No of Questions: 120

- 1. Let X be any non-empty set containing n elements. Then what is the number of relations on X?
 - a) 2 n² b) 2n n
 - c) 2²ⁿ d)
- 2. Consider the following for any three non-empty sets A, B and C.

$$1. \quad A - (B \cup C) = (A - B) \cup (A - C)$$

2. $\quad A-B=A-(A\cap B)$

$$A = (A \cap B) \cup (A - B)$$

Which of the above is/are correct?

- a) Only 1 b) 2 and 3
- c) 1 and 2 d) 1 and 3
- Consider the following statements: 1. Parallelism of lines is an equivalence relation.
- x R y, if x is a father of y, is an equivalence 2. relation.

Which of the statements given above is/are correct?

a) 1 only

3.

- 2 only b)
- c) Both 1 and 2
- d) Neither 1 nor 2

For what value (s) of x is 4.

log	$g_{10} \left\{ 999 + \sqrt{x^2} \right\}$	$\overline{-3x+3}$	= 3 ?
a)	0	b)	1 only
c)	2 only	d)	1, 2

- c) 2 only d)
- The number $\left(2+\sqrt{2}\right)^2$ is 5.
 - a natural number a)
 - b) an irrational number
 - a rational number c)
 - a whole number d)
- What is the decimal equivalent of (101. 101)²? 6.
 - a) (5.225)10
 - b) (5.525)10
 - c) (5.625)10
 - (5.65)10 d)

7. If
$$X = \{ (4^n - 3n - 1) | n \in N \}$$
 and

$$Y = \{9(n-1) \mid n \in N\}$$
, then what is $X \cup Y$

Time: 2 ½ hours

- 8. What is the binary number equivalent of the decimal number 32.25?
 - 100000.10 a) 100010.10 b)
 - 100010.01 100000.01 c) d)
- $A = \{4n + 2 \mid n \text{ is a natural number}\}$ 9. If and

$$B = \{3n \mid n \text{ is a natural number}\}$$
, then what is

 $(A \cap B)$ equal to?

- a) $\{12n^2 + 6n \mid n \text{ is a natural number}\}$
- b) $\{24n-12 \mid n \text{ is a natural number}\}$
- c) $\{60n+30 \mid n \text{ is a natural number}\}$
- $\{12n-6 \mid n \text{ is a natural number}\}\$ d)
- 10. If A and B are two non-empty sets having n elements in common, then what is the number of common elements in the sets A × B and B × A? h) n²

11. What is the value of $\log_{v} x^{5} \log_{x} y^{2} \log_{z} Z^{3}$?

- 12. If the equation $x^2 + k^2 = 2(k + 1)x$ has equal roots, then what is the value of k? a) - 1/3 b) -½ c) 0 d) 1
- **13.** If α , β are the roots of the equation

 $\ell x^2 - mx + m = 0$, $\ell \neq m, \ell \neq 0$, then which one of the following statements is correct?

a)
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{m}{\ell}} = 0$$

b) $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{m}{\ell}} = 0$

c)
$$\sqrt{\frac{\alpha+\beta}{\alpha\beta}} - \sqrt{\frac{m}{\ell}} = 0$$

- d) the arithmetic mean of a and B is the same as their geometric mean.
- 14. If x is an integer and satisfies $9 < 4x 1 \le 19$, then x is an element of which one of the following sets?
 - a) {3, 4} b) {2, 3, 4}
 - c) {3, 4, 5} d) {2, 3, 4, 5}
- 15. If the roots of $ax^2 + bx + c = 0$ are $\sin \alpha$ and $\cos lpha$ for some lpha , then which one of the following is correct?

