Chapter 7. Cube and Cube Root

Question 1

Find the cubes of the following numbers: (i) 7, (ii) 12, (iii) 21, (iv) 100, (v) 302

Solution:

(i) $(7)^3 = 7 \times 7 \times 7 = 343$

- (ii) $(12)^3 = 12 \times 12 \times 12 = 1728$
- (iii) $(21)^3 = 21 \times 21 \times 21 = 9621$
- (iv) $(100)^3 = 100 \times 100 \times 100 = 1000000$
- (v) $(302)^3 = 302 \times 302 \times 302 = 27543608$

Question 2

Write cubes of all natural numbers between 1 and 20 and verify the following statements:

- (a) Cubes of all odd natural numbers are odd.
- (b) Cubes of all even natural numbers are even.

Solution:

 $(2)^3 = 8, (3)^3 = 27, (4)^3 = 64, (5)^3 = 125, (6)^3 = 216, \dots (19)^3 = 6859.$

(a) Yes, cubes of all odd natural numbers are odd.

(b) Yes, cubes of all even natural numbers are even.

Write cubes of 5 natural numbers which are multiples of 3 and verify the following:

'The cube of natural number, which is a multiple of 3 is a multiple of 27'.

Solution:

 $\begin{array}{l} (3)^3 = 3 \times 3 \times 3 = 27 \\ (6)^3 = 6 \times 6 \times 6 = 216 \\ (9)^3 = 9 \times 9 \times 9 = 729 \\ (12)^3 = 12 \times 12 \times 12 = 1728 \\ (15)^3 = 15 \times 15 \times 15 = 3375 \end{array}$

Verification:

 $(3)^3 = 27 = 27 \times 1$ $(6)^3 = 216 = 27 \times 8$ $(9)^3 = 729 = 27 \times 27$ $(12)^3 = 1728 = 27 \times 64$ $(15)^3 = 3375 = 27 \times 125$

... 'The cube of natural number, which is a multiple of 3 is a multiple of 27'.

Write cubes of 5 natural numbers which are of the form 3n+1 (e.g 4, 7, 10, ...) and verify the following: 'The cube of a natural number of the form 3n +1 is a natural number of the same form'.

Solution:

The 5 natural numbers which are of the form 3n + 1 (e.g. 4, 7, 10, ...) are as follows: $3 \times 1 + 1 = 3 + 1 = 4$ $3 \times 2 + 1 = 6 + 1 = 7$ $3 \times 3 + 1 = 9 + 1 = 10$ $3 \times 4 + 1 = 12 + 1 = 13$ $3 \times 5 + 1 = 15 + 1 = 16$

. . . .

The cubes of 5 natural numbers which are of the form 3n + 1 (e.g. 4, 7, 10, ...) are as follows:

. . ..

-

 $(4)^3 = 4 \times 4 \times 4 = 64$ $(7)^3 = 7 \times 7 \times 7 = 343$ $(10)^3 = 10 \times 10 \times 10 = 1000$ $(13)^3 = 13 \times 13 \times 13 = 2197$ $(16)^3 = 16 \times 16 \times 16 = 4096$

Verification: 64 = 3 × 21 + 1 343 = 3 × 114 + 1 1000 = 3 × 333 + 1 2197 = 3 × 732 + 1 4096 = 3 × 1365 + 1

. .

. .

Write cubes of 5 natural numbers which are of the form 3n + 2 (e.g. 5, 8, 11, ...) and verify the following: 'The cube of a natural number of the form 3n + 2 is a natural number of the same form'.

