DPP - Daily Practice Problems

Date :	Start Time :	End Time :	

CHEMISTRY (CC04)

SYLLABUS: Chemical Bonding and Molecular Structure

Max. Marks: 120 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- 1. Which of the following does not contain coordinate bond?
 - (a) BH₄
- (b) NH₄⁺
- (c) CO_3^{2-}
- (d) H_3O^+
- Which of the following has the highest dipole moment?

(a)
$$H = C$$

$$\begin{array}{c|cccc} & CH_3 & H \\ & | & | \\ C & C & C \\ & | & | \\ CH_3 & H \end{array}$$

- Of the following hydrides which one has the lowest boiling point?
 - (a) AsH₃
- (b) SbH_3 (c) PH_3

- In compounds of type ECl_3 , where E = B, P, As or Bi, the angles Cl - E- Cl for different E are in the order.
 - (a) B > P = As = Bi
 - (b) B > P > As > Bi
 - (c) B < P = As = Bi
- (d) B < P < As < Bi

4. (a) b) c) d)

- The electronegativity difference between N and F is greater than that between N and H yet the dipole moment of NH_3 (1.5 D) is larger than that of NF_3 (0.2D). This is because
 - in NH₃ the atomic dipole and bond dipole are in the same direction whereas in NF₃ these are in opposite
 - in NH₃ as well as NF₃ the atomic dipole and bond dipole are in opposite directions
 - in NH₃ the atomic dipole and bond dipole are in the opposite directions whereas in NF₃ these are in the same direction
 - in NH₃ as well as in NF₃ the atomic dipole and bond dipole are in the same direction
- KF combines with HF to form KHF₂. The compound contains the species
 - (a) $K^+, F^- \text{ and } H^+$
- (b) K^+ , F^- and HF
- (c) K^+ , and $[HF_2]^-$
- (b) $[KHF]^+$ and F_2
- On changing N_2 to N_2^+ , the dissociation energy of N-N bond and on changing O₂ to O⁺, the dissociation energy of O-O bond....
 - increases, decreases (a)
 - (b) decreases, increases
 - (c) decreases in both cases
 - (d) increases in both cases
- According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order?
 - (a)
- $N_2^{2-} < N_2^{-} < N_2$ (b) $N_2 < N_2^{2-} < N_2^{-}$
- $N_2^- < N_2^{2-} < N_2$ (d) $N_2^- < N_2 < N_2^{2-}$

- Which of the two ions from the list given below have the geometry that is explained by the same hybridization of orbitals, NO₂⁻, NO₃⁻, NH₂⁻, NH₄⁺, SCN⁻?
 - (a) NO_2^- and NO_3^-
- (b) NH_2^- and NO_3^-
- (c) SCN⁻ and NH₂⁻
- (d) NO_2^- and NH_2^-
- The values of electronegativity of atoms A and B are 1.20 **10.** and 4.0 respectively. The percentage of ionic character of A - B bond is
 - (a) 50%
- (b) 72.24%
- (c) 55.3%
- (d) 43%
- 11. In PO_4^{3-} ion the formal charge on the oxygen atom of P-O bond is
 - (a) +1

- (b) -1
- (c) -0.75
- (d) +0.75
- 12. Which molecule/ion out of the following does not contain unpaired electrons?
 - N_2^+ (a)

- (b) O₂
- $O_2^{2^-}$ (c)
- (d) B_2
- **13.** Which of the following pairs of ions are isoelectronic and isostructural?
 - (a) ClO_3^-, CO_3^{2-} (b) SO_3^{2-}, NO_3^{-}
 - (c) ClO_3^-, SO_3^{2-} (d) CO_3^{2-}, SO_3^{2-}
- Which of the following is correct increasing order of lone pair of electrons on the central atom?
 - (a) $IF_7 < IF_5 < CIF_3 < XeF_2$
 - (b) $IF_7 < XeF_2 < ClF_2 < IF_5$
 - (c) $IF_7 < CIF_3 < XeF_2 < IF_5$
 - (d) $IF_7 < XeF_2 < IF_5 < ClF_3$

