Properties and Solution of Triangles

Type – 1

Choose the most appropriate option (a, b, c or d). In a $\triangle ABC$, $\frac{c+b}{c-b}$ tan $\frac{A}{2}$ is equal to Q 1. (a) $\tan\left(\frac{A}{2}+B\right)$ (b) $\cot\left(\frac{A}{2}+B\right)$ (c) $\tan\left(A+\frac{B}{2}\right)$ (d) none of these If the area of a $\triangle ABC$ be L then $a^{2+} \sin 2B + b^2 \sin 2A$ is equal to Q 2. (a) 2λ (b) λ (c) 4λ (d) none of these If k be the perimeter of the $\triangle ABC$ then b $\cos^2 \frac{C}{2} + \cos^2 \frac{B}{2}$ is equal to Q 3. (c) $\frac{K}{2}$ (a) k (b) 2k (d) none of these If R denotes circumradius then in $\triangle ABC$, $\frac{b^2 - c^2}{2aR}$ is equal to Q4. (b) sin (B – C) (c) $\cos B - \cos C$ (a) $\cos(B - C)$ (d) none of these In a $\triangle ABC$, cot $\frac{A-B}{2}$.tan $\frac{A+B}{2}$ is equal to Q 5. (a) $\frac{a+b}{a-b}$ (b) $\frac{a-b}{a+b}$ (c) $\frac{a(a-b)}{b(a+b)}$ (d) none of these In a $\triangle ABC$, (c + a + b) (a + b - c) = ab. The measure of $\angle C$ is Q 6. (a) 2b (b) 2c (c) 3b (d) 3a In a $\triangle ABC$, A : B : C = 3 : 5 : 4. Then a + b c $\sqrt{2}$ is equal to Q 7. (b) 2c (c) 3b (a) 2b (d) 3a The equation $ax^2 + bx + c = 0$, where a,b,c are the sides of a \triangle ABC, and the equation $x^2 + \sqrt{2}x + \sqrt{2}x$ Q 8. 1 = 0 have a common root. The measure of $\angle C$ is (a) 90° (b) 45° (c) 60° (d) none of these If in a $\triangle ABC$, $a^2 \cos^2 A = b^2 + c^2$ then Q 9. (a) A < $\frac{\pi}{4}$ (b) $\frac{\pi}{4} < A < \frac{\pi}{2}$ (c) $A > \frac{\pi}{2}$ (d) $A = \frac{\pi}{2}$ Q 10. If in a $\triangle ABC$, tan $\frac{A}{2}$ and tan $\frac{B}{2}$ satisfy $6x^2 - 5x + 1 = 0$. Then (b) $a^2 - b^2 = c^2$ (c) $a^2 + b^2 = c^2$ (a) $a^2 + b^2 > c^2$ (d) none of these Two sides of a triangle are given by the roots of the equation $x^2 - 2\sqrt{3}x + 2 = 0$. The angle Q 11. between the side is $\pi/3$. The perimeter of the triangle is