- a) $a^2+b^2=2ac$ b) $b^2-c^2=2ab$ c) $b^2-a^2=2ac$ d) $b^2+c^2=2ab$
- 16. Which of the following are the two roots of the equation $(x^2+2)^2+8x^2=6x(x^2+2)$?
 - a) $1\pm i$ b) $2\pm i$
 - c) $1 \pm \sqrt{2}$ d) $2\pm i\sqrt{2}$
- 17. If the equation $x^2 px + q = 0$ and $x^2 ax + b = 0$ have a common root and the roots of the second equation are equal then which one of the following is correct?
 - a) aq =2(b+p)b) aq = b+pd) ap = b+pc) ap =2(b+p)
- 18. The solution of the simultaneous linear equation 2x+y = 6 and 3y = 8 + 4x will also be satisfied by which one of the following linear equation?
 - a) x + y = 5
 - b) 2x + y = 5
 - c) 2x 3y = 10
 - d) 2x + 3y = 6

19. If $x = 1 + \frac{y}{2} + \left(\frac{y}{2}\right)^2 + \left(\frac{y}{2}\right)^3 + \dots$ where |y| < 2, what is 1y?

a) $\frac{x-1}{x}$ b) $\frac{x-1}{2x}$ c) $\frac{2x-1}{2x-1}$ d)

20. If the nth term of an arithmetic progression is 3n + 7, then what is the sum of its first 50 terms?

a)	3925	b)	4100
c)	4175	d)	8200

21. Sum of first *n* natural number is given by

 $\frac{n(n+1)}{2}$. What is the geometric mean of the

series $1, 2, 4, 8, \dots, 2^n$?

a) 2n b)
$$2^{\frac{n}{2}}$$

c) $2^{\frac{1}{2}}$ d) 2^{n-1}

- 22. The 59th term of an AP is 449 and the 449th term is 59. Which term is equal to 0 (zero)?
 - a) 501stterm b) 502ndterm
 - d) 509thterm c) 508thterm
- 23. Which one of the following options is correct? a) sin²30°, sin²45°, sin²60° are in GP
 - b) cos²30°, cos²45°, cos²60° are in GP
 - c) cot²30°, cot²45°, cot²60° are in GP
 - d) tan²30°, tan²45°, tan²60° are in GP

24. Consider the following statements:

- 1. The sum of cubes of first 20 natural numbers Is44400.
- 2. The sum of squares of first 20 natural

numbers is2870.

Which of the above statements is/are correct?

- 1 only a)
- b) 2 only
- c) Both 1 and 2
- d) Neither 1 nor 2
- 25. Let z be a non zero complex number. Then what is z⁻¹ (multiplicative inverse of z) equal to

a)
$$\frac{z}{|z|^2}$$
 b) $\frac{z}{|z|^2}$
c) $\frac{\overline{z}}{|z|}$ d) $\frac{|z|}{z}$
26. What is $\frac{(\sqrt{3}+i)}{(1+\sqrt{3i})}$ equal to?
a) $1+1$ b) $1-i$
c) $\frac{\sqrt{3}(1-i)}{2}$ d) $\frac{(\sqrt{3}-i)}{2}$

27. If ω is a complex cube root of unity, then what is $\omega^{10} + \omega^{-10}$ equal to?

- c) -2 d) 1
- 28. If $z = -\overline{z}$, then which one of the following is correct?
 - a) real part of z is zero.
 - b) The imaginary part of z is zero.
 - The real part of z is equal to imaginary c)
 - d) The sum of real and imaginary parts of z is z.
- **29.** What is the last digit of $3^{3^{4n}+1}$, where *n* is a natural number?

d) None of these

18

30. The value of the term independent of x in the

expansion of
$$\left(x^2 - \frac{1}{x}\right)^9$$
 is:
a) 9 b)

- c) 48 d) 84
- 31. In how many ways can 3 books on Hindi and 3 books on English be arranged in a row on a shelf, so that not all the Hindi books are together? 144 360 a١ h)

- 32. In how many ways can a committee consisting of 3 men and 2 women be formed from 7 men and 5 women?
 - a) 45 b) 350
 - c) 700 d) 4200
- 33. What is the image of the point (2, 3) in the line y = -x?
 - a) (-3, -2)