- **15.** Consider the molecules CH₄, NH₃ and H₂O. Which of the given statements is false?
 - (a) The H–C–H bond angle in CH_4 , the H–N–H bond angle in NH_3 , and the H–O–H bond angle in H_2O are all greater than 90°
 - (b) The H–O–H bond angle in H₂O is larger than the H–C–H bond angle in CH₄.
 - (c) The H–O–H bond angle in H₂O is smaller than the H–N–H bond angle in NH₃.
 - (d) The H-C-H bond angle in CH_4 is larger than the H-N-H bond angle in NH_3 .
- **16.** Predict the correct order among the following:
 - (a) lone pair lone pair bond pair bond pair bond pair bond pair
 - (b) lone pair lone pair > bond pair bond pair > lone pair- bond pair
 - (c) bond pair bond pair > lone pair bond pair > lone pair lone pair
 - (d) lone pair bond pair > bond pair bond pair > lone pair lone pair
- **17.** In which of the following species the interatomic bond angle is 109° 28'?
 - (a) NH_3 , BF_4
- (b) NH_4^+, BF_3
- (c) NH_3 , BF_4
- (d) NH_2^-, BF_3 .
- 18. In XeF_2 , XeF_4 and XeF_6 , the number of lone pairs on Xe are respectively
 - (a) 2, 3, 1
- (b) 1, 2, 3
- (c) 4, 1, 2
- (d) 3, 2, 1
- 19. Hybridisation of the underline atom changes in:
 - (a) \underline{AlH}_3 changes to \underline{AlH}_4
 - (b) H_2O changes to H_3O^+

- (c) NH_3 changes to NH_4^+
- (d) in all cases
- **20.** The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively
 - (a) sp^3 and sp^2
- (b) sp^2 and sp^3
- (c) sp^2 and sp^2
- (d) sp^3 and sp^3
- 21. Among the following ions, the $p \pi d \pi$ overlap could be present in
 - (a) NO_3^-
- (b) PO_4^{3-}
- (c) CO_3^{2-}
- (d) NO_2^-
- 22. The decreasing values of bond angles from NH₃ (106°) to SbH₃ (101°) down group-15 of the periodic table is due to
 - (a) decreasing lp-bp repulsion
 - (b) decreasing electronegativity
 - (c) increasing bp-bp repulsion
 - (d) increasing p-orbital character in sp³
- **23.** Which one of the following pairs of species have the same bond order?
 - (a) CN⁻ and NO⁺
- (b) CN^- and CN^+
- (c) O_2^- and CN^-
- (d) NO⁺ and CN⁺
- **24.** N_2 and O_2 are converted into monocations, N_2^+ and
 - O_2^+ respectively. Which of the following statements is wrong?
 - (a) In N_2^+ , N N bond weakens
 - (b) In O_2^+ , the O O bond order increases
 - (c) In O₂⁺, paramagnetism decreases
 - (d) N₂ becomes diamagnetic

RESPONSE	15.abcd	16. (a) (b) (c) (d)	17. abcd	18. (a) (b) (c) (d)	19. ⓐ ⓑ ⓒ ⓓ
GRID	20. a b c d	21. a b c d	22. a b c d	23. a b c d	24. abcd

- **25.** The bond dissociation energy of B F in BF_3 is 646 kJ mol^{-1} whereas that of C F in CF_4 is 515 kJ mol^{-1} . The correct reason for higher B F bond dissociation energy as compared to that of C F is
 - (a) stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄.
 - (b) significant $p\pi p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.
 - (c) lower degree of $p\pi p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄.
 - (d) smaller size of B- atom as compared to that of C- atom.
- **26.** Ortho-Nitrophenol is less soluble in water than *p* and *m*-Nitrophenols because :
 - (a) *o*-Nitrophenol is more volatile steam than those of *m*-and *p*-isomers.
 - (b) o-Nitrophenol shows intramolecular H-bonding
 - (c) o-Nitrophenol shows intermolecular H-bonding
 - (d) Melting point of *o*-Nitrophenol is lower than those of *m* and *p*-isomers.