	(a) $6 + \sqrt{3}$	(b) $2\sqrt{3} + \sqrt{6}$	(c) $2\sqrt{3} + \sqrt{10}$	(d) none of these					
Q 12.	The side of a ∆ABC are	$AB = \sqrt{13}$ cm, BC4 $\sqrt{3}$ cm	and CA = 7 cm. Then si	in θ , where θ is the					
	smallest angle of the triangle, is equal to								
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{1}{2}$	(c) $\frac{\sqrt{3}-1}{2\sqrt{2}}$	(d) none of these					
Q 13.	Two sides of a triangle are $2\sqrt{2}$ cm and $2\sqrt{3}$ cm and the angle opposite to the shorter side of the								
	two is $\pi/4$. The largest possible length of the third side is								
	(a) $\sqrt{2}(\sqrt{3}+1)$ cm	(b) $(6+\sqrt{2})$ cm	(c) $(\sqrt{6} - \sqrt{2})$ cm	(d) none of these					
Q 14.	In a αABC , a = 8, b = 10 and c = 12. The C is equal to								
	(a) $\frac{A}{2}$	(b) 2A	(c) 3A	(d) none of these					
Q 15.	In $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$ and $\tan \frac{B}{2} = \frac{20}{37}$ then								
	(a) 2a = b + c	(b) a > b > c	(c) 2c = a + b	(d) none of these					
Q 16.	In a $\triangle ABC$, a = 2b and	$ A - B = \frac{\pi}{3}$. The measu	re of ∠C is						
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) none of these					
Q 17.	In a $\triangle ABC$, the tangent	In a $\triangle ABC$, the tangent of half the difference of two angles is one-third the tangent of half the							
	sum of the two angles.	The ratio of sides opposition	ite the angles is						
	(a) 2 : 3	(b) 1 : 3	(c) 1 : 2	(d) 3 : 4					
Q 18.	In a $\triangle ABC, A = \frac{2\pi}{3}, b = 0$	c = $3\sqrt{3}$ cm and ar($\triangle ABC$	C)= $\frac{9\sqrt{3}}{2}$ cm ² . Then a is						
	(a) 6√3cm	(b) 9cm	(c) 18cm	(d) none of these					
Q 19.	The are of a $\triangle ABC$ is $a^2 - (b - c)^2$. Then tan A is equal to								
	(a) $\frac{4}{3}$	(b) $\frac{3}{4}$	(c) $\frac{8}{15}$	(d) none of these					
Q 20.	In a $\triangle ABC$, B = 90°, AC = h and the length of the perpendicular from B to AC is p such that h =								
	4p. If AB < BC then \angle C has the measure								
	(a) <u>5π</u> 12	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{12}$	(d) none of these					
Q 21.	In a $\triangle ABC$, a = 5, b = 4 and tan $\frac{C}{2} = \sqrt{\frac{7}{9}}$. The side c is								
	(a) 6	(b) 3	(c) 2	(d) none of these					
Q 22.	If in a $\triangle ABC, AC = 12$, BC = 13 and AB = 5, then the distance of A from BC is								
	(a) $\frac{25}{13}$	(b) $\frac{60}{13}$	(c) $\frac{65}{12}$	(d) none of these					

Q 23. In a AABC,
$$\cos A = \frac{3}{5} \operatorname{and} \cos B = \frac{5}{13}$$
. The value of $\cos C$ can be
(a) $\frac{7}{13}$ (b) $\frac{12}{13}$ (c) $\frac{33}{65}$ (d) none of these
Q 24. In a AABC, $B = \frac{\pi}{8}$ and $C = \frac{5\pi}{8}$. The altitude from A to the side BC is
(a) $\frac{a}{2}$ (b) $2a$ (c) $\frac{1}{2}(b+c)$ (d) none of these
Q 25. Two angles of a triangle are $\frac{\pi}{6}$ and $\frac{\pi}{4}$, and the length of the included side is $(\sqrt{3}+10 \text{ cm}$. The are
of the triangle is
(a) $\frac{\sqrt{3}-1}{2} \operatorname{cm}^2$ (b) $\frac{\sqrt{3}}{2} \operatorname{cm}^2$ (c) $\frac{\sqrt{3}}{2}+1 \operatorname{cm}^2$ (d) none of these
Q 26. If in a AABC, $\sin^3 A + \sin^3 B + \sin^3 C = 3\sin A \cdot \sin C$, then the value of the value of determinant
 $\begin{vmatrix} a & b & c \\ b & c & a \end{vmatrix}$ (a) 0 (b) $(a + b + c)^3$ (c) $(a + b + c)(ab + bc + ca)$ (d) none of these
Q 27. In a ΔABC , $A = 90^\circ$. Then $\tan^{-1} \frac{b}{a+c} + \tan^{-1} \frac{c}{a+b}$ is equal to
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\tan^{-1} \frac{a}{b+c}$ (d) none of these
Q 28. If in a ΔABC , the values of ot A, cot B, cot C are in AB, then
(a) a, b, c are in AP (b) a^2 , b^2 , c^2 are in AP (c) cos A, cos B, cos C are in AP (d) none of
these
Q 29. If in a ΔABC , $\frac{a}{\cos A} = \frac{b}{\cos B}$, then
(a) 2sinAsin B sin C = 1 (b) sin^2A + sin^2B = sin^2C(c) 2sin A cos B = sin C (d) none of these
Q 30. If the sides of a triangle are in GP and the largest angle is twice the smallest angle then the
common ratio, which is greater than 1, lies in the interval
(a) $(1, \sqrt{3})$ (b) $(1, \sqrt{3})$ (c) $\left(\frac{1}{\sqrt{5}+1}\right)$ (d) none of these
Q 31. In a ΔABC , the sides a, b and c are such that they are the roots of $x^3 - 11x^2 + 38x - 40 = 0$. Then
 $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$ is equal to
(a) $\frac{3}{4}$ (b) 1 (c) $\frac{9}{16}$ (d) none of these