Solution:

The 5 natural numbers which are of the form 3n + 2 (e.g 5, 8, 11, ...) are as follows: $3 \times 1 + 2 = 3 + 2 = 5$ $3 \times 2 + 2 = 6 + 2 = 8$ $3 \times 3 + 2 = 9 + 2 = 11$ $3 \times 4 + 2 = 12 + 2 = 14$ $3 \times 5 + 2 = 15 + 2 = 17$

The cubes of 5 natural numbers which are of the form 3n + 2 (e.g 5, 8, 11, ...) are as follows:

 $(5)^3 = 5 \times 5 \times 5 = 125$ $(8)^3 = 8 \times 8 \times 8 = 512$ $(11)^3 = 11 \times 11 \times 11 = 1331$ $(14)^3 = 14 \times 14 \times 14 = 2744$ $(17)^3 = 17 \times 17 \times 17 = 4913$ Verification:

125 = 3 × 41 + 2 512 = 3 × 170 + 2 1331 = 3 × 443 + 2 2744 = 3 × 914 + 2 4913 = 3 × 1637 + 2 ∴ 'The cube of a natural number of the form 3n + 2 is a natural number of the same form'.

Which of the following numbers are perfect cubes? 1728, 106480

Solu	tion:
2	1728
2	864
	432
$\frac{2}{2}$	216
2	108
2	54
3	27
3	9
	3

1728 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3

$$= (2^3 \times 2^3 \times 3^3) = (2 \times 2 \times 3)^3$$

Therefore cube root of $1728 = \sqrt[3]{1728} = 12$

Hence 1728 is a perfect cube.

 $\begin{array}{c|ccccc} 2 & 106480 \\ \hline 2 & 53240 \\ \hline 2 & 26620 \\ \hline 2 & 13310 \\ \hline 5 & 6655 \\ \hline 11 & 1331 \\ \hline 11 & 121 \\ \hline & 11 \end{array}$

 $106480 = 2 \times 2 \times 2 \times 2 \times 5 \times 11 \times 11 \times 11$

 $= (2^3 \times 2 \times 5 \times 11^3) = (2 \times 11)^3 \times 2 \times 5$

In the above factorisation 2 \times 5 remains after grouping in triplets. Therefore 106480 is not a perfect cube.

What is the smallest number by which 392 must be multiplied so that the product is a perfect cube ?

Solution:

392 = 2 × 2 × 2 × 7 × 7

7 occurs as a prime factor only twice.

Hence, 7 is the smallest number by which 392 must be multiplied so that the product is a perfect cube.

2	1392
2	196
$\frac{1}{7}$	98 49
-	7

Question 8

What is the smallest number by which 8640 must be divided so that the quotient is a perfect cube ?

Solution:

8640 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 5 5 occurs as a prime number only once. Hence, 5 is the smallest number by which 8640 must be divided so that the quotient is a perfect cube.

2	8640
2	4320
2	2160
2	1080
2	540
2	270
3	135
3	45
3	15
	5

If one side of a cube is 13 metres, find its volume.

Solution:

The volume of a cube = $(side)^3 = (13)^3 = 2197m^3$.

Question 10

Find the cube root of: (i) 343 (ii) 1000 (iii)2744 (iv) 74088

Solution: (i) 343 = 7 × 7 × 7

 $\therefore \sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7} = 7$

(ii) 1000 = 2 × 2 × 2 × 5 × 5 × 5

2	1000
2	500
2	250
5	125
5	25
_	<u></u>

 $3_{1000} = 3_{2 \times 2 \times 2 \times 5 \times 5 \times 5} = 2 \times 5 = 10$

(iii) 2744 = 2 × 2 × 2 × 7 × 7 × 7

2	2744
2	1372
2	686
7	343
7	49
	7

 $\sqrt[3]{2744} = \sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7} = 2 \times 7 = 14$

(iv) 74088 = 2 × 2 × 2 × 3 × 3 × 3 × 7 × 7 × 7

2174088	
2 37044	
2 18522	
3 9261	
3 3087	
3 1029	
7 343	
7 49	
7	
	_

 $\therefore \sqrt[3]{74088} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7} = 2 \times 3 \times 7 = 42$

Find the cube root of 125.

Solution:

125 <u>- 1</u> 124 <u>- 7</u> 117 <u>-19</u> 98 <u>-37</u> 61 <u>- 61</u> 0

Since we had to subtract five times, therefore, 3125 = 5

Question 12

Multiply 137592 by the smallest number so that the product is a perfect cube. Also, find the cube root of the product.

Solution:

Divide the number 26244 by the smallest number so that the quotient is a perfect cube. Also, find the cube root of the quotient.