- b) (-3,2)
- c) (-2, -3)
- d) (3, 2)
- 34. If (a, b), (c, d) and (a c, b d) are collinear, then which one of the following is correct? b) ab - cd = 0a) bc - ad = 0c) bc + ad = 0d) ab + cd = 0
- 35. What is the maximum number of straight lines that can be drawn with any four points in a plane such that each line contains at least two of these points?
 - a) 2 b) 4 12
 - c) 6 d)
- 36. What is the slope of the line perpendicular to the line x/4 + y/3 = 1?
 - b) ¾ a) 3/4
 - c) 4/3 d) 4/3
- 37. What is the equation of a line parallel to x-axis at a distance of 5 units below x-axis?
 - a) x = 5 b) x = -5
 - c) y = 5 d) y = -5
- 38. The equation of a straight line which makes an angle 45° with the x-axis with y-intercept 101 units is:
 - a) 10x + 101y = 1
 - b) 101x + y = 1
 - c) x + y 101 = 0
 - d) x y + 101 = 0
- 39. What is the radius of the circle passing through the points (0, 0), (a, 0) and (0, b)?
 - a) $\sqrt{a^2-b^2}$
 - b) $\sqrt{a^2+b^2}$
 - c) $\frac{1}{2}\sqrt{a^2+b^2}$
 - d) $2\sqrt{a^2+b^2}$
- 40. Consider the following statements in respect of circles $x^{2} + y^{2} - 2x - 2y = 0$ and $x^{2} + y^{2} = 1$
 - 1. The radius of the first circle is twice that of the second
 - 2. Both the circles pass through the origin. Which of the statements given above is/are correct?
 - a) 1 only
 - b) 2 only
 - c) Both 1 and 2
 - d) Neither 1 nor 2
- 41. Consider the ellipse $x_2/a_2 + y_2/b_2 = (b > a)$. Then, which one of the following is correct?
 - a) Real foci do not exist
 - b) Foci are (± ae, 0)
 - c) Foci are (± be, 0)
 - d) Foci are (0, ± be)
- 42. What are the points of intersection of the curve

- $4x^2 9y^2 = 1$ with its conjugate axis?
- a) (1/2,0) and (-1/2,0)
- b) (0, 2) and (0, 2)
- c) (0, 3) and (0, 3)
- d) No such point exists
- 43. If sin $(\pi \cos x) = \cos (\pi \sin x)$, then what is one of the values of sin 2x?
 - a) -1/4 b) -1/2
 - -3/4 d) -1 c)
- 44. What is the minimum value of $\cos \theta + \cos 2 \theta$? a) –2 b) - 9/8
 - d) 9/16 c) 0
- 45. What is the measure of the angle 114° 35' 30" in radian?
 - a) 1 rad b) 2 rad
 - c) 3 rad d) 4 rad
- 46. For which acute angle θ , cosec2 θ = 3 $\sqrt{3}$ cot θ 5?
 - a) 5π/12 b) π/3
 - c) π/6 d) π/4
- 47. What is the value of tan 15° + cot 15°? a) √3 b) 2√3 c)
 - d) 2 4
- 48. What is the value of $\frac{\cos 15^\circ + \cos 45^\circ}{\cos 15^\circ + \cos 45^\circ}$ $\overline{\cos^3 15^\circ + \cos^3 45^\circ}$ 1/4 a) b) 1/2
 - c) 1/3 d) None of these
- 49. If $x = \sin\theta + \cos\theta$ and $y = \sin\theta \cdot \cos\theta$, then what is the value of $x^4 - 4x^2y - 2x^2 + 4y^2 + 4y + 1$? a) 0 b) 1
 - c) 2 d) None of these
- 50. What is the angle subtended by 1 m pole at a distance 1 km on the ground in sexagesimal measure?
 - $9/50\pi$ degree b) $9/5\pi$ degree a)
 - 3.4 minute d) 3.5 minute c)
- 51. What is the value of sin 15°?
 - $\frac{\sqrt{3}+1}{2\sqrt{2}}$ b) a) $\sqrt{3} - 1$ $\sqrt{3} \pm 1$

c)
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$
 d) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