Q 32.	If $\cos A + \cos B + 2 \cos C = 2$ then the sides of the $\triangle ABC$ are in								
0.00	(a) AP	(b) GP	(c) HP	(d) none of these					
Q 33.	If in the ΔABC , the incentre is the middle point of the median AD then cos A has the value								
	(a) $\frac{7}{8}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{1}{\sqrt{2}}$					
Q 34.	If in a $\triangle ABC$, $3a = b + c$ then $\tan \frac{B}{2}$. Tan $\frac{C}{2}$ is equal to								
	(a) tan $rac{A}{2}$	(b) 1	(c) 2	(d) none of these					
Q 35.	If in a $\triangle ABC$, 2cos A sir	If in a $\triangle ABC$, 2cos A sin C = sin B then the triangle is							
	(a) equilateral	(b) isosceles	(b) right angled	(d) none of these					
Q 36.	In a $\triangle ABC$, a = 1 and the	ne perimeter is six times t	the AM of the sines of the	e angle. The measure of					
	∠A is								
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{4}$					
Q 37.	In a $\triangle ABC$, $\angle A > \langle B$. If sin A and sin B satisfy the equation $3 \sin x - 4 \sin^3 x - k = -0$, $0 < k < 1$, then								
	∠C is								
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\frac{2\pi}{3}$	(d) $\frac{5\pi}{6}$					
Q 38.	In a $\triangle ABC$ the side a, b and c are in AP. Then $\left(\tan\frac{A}{2} + \tan\frac{C}{2}\right)$: $\cot\frac{B}{2}$ is								
	(a) 3 : 2	(b) 1 : 2	(c) 3 : 4	(d) none of these					
Q 39.	If the sides of a triangle are proportional to the cosines of the opposite angles then the triangle is								
	(a) right angled	(b) equilateral	(c) obtuse angled	(d) none of these					
Q 40.	If in a $\triangle ABC$, $\cos^2 \frac{A}{2} + a \cos^2 \frac{C}{2} = \frac{3b}{2}$, then a, b, c are in								
	(a) GP	(b) HP	(c) AP	(d) none of these					
Q 41.	Q 41. The side of a triangle are in AP and its are is $\frac{3}{5}$ x(area of an equilateral triangle of the same								
	perimeter). Then the rat	tio of the sides of							
	(a) 1 : 2 : 3	(b) 3 : 5 : 7	(c) 3 : 4	(d) none of these					
Q 42.	If BD, BE and CF are th	ne medians of a $\triangle ABC$ th	en						
	(a) 1 : 2 : 3	(b) 3 : 5 : 7	(c) 1 : 3 : 5	(d) none of these					
Q 43.	sin A, sin B sin C are in AP for the \triangle ABC Then								
	(a) the altitudes are in A	١P	(b) the altitudes are in HP						
	(c) The medians are in	GP	(d) the medians are in AP						

Q 44. AD is median of the $\triangle ABC$. If AE and AF are medians of the triangles ABD and ADC respectively, and AD = m₁, AE = m₂, AF = m₃, then $\frac{a^2}{8}$ is (a) $m_2^2 + m_3^2 - 2m_1^2$ (b) $m_1^2 + m_2^2 - 2m_3^2$ (c) $m_2^2 + m_3^2 - m_1^2$ (d) none of these O 45. The ratio of the distance of the orthocenter of an acute angled $\triangle ABC$ from the sides BC. $\triangle C$ and

Q 45. The ratio of the distance of the orthocenter of an acute–angled ∆ABC from the sides BC, AC and AB is

(a) cos A : cos B : cos C (b) sin A : sin B : sin C (c) sec A : sec B : sec C (d) none of these

Q 46. In a ∆ABC, I is the incentre. The ratio IA : IB : IC is equal to

(a)
$$\csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$$
 (b) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$
(c) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$ (d) none of these

Q 47. In the figure, ABC is a triangle in which $C = 90^{\circ}$ and AB = 5 cm.

