{-by}}{b} + c$$

(or)

•

Question 10.

Find the curve whose gradient at any point P(x, y) on it is $\overline{y-b}$ and which passes through the origin.

Solution:

The gradient at any point P (x, y) on the curve is given by \overline{dx}

According to the problem

 $rac{dy}{dx} = rac{x-a}{y-b}$

Separating the variables, (y-b) dy = (x-a) dxIntegrating, $\int (y-b) dy = \int (x-a) dx$

$$\frac{(y-b)^2}{2} = \frac{(x-a)^2}{2} + c$$

The curve passes through the origin, y = 0, x = 0

 $\frac{b^2}{2}$

С

So

 \Rightarrow

$$= \frac{a^2}{2} + c$$
$$= \frac{b^2 - a^2}{2}$$

Thus the curve becomes

.

$$\frac{(y-b)^2}{2} = \frac{(x-a)^2}{2} + \frac{b^2 - a^2}{2}$$

(or) $(y - b)^2 = (x - a)^2 + b^2 - a^2$ is the required equation of the curve.

dy

x - a