52. The expression $\frac{\cot x + \cos ec \ x - 1}{\cot x - \cos ec \ x + 1}$ is equal to:

a)
$$\frac{\sin x}{1 - \cos x}$$

b) $\frac{1 - \cos x}{\sin x}$
c) $\frac{1 + \cos x}{\sin x}$
d) $\frac{\sin x}{1 + \cos x}$

53. What is the value of: $\cos\left[\tan^{-1}\left\{\tan\left(\frac{15\pi}{4}\right)\right\}\right]$?

- a) $-\frac{1}{\sqrt{2}}$ b) 0 c) $\frac{1}{\sqrt{2}}$ d) $\frac{1}{2\sqrt{2}}$
- 54. The formula $\sin^{-1}{2x(1 x^2)} = 2\sin^{-1}x = is$ true for all values of x lying in the interval
 - a) [–1,1]
 - b) [0, 1]
 - c) [—1, 0]
 - d) [-1/v2, 1/v2]
- **55. DIRECTION:** Read the following information are fully and give the answer.

ABC is a triangle rightangled at B.The hypotenuse (AC) is four times the perpendicular (BD) drawn to it from the opposite vertex and AD < DC. What is $\angle ABD$?

30°

None of these

a) 15° b)

56. What is
$$\sin\left[\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right)\right]$$
 equal to?

- a) 0 b) 1/2
- c) 1 d) 2
- 57. From the top of a lighthouse 120 m above the sea, the angle of depression of a boat is 15°. What is the distance of the boat from the lighthouse?
 - a) 400 m b) 421 m c) 448 m d) 460 m
- 58. Let R be the set of real numbers and let $f: R \rightarrow R$ be a function such that $f(x) = \frac{x^2}{1+x^2}$. What is the range of f?
 - a) R b) R-{1} c) [0,1] d) [0,1)
- 59. What is the value of $\lim_{x \to \infty} \left(\frac{x-2}{x+2}\right)^{x+2}$? a) 0 b) e⁴

c)
$$e^{-2}$$
 d

60. What is the inverse of the function
$$y = 5_{\log x}$$
?
a) $x = 5^{1/\log y}$ b) $x = y^{1/\log 5}$

c)
$$x = 5l^{\log y}$$
 d) $x = y^{\log 5}$

- 61. If $f(x) = \begin{cases} 3x 4, 0 \le x \le 2\\ 2x + \lambda, 2 < x \le 3 \end{cases}$ is continuous at
 - $x\,{=}\,2$, then what is the value of $\,\lambda$?
 - a) 1 b) -1
 - c) 2 d) -2
- 62. Consider the following statements: I. f (x) = |x - 3| is continuous at x = 0. II. f (x) = |x - 3| is differentiable at x = 0. Which of the statements given above is/are

correct?

- a) I only b) II only
- c) Both I and II d) Neither I nor II
- 63. Which one of the following functions is differentiable for all real values of x?

a)
$$\frac{x}{|x|}$$
 b) $x|x|$
c) $\frac{1}{|x|}$ d) $\frac{1}{x}$

- 64. Let N be the set of natural numbers and f : N ?→
 N, be a function given by f(x) = x + 1, x ∈ N. Which one of the following is correct?
 - a) f is one-one and ontob) f is one-one but not onto

c) f is only onto

- d) f is neither one-one nor onto
- 65. A can hit a target 4 times in 5 shots; B can hit a target 3 times in 4 shots; C can hit a target 2 times in 3 shots; All the three fire a shot each. What is the probability that two shots are at least hit?
 a) 1/6 b) 3/5
- c) 5/6
 d) 1/3
 66. A coin is tossed. If a head is observed, a number is randomly selected from the set {1, 2, 3} and if a tail is observed, a number is randomly selected from the set {2, 3, 4, 5}. If the selected number be denoted by X, what is the probability that X =