D is a point on AB such that AD = 3 cm and $\angle ACD = =60^{\circ}$. Then the length of AC is

Q 54. Q 55.	In an equilateral triangle, (circumradius): (inradius): (exradius) is equal to (a) 1 : 1 : 1 (b) 1 : 2 : 3 (c) 2 : 1 : 3 (d) 3 : 2 : 4 The diameter of the circumcircle of a triangle with sides 5 cm, 6 cm and 7 cm is								
	(a) $\frac{3\sqrt{6}}{2}$ cm	(b) 2 <i>√</i> 6 cm	(c) $\frac{35}{48}$ cm	(d) none of these					
Q 56.	If in a triangle, R and r are the circumradius and inradius respectively then the HM of the exradii								
0.57	(a) 3r The angles of a right-tri	(b) 2R angle are in AP. The	(c) R + r (d) none of these						
Q OI.	(a) $(2-\sqrt{3}): 2\sqrt{3}$ (b) $1: 8\sqrt{3}(2+\sqrt{3})$ (c) $(2+\sqrt{3}): 4\sqrt{3}$ (d) none of these								
Q 58.	A ΔABC is right angled at B. Then the diameter of the incircle of the triangle is								
	(a) 2(c + a – b)	(b) c + a – 2b	(c) c + a – b	(d) none of these					
Q 59.	If the exradii of a triangl	e are in HP then corr	responding sides are in						
	(a) AP	(b) GP	(c) HP	(d) none of these					
Q 60.	In a \triangle ABC, the inradius and three exradii are r, r ₁ , r ₂ and r ₃ respectively. In usual notations the value, of r : r ₂ , r ₃ is equal to								
		1	abc						
	(a) 2∆	(b) Δ^2	(c) $\frac{abc}{4R}$	(d) none of these					
Q 61.	In a $\triangle ABC$, the perimeter	er = 2s and the exrac	lii are r_1 , r_2 and r_3 . Then r_1r_2	+ r_2r_3 + r_3r_1 is equal to					
	(a) s ²	(b) 2s ²	(c) 3s ²	(d) 4s ²					
Q 62.	In a $\triangle ABC$, tan A.tan B. tan C = 9. For such triangles, if then tan ² A + tan ² B + tan+2 C = k								
	(a) 9. ∛3 < k < 27	(b) k≰27	(c) k < 9.∛3	(d) k≮27					
Q 63.	If the $\triangle ABC$ is acute angled at C then								
	(a) cos 2A + cos 2B - c	cos 2C < 1	(b) cos 2A + cos 2B +	(b) $\cos 2A + \cos 2B + \cos 2C < 1$					
	(c) $\cos^2 A + \cos^2 B + \cos^2 B$	s ² C < 1	(d) none of these	(d) none of these					
Q 64.	If for a $\triangle ABC$, cot A . cot B. cot C > 0 then the triangle is								
	(a) right angled (b) acu	te angled (c)	obtuse angled (d) all	these potions are possible					
Q 65.	In a $\triangle ABC$, cos B. cos G	C + sin B. sin B. sin C	C. sin ² A = 1. Then the trian	gle is					
	(a) right-angled isosce	es (b)	isosceles whose equal ang	e are greater than $\pi/4$					
	(c) equilateral	(d)	none of these	e of these					
Q 66.	In a $\triangle ABC$, the angles i	A and B are two value	es of θ satisfying $\sqrt{3} \cos \theta$	+ sin θ = k, k k < 2. The					
	triangle								
	(a) is acute angled	(b) is right angled	(c) is obtuse angled	(d) has one angle = $\pi/3$					
Q 67.	If in an obtuse–angled t	triangle the obtuse ar	ngle is $3\pi/4$ and the other tv	vo angles are equal to two					
	values of θ satisfying atan θ + bsec θ = c, where $ b \le \sqrt{a^2 + c^2}$,then $a^2 - c^2$ is equal to								
	(a) ac	(b) 2ac	(c) a/c	(d) none of these					

Q 68. Let A₀, A₁, A₂, A₃, A₄ and A₅ be the consecutive vertices of a regular hexagon inscribed in a unit circle. The product of the lengths of A₀A₁, A₀A₂ and A₀A₄ is

(a)
$$\frac{3}{4}$$
 (b) $3\sqrt{3}$ (c) 3 (d) $\frac{3\sqrt{3}}{2}$

Q 69. The area of a circle is A_1 and the area of a regular pentagon inscribed in the circle is A_2 . Then A_1 : A₂ is

(a)
$$\frac{\pi}{5}\cos\frac{\pi}{10}$$
 (b) $\frac{2\pi}{5}\sec\frac{\pi}{10}$ (c) $\frac{2\pi}{5}\csc\frac{\pi}{10}$ (d) none of

these

Q 70. The are of a cyclic quadrilateral ABCD is $(3\sqrt{3})/4$. The radius of the circle circumscribing it is 1. If AB = 1, BD = $\sqrt{3}$ then BC. CD is equal to

(a) 2 (b)
$$3 - \frac{1}{\sqrt{3}}$$
 (c) $3\sqrt{3} + 1$ (d) none of these

Type 2

Choose the correct options. One or more options may be correct.