Solution:

2	26244
2	13122
3	6561
3	2187
3	729
3	243
<u> </u>	81
33	27
3	9
	3

26244 = 2×2×3×3×3×3×3×3×3×3×3

2x2x 3x 3 = 36 is the smallest number by which 26244 must be divided so that the quotient is a perfect cube.

729 36)26244 <u>252</u> 0104 <u>0072</u>

Question 14

The volume of a cube is 512cubic metres. Find the length of the side of the cube.

Solution: We know that, the volume of a cube = $(side)^3$ The length of the side of a cube = $\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} = 2 \times 2 \times 2 = 8 \text{ m}$

Which of the following numbers are cubes of negative integers?

```
(a) -64 (b) -2197 (c) -1056 (d) -3888
```

Solution:

- (a) 64 = 2x2x2x2x2x2x2 $\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} = 2 \times 2 = 4$ $\sqrt[3]{-64} = -\sqrt[3]{64} = -4$
- ... -64 is a cube of -4 a negative integer.
- (b) 2197 = 13x13x13 ³√2197 = ³√13×13×13 = 13 ³√-2197 = -³√2197 = -13
 ∴ -2197 is a cube of -13 a negative integer.
- (c) 1056 = 2x2x2x2x2x3x11

In the above factorisation 2 x 3 x 3 x 11 x 11 remains after grouping in triplets. Therefore, 1056 is not a perfect cube.

Hence -1056 is not a cube of negative integer.

```
₹5832 = ₹2×2×2×3×3×3×3×3×3 = 2×3×3 = 18
$-5832 = -$5832 = -18
```

• •

Question 16

Find the cube roots of:

(a) -125 (b) -5832 (c) -17576

Solution:

- (a) 125 = 5x5x5 ∛125 = ∛5×5×5 = 5 ∛-125 = -∛125 = -5
- (b) 5832 = 2x2x2x3x3x3x3x3x3x3x3 3√5832 = 3√2×2×2×3×3×3×3×3×3×3 = 2×3×3 = 18 3√-5832 = -3√5832 = -18
- (c) 17576 = 2x2x2x13x13x13 $\sqrt[3]{17576} = \sqrt[3]{2 \times 2 \times 2 \times 13 \times 13 \times 13} = 2 \times 13 = 26$ $\sqrt[3]{-17576} = -\sqrt[3]{17576} = -26$

Find the cube root of each of the following numbers:

- 1. 8 ×64
- 2. (-216) × 1728
- 3.27 × (-2744)
- 4. (-125)×(-3375)
- 5. -456533
- 6. -5832000

Solution:

- (1) 8 x 64 = 2x2x2x2x2x2x2x2x2x2x2x2 $\sqrt[3]{8\times 64}$ = 2×2×2 = 8
- (2) 216 x 1728 = 2x2x2x3x3x3x3x2x2x2x2x2x2x2x3x3x3 <u>3</u>(-216)×1728 = -(2×3×2×2×3) = -72
- (3) 27 x 2744 = 3x3x3x2x2x2x7x7x7 3√27×(-2744) = -(3×2×7) = -42
- (6) 5832000 = 5832 x 1000 = 2x2x2x3x3x3x3x3x3x3x2x2x2x5x5x5 3(-5832)×1000 = -(2×3×3×2×5) = −180

Question 18

Find the cubes of the following by multiplication.

(i) -4 (ii) 23 (iii) 3030

Solution:

(i) $(-4)^3 = (4) \times (4) \times (4) = -64$

(ii) (23)³ =23 x 23 x 23 = 12167

(iii) (3030)³ =3030 x 3030 x 3030 = 27818127000.

Find the cube of the following rational numbers:

(i) 1.4

Solution:

(i) (1.4)³ = 1.4 × 1.4 × 1.4 = 2.744.

Question 20

By what number would you multiply 231525 to make it a perfect cube?

Solution:

The prime factorisation of 231525 is $5 \times 5 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7$.

The number that must be multiplied in order that the above product is a perfect cube is 5.

Therefore, Cube root of 231525 × 5 is 5 × 3 × 7 = 105.