- 67. Two numbers X and Y are simultaneously drawn from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. What is the conditional probability of exactly one of the two numbers X and Y being even, given (X + Y) = 15?
 - a) 1 b) 3/4
 - c) 1/2 d) 1/4
- 68. A box contains 6 distinct dolls. From this box, 3 dolls are randomly selected one by one with replacement. What is the probability of selecting 3 distinct dolls?

69. If A and B are two events such that

$$P(A \cup B) = \frac{3}{4}$$
, $P(A \cap B) = \frac{1}{4}$, $P(\bar{A}) = \frac{2}{3}$

where \overline{A} is the complement of A, then what is Pb) equal to?

- a) 1/3 b) 2/3
- c) 1/9 d) 2/9

- 70. If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P(X = r) is maximum when
 - a) r = 16 b) r = 32 c) r = 33 d) r = 34
- 71. Which one of following is correct? The three planes

2x + 3y - z -2 = 0, 3x + 3y + z - 4 = 0, x - y + 2z - 5 = 0 intersect

- a) at a point b) at two points
- c) at three points d) in a line
- 72. Which one of the following planes contains the z-axis?

a) x - z = 0b) z + y = 0c) 3x + 2y = 0d) 3x + 2z = 0

- 73. What is the value of n so that the angle between the lines having direction ratios (1, 1, 1) and (1, – 1, n) is 60°?
 - a) √3 b) √6

c) 3 d) None of these

- 74. What is the acute angle between the planes x + y
 + 2z = 3 and 2x + y z = 11?
 - a) π/5 b) π/4
 - c) π/6 d) π/3
- 75. If a line OP of length r (where 'O' is the origin) makes an angle α with x-axis and lies in the xz-plane, then what are the coordinates of P?
 - a) (r cos α , 0, r sin α)
 - b) $(0, 0, r \sin \alpha)$
 - c) (r cos α, 0, 0)
 - d) (0, 0, r cos α)
- 76. What is the arithmetic mean of the series ${}^{n}C_{0}, {}^{n}C_{1}, \dots {}^{n}C_{n}$?

a)
$$\frac{2^n}{n}$$
 b) $\frac{2^n}{(n+1)}$
c) $\frac{2^{(n+1)}}{n}$ d) $\frac{2^{(n+1)}}{(n+1)}$

- 77. If X is changed to a + hU and Y to b + kV, then which one of the following is the correct relation between the regression coefficients bXY and bUV?
 - a) $h b_{XY} = k b_{UV}$ b) $k b_{XY} = h b_{UV}$ c) $b_{XY} = b_{UV}$ d) $k^2 b_{XY} = h 2 b_{UV}$
- 78. The average age of 20 students in a class is 15 yr. If the teacher's age is included, the average increases by one. What is the teacher's age?
 a) 30 yr
 b) 21 yr
 - c) 42 yr d) 36 yr
- 79. Correlation between two variable is said to be perfect if
 - a) one variable increases, the other also increases

- b) one variable increases, the other decreases
- c) one variable increases, the other also increases proportionally
- d) one variable increases, the other decreases proportionally

80.

Class	1-5	6-10	11-15	16-20	
Interval					
Frequency	3	7	6	5	

Consider the following statements in respect of the above frequency distribution.

I. The median is contained in the modal class

II. The distribution is bell-shaped.

Which of the above statements is/are correct?

- a) Only I b) Only II
- c) Both I and II d) Neither I nor II

81. Directions:

Note: Study the following Table and Answer the Questions that follow.