Q 71. If in aAABC, a = 6, b = 3 and cos(A - B) = 4 then

(a)
$$C = \frac{\pi}{4}$$
 (b) $A = \sin^{-1} \frac{2}{\sqrt{5}}$ (c) $ar(\Delta ABC) = 9$ (d) none of these
Q 72. The number of possible triangles ABC in which BC = $\sqrt{11}$ cm, CA = $\sqrt{13}$ cm and A = 60° is
(a) 0 (b) 1 (c) 2 (d) none of these
Q 73. In a $\triangle ABC$, $A = \frac{\pi}{3}$ and b : c = 2 :3. If $\tan \alpha = \frac{\sqrt{3}}{5}$, $0 < \alpha = \frac{\pi}{2}$, then
(a) $B = 60^{\circ} + \alpha$ (b) C-60° + α (c) $B = 60^{\circ} - \alpha$ (d) $C = 60^{\circ} - \alpha$
Q 74. In a triangle the cosines of two angles are inversely proportional to the sides opposite the angles.
The triangle is
(a) isosceles (b) equilateral (c) right angled (d) none of these
Q 75. In a $\triangle ABC$, the line segments AD, BE and CF are three altitudes. If R is the circumradius of the
 $\triangle ABC$, a side of the $\triangle DEF$ will be
(a) Rsin 2A (b) ccos B (c) asin A (d) bcos B
Q 76. In a $\triangle ABC$, tan A and tan B are the roots of the equation $ab(x^2 + 1) = c^2x$, where a, b and c are the
sides of the triangle. Then
(a) $tan(A - B) = \frac{a^2 - b^2}{2ab}$ (b) cot C = 0 (c) $sin^2A + sin^2B = 1$ (d) none of these
Q 77. The distances of the circumcentre of the acute-angled $\triangle ABC$ from the sides BC, CA and AB are
in the ratio
(a) asin A : bsinB: Ccsin, C (b) cos A : cos B: cos C

(c) acot A: bcot B:ccotC (d) none of these
Q 78. In any
$$\triangle ABC$$
, $\sum a^3 \sin(B - C)$ is equal to
(a) $\sum a(\sin B - \sin C)$ (b) $\sum a^2(\cos^2 B - \cos^2 C)$ (c) 0 (d) none of these
Q 79. In $a\triangle ABC$, $2\cos\frac{A-C}{2} = \frac{a+c}{\sqrt{a^2+c^2-ac}}$. Then

(a)
$$B = \frac{\pi}{3}$$
 (b) $B = C$ (c) A,B,C are in AP (d) $B + C = A$

Q 80.	Let Lsin 0 = 10 + log sir (a) one	n 0. The number of triang (b) two	gles ABC such that log b (c) infinite	+ 10 = log c + Lsin B is (d) none of these			
Q 81.	In any triangle ABC, sin	$\frac{A}{2}$ is					
	(a) less than $\frac{a}{b+c}$		(b) less than or equal to	b + c a			
	(c) greater than $\frac{2a}{a+b+c}$	-	(d) none of these				
Q 82.	ln a ∆ABC, tan C < 0. T	ĥen					
	(a) tan A . tan B < 1		(b) tan A tan B > 1				
	(c) tan A + tan B + tan (C < 0	(d) tan A + tan B + tan (C > 0			
Q 83.							
	(a) $a^2 + b^2 + ab > c^2$	(b) $a^2 + b^2 - ab < c^2$	(c) $a^2 + b^2 > c^2$	(d) none of these			
Q 84.	In a $\triangle ABC$, cosA + cosB + cosC > 1 only if the triangle is						
	(a) acute angled	-	C				
	(b) obtuse angled						
	(c) right angled						

(d) the nature of the triangle caanot be detemined

Answers

1a	2c	3c	4b	5a	6c	7c	8b	9c	10c		
11b	12b	13a	14b	15b	16b	17c	18b	19c	20c		
21a	22b	23c	24a	25c	26a	27a	28b	29c	30b		
31c	32a	33b	34d	35b	36c	37c	38d	39b	50c		
41b	42c	43b	44a	45c	46a	47a	48b	49d	50c		
51a	52d	53c	54c	55d	56a	57a	58c	59a	60b		
61a	62b	63a	64b	65a	66c	67b	68c	69b	70a		
71b,c	72c	73b,c	74a,c	75a,d	76a,b,	C	77b,c	78a,b,	с	79a,c	80a
81b	82a,c	83a,b	84d								