- 27. Amongst LiCl, RbCl, BeCl₂ and MgCl₂ the compounds with the greatest and the least ionic character, respectively are:
 - (a) LiCl and RbCl
- (b) RbCl and BeCl₂
- (c) MgCl₂ and BeCl₂
- (d) RbCl and MgCl₂
- **28.** Bond order normally gives idea of stability of a molecular species. All the molecules viz. H₂, Li₂ and B₂ have the same bond order yet they are not equally stable. Their stability order is
 - (a) $H_2 > B_2 > Li_2$
- (b) $\text{Li}_2 > \text{H}_2 > \text{B}_2$
- (c) $\text{Li}_2 > \text{B}_2 > \text{H}_2$
- (d) $B_2 > H_2 > Li_2$
- **29.** The shape of IF_6^- is:
 - (a) Trigonally distorted octahedron
 - (b) Pyramidal
 - (c) Octahedral
 - (d) Square antiprism
- **30.** Which one of the following molecules is paramagnetic?
 - (a) N_2
- (b) NO
- (c) CO
- (d) O_3

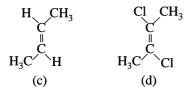
RESPONSE	25.abcd	26. a b c d	27. a b c d	28. a b c d	29. ⓐ ⓑ ⓒ ⓓ
GRID	30. ⓐ ⓑ ⓒ ⓓ				

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 4 - CHEMISTRY					
Total Questions	30	Total Marks	120		
Attempted		Correct			
Incorrect		Net Score			
Cut-off Score	35	Qualifying Score	50		
Success Gap = Net Score - Qualifying Score					
Net Score = (Correct × 4) – (Incorrect × 1)					

DAILY PRACTICE PROBLEMS

- (c) CO_3^{2-} Its structure is C O:
- Greater the difference in electronegativity between the 2. (a) two atoms, larger will be polarity and hence dipole moment. Thus (a) has maximum dipole moment.

$$\begin{array}{ccc}
H \\
H - C = O
\end{array}$$


$$\begin{array}{ccc}
H_3C \\
H_3C
\end{array}$$

$$\begin{array}{ccc}
C = C \\
H
\end{array}$$

$$\begin{array}{cccc}
H$$

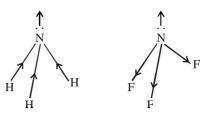
$$\begin{array}{cccc}
(b)
\end{array}$$

(very less polar) (C-O bond is more polar)

Symmetrical molecules ($\mu = 0$)

- 3. (c) NH₃ undergoes H-bonding and hence has the highest b.p. Among the remaining hydrides i.e. PH₃, AsH₃ and SbH₃ as we move from PH₃ to BiH₃, the molecular mass increases. As a result the van der waal's forces of attraction increases and the boiling point increases regularly from PH₃ to BiH₃.
- **(b)** BiCl₃: Cl-Bi \subset Cl₁; sp^2 -Hybridisation 4.