Year		Male					
	Urba	Rura	Tota	Urba	Rura	Tota	Tota
	n		1	n	1	I	I
1995	280	350			310		1350
1996	370		670	180		450	
1997		130	440		190		
1998	400	280		290			
Tota I				1060	850		

What is the total population in 1998?

a)	1000	b)	1020
c)	1040	d)	1050

- 82. The mean of 10 observations is 5. If 2 is added to each observation and then multiplied by 3, then what will be the new mean?
 - a) 5 b) 7
 - c) 15 d) 21
- 83. Marks obtained by 7 students in a subject are 30, 55, 75, 90, 50, 60, 39. The number of students securing marks less than the mean marks is

c) 5 d) 4

84. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{x-x}}{1+x^{3/2}}\right)$ at

$$x = 1$$
?
a) $-1/4$ b) $1/2$

c) 3/2 d) 1 85. If $f(x) = \cos x$, $g(x) = \log x$ and y = (gof)(x)

, then what is the value of $\displaystyle \frac{dy}{dx}$ at $x\!=\!0$?

- a) 0 b) 1
- c) -1 d) 2

- 86. If $f(x) = 2^x$, then what is the f''(x) equal to ? b) $x(x-1)2^{x-2}$ a) $2^{x} (\ln)^{2}$
 - c) 2^{X+1}(ln 2) d) $2^{x} (\log_{10} 2)^{2}$
- 87. The derivative of sec²x with respect to tan²x is a) 1 b) 2
 - c) 2 sec x tan x d) 2 sec² x tan x
- 88. The motion of a particle is described as $s = 2 - 3t + 4t^3$. What is the acceleration of the particle at the point where its velocity is zero? a) 0 b) 4 unit
 - c) 8 unit d) 12 unit
- 89. A stone thrown vertically upward satisfies the equation s = 64t – 16t², where s is in meter and t is in second. What is the time required to reach the maximum height?
 - a) 1s b) 2s
 - c) 3s d) 4s
- 90. What is the value of P for which the function s(x) = sin 3xt

$$f(x) = p \sin x + \frac{3}{3}$$
 has an extremum at
 $x = \frac{\pi}{3}$?
a) 0 b) 1
c) -1 d) 2

- 91. The radius of a circle is uniformly increasing at the rate of 3 cm/s. What is the rate of increase in area, when the radius is 10 cm? a) $6\pi \text{ cm}^2/\text{s}$ b) 10π cm²/s
 - c) $30\pi \text{ cm}^2/\text{s}$ d) 60π cm²/s
- 92. What is the area under the curve y = |x| + |x-1| between x = 0 and x = 1?
 - a) 1/2 b) 1 d) 2
 - c) 3/2
- 93. What is $\int \frac{dx}{\sin^2 x \cos^2 x}$ equal to?
 - a) tan x + cot x + c
 - b) $\tan x \cot x + c$
 - c) (tan x + cot x)2 + c
 - d) (tan x cot x)2 + c
- 94. What is the area enclosed by the curve 2X2 + y2 = 1?
 - a) 2π b)
 - c) $\frac{\pi}{2}$ d) $\frac{\pi}{\sqrt{2}}$

95. What is
$$\int_{0}^{\pi/2} \frac{\sin^{3} x}{\sin^{3} x + \cos^{3} x} dx$$
?
a) π b) $\pi/2$
c) $\pi/4$ d) 0

96. What is the area bounded by the curve $\sqrt{x} + \sqrt{y} = \sqrt{a} (x, y \ge 0)$ and the coordinate

π

axes?

a)
$$\frac{5a^2}{6}$$
 b) $\frac{a^2}{3}$
c) $\frac{a^2}{2}$ d) $\frac{a^2}{6}$

- 97. What does the solution of the differential equation xdy – ydx = 0 represent?
 - a) Rectangular hyperbola b) Straight line passing through (0, 0)
 - c) Parabola with vertex at (0, 0)
 - d) Circle with centre at (0, 0)
- 98. What is the differential equation of the curve $y = ax^2 + bx?$

a)
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

b)
$$x^{2} \frac{d^{2} y}{dx^{2}} - y \left(\frac{dy}{dx}\right)^{2} + 2 = 0$$

c)
$$(1-x^2)\frac{d^2y}{dx^2} - \left(y\frac{dy}{dx}\right)^2 = 0$$

- d) None of the above 99. What is the solution of the differential equation
 - $3ex tan y dx + (1 + e^x) sec^2 y dy = 0?$ a) $(1 + e^{x}) \tan y = c$
 - b) $(1 + e^{x})^{3}$ tan y = c
 - c) $(1 + e^x)^2 \tan y = c$
 - d) $(1 + e^x) \sec^2 y = c$

100. What does the differential equation

- $y\frac{dy}{dx} + x = a$ (where *a* is a constant) represent?
- a) A set of circles having centre on the Y-axis
- b) A set of circles having centre on the X-axis
- c) A set of ellipses
- d) A pair of straight lines

101. What is the degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^{2/3} + 4 - 3\left(\frac{d^2y}{dx^2}\right) = 0$$
?
a) 3 b) 2
c) 2/3 d) Not defined

102. The differential equation of the curve y = sin x is

- a) $\frac{d^2y}{dx^2} + y\frac{dy}{dx} + x = 0$ b) $\frac{d^2y}{dr^2} + y = 0$ c) $\frac{d^2y}{dx^2} - y = 0$ d) $\frac{d^2y}{dx^2} + x = 0$
- 103. What is the largest value of a third order determinant whose elements are 0 or 1?

a) 0 b) 1 c) 2 d) 3 104. What should be the value of k so that the system of linear equations x - y + 2z = 0, kx - y + z = 0, 3x+ y - 3z = 0 does not possess a unique solution? a) 0 b) 3 c) 4 d) 5 105. If $|A_{n\times n}| = 3$ and |adjA| = 243, what is the value of n? a) 4 b) 5 c) 6 7 d) 106. What is the value of k, if $k \ b + c \ b^2 + c^2$ $\begin{vmatrix} k & c+a & c^2+a^2 \\ k & a+b & a^2+b^2 \end{vmatrix} = (a-b)(b-c)(c-a)?$ a) 1 b) -1 c) 2 d) 107. If the lines 3y + 4x = 1, y = x + 5 and 5y + bx = 3 are concurrent, then what is the value of b? a) 1 b) 3 c) 6 d) 0 108. What is the value of the determinant x+1 x+2 x+4x+3 x+5 x+8? |x+7 + x+10 + x+14|a) x + 2 b) x2 + 2 c) 2 d) – 2 $-a^2$ ab ac 109. What is $ab -b^2 bc$ equal to? $ac \quad bc \quad -c^2$ b) 4a²bc a) 4abc d) $-4a^{2}b^{2}c^{2}$ c) $4a^{2}b^{2}c^{2}$ 110. A square matrix $[a_{ij}]$ such that $a_{ij}=0$ for $i \neq j$ and a_{ii} = k where k is a constant for i = j is called: a) diagonal matrix, but not scalar matrix b) scalar matrix unit matrix c) d) None of the above

111. What is the vector whose magnitude is 3, and is perpendicular to $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$?

a)
$$3(i+j+k)$$

b) $\sqrt{3}(\vec{i}-\vec{j}+\vec{k})$

 $(\rightarrow \rightarrow \rightarrow)$

c) $\sqrt{3}\left(\vec{i}+\vec{j}+\vec{k}\right)$

d)
$$3\left(\vec{i}-\vec{j}+\vec{k}\right)$$

112. Let
$$\overline{a} = 2\overline{j} - 3\overline{k}, \overline{b} = \hat{j} + 3\hat{k}$$
 and
 $\overline{c} = -3\overline{i} + 3\hat{j} + \hat{k}$. Let \hat{n} be a unit vector such

 $\overline{a}.\hat{n} = \overline{b}.\hat{n} = 0$. What is the value of $\overline{c}.\hat{n}$? a) 1 b) √19 d) –3 c) 3 113. What is the number of vectors of length 5 unit perpendicular to the vectors $\overline{a} = (1,1,0)$ and $\overline{b} = (0,1,1)$? a) 1 b) 2 c) 3 d) 4 114. If $\overline{a} = \hat{i} - 2\hat{j} + 5\hat{k}$, $\overline{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then what is $(\overline{b} - \overline{a}) \cdot (3\overline{a} + \overline{b})$ equal to? a) 106 b) -106 d) -53 c) 53 **115.** A vector *b* is collinear with the vector $\overline{a} = (2, 1, -1)$ and satisfies the condition $\overline{a} \cdot \overline{b} = 3$. What is \overline{b} equal to? a) (1, 1/2, -1/2) b) (2/3, 1/3, -1/3) c) (1/2, 1/4, -1/4) d) (1, 1, 0) 116. What is the projection of the vector $\hat{i} - 2\hat{j} - \hat{k}$ on the vector $4\hat{i} - 4\hat{j} + 7\hat{k}$? a) √5/2 b) 19/9 c) √5/4 d) 11/3 **117.** If $\overline{a} \cdot \overline{b} = 0$ and $\overline{a} \times \overline{b} = \overline{0}$ then which one of the following is correct? \overline{a} is parallel to ba) b) \overline{a} is perpendicular to b $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$ c) d) None of the above 118. A relation R is defined on the set Z of integers as follows: $mRn \Leftrightarrow m+n$ is odd. Which of the following statements is/are true for R? R is reflexive 1. 2. R is symmetric 3. R is transitive Select the correct answer using the code given below: b) 2 and 3 a) 2 only c) 1 and 2 d) 1 and 3 119. What is the value of $0.\overline{2} + 0.23$? 0.43 0.45 a) b) $0.2\overline{23}$ 0.223 c) d) 120. If $f(x) = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{\dots \infty}}}}$, then what is f(x) equal to? a) $\frac{1}{1-2f(x)}$ b) $\frac{1}{2f(x)-1}$ c) $\frac{1}{1+2f(x)}$ d) $\frac{1}{2+f(x)}$

Answer key

1	а	26	d	51	а	76	b	51	а	76	b	101	b
2	b	27	b	52	с	77	b	52	С	77	b	102	b
3	а	28	а	53	С	78	d	53	С	78	d	103	С
4	d	29	d	54	d	79	С	54	d	79	С	104	d
5	b	30	d	55	а	80	d	55	а	80	d	105	С
6	с	31	С	56	С	81	d	56	С	81	d	106	а
7	b	32	b	57	С	82	d	57	С	82	d	107	С
8	d	33	а	58	d	83	d	58	d	83	d	108	d
9	d	34	а	59	d	84	а	59	d	84	а	109	С
10	b	35	С	60	b	85	а	60	b	85	а	110	b
11	с	36	d	61	d	86	а	61	d	86	а	111	b
12	b	37	d	62	с	87	а	62	с	87	а	112	d
13	а	38	d	63	b	88	с	63	b	88	с	113	b
14	с	39	с	64	b	89	b	64	b	89	b	114	b
15	с	40	d	65	с	90	d	65	с	90	d	115	а
16	а	41	d	66	d	91	d	66	d	91	d	116	b
17	с	42	d	67	а	92	с	67	а	92	b	117	с
18	а	43	с	68	с	93	b	68	с	93	b	118	а
19	с	44	b	69	b	94	d	69	b	94	d	119	b
20	с	45	b	70	с	95	с	70	с	95	с	120	b
21	b	46	с	71	d	96	d	71	d	96	d		
22	с	47	с	72	с	97	b	72	с	97	b		
23	d	48	d	73	b	98	а	73	b	98	а		
24	b	49	а	74	d	99	b	74	d	99	b		
25	а	50	а	75	а	100	b	75	а	100	b		