(Trigonal planar geometry); Bond angle = 120°


Bond angle = below 109° 28' and decreases from PCl₃ to BiCl₃

In these, order of bond angle:

$$BCl_3 > PCl_3 > AsCl_3 > BiCl_3$$

In NH₃ the atomic dipole (orbital dipole due to lone 5. pair) and bond dipole are in the same direction whereas in NF₃ these are in opposite direction so in the former case they are added up whereas in the latter case net

result is reduction of dipole moment. It has been shown in the following figure:

- Since F form H-bond [HF₂] exists. Therefore KHF₂ gives $K^+ + HF_2^-$
- 7. On changing N_2 to N_2^+ , B.O. decreases from 3 to 2.5 whereas on changing O_2 to O_2^+ , B.O. increases from 2 to 2.5. In former case, the bond dissociation energy decreases and in the latter case, it increases.
- 8. Molecular orbital configuration of

$$N_2^{2-} = \sigma l s^2 \sigma^* l s^2 \sigma 2 s^2 \sigma^* 2 s^2 -$$

$$\begin{cases} \pi^2 p_x^2 \\ \pi^2 p_y^2 \end{cases} \sigma^2 p_z^2 \begin{cases} \pi^* 2 p_x^1 \\ \pi^* 2 p_y^1 \end{cases}$$

Bond order =
$$\frac{10-6}{2}$$
 = 2

$$N_{2}^{-} = \sigma l s^{2} \sigma^{*} l s^{2} \sigma^{2} s^{2} \sigma^{*} 2 s^{2} \begin{cases} \pi^{2} p_{x}^{2} \\ \pi^{2} p_{y}^{2} \end{cases} \sigma^{2} p_{z}^{2} \begin{cases} \pi^{*} 2 p_{x}^{1} \\ \pi^{*} 2 p_{y}^{0} \end{cases}$$

Bond order =
$$\frac{10-5}{2}$$
 = 2.5

$$N_2 = \sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2$$

$$\begin{cases} \pi 2 p_x^2 \\ \pi 2 p_y^2 \end{cases}, \ \sigma 2 p_z^2$$

Bond order =
$$\frac{10-4}{2}$$
 = 3

$$\therefore$$
 The correct order is = $N_2^{2-} < N_2^{-} < N_2$

(a) Hybridisation = $\frac{1}{2}$ [No. of valence electrons of central atom + No. of monovalent atoms attached to it + Negative charge if any – Positive charge if any]

$$NO_2^ H = \frac{1}{2}[5+0+1-0] = 3 = sp^2$$

$$NO_3^ H = \frac{1}{2}[5+0+1-0] = 3 = sp^2$$

$$NH_2^- H = \frac{1}{2}[5+2+1+0] = 4 = sp^3$$

$$NH_4^+$$
, $H = \frac{1}{2}[5+4+0-1] = 4 = sp^3$

i.e., NO₂⁻ and NO₃⁻ have same hybridisation.

- **10. (b)** Electronegativity difference is 4.0 1.20 = 2.8 percentage ionic character is 72.24% when the electronegativity difference is 1.7, the % ionic character is approx 51%.
- 11. (c) In PO₄³⁻ ion, formal charge on each O-atom of P O bond = $\frac{\text{Total charge}}{\text{Number of O atom}} = -\frac{3}{4} = -0.75$
- **12.** (c) The electronic configuration of the given molecules are:

$$N_2^+ = \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \pi 2p_x^2 = \pi p_y^2, \sigma 2p_z^1;$$

1 unpaired e

$$O_2 = \sigma l s^2, \sigma * l s^2, \sigma 2 s^2, \sigma * 2 s^2, \sigma 2 p_z^2, \pi 2 p_x^2 \approx \pi 2 p_y^2$$

$$\pi * 2p_x^1 \approx \pi * 2p_y^1$$
; 2 unpaired e^{-s}

$$O_2^{2-} = \sigma ls^2, \sigma * ls^2, \sigma 2s^2, \sigma 2s^2, \sigma 2p_z^2, \pi 2p_x^2 \approx \pi 2p_y^2$$

$$\pi^*2p_x^2 \approx \pi^*2p_y^2$$
; no unpaired e^{-s}

$$B_2 = \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \pi 2p_x^1 \approx \pi_2 p_y^1;$$

2 unpaired e-s

- 13. (c) ClO_3^- and SO_3^{-2} both have same number of electrons (42) and central atom in each being sp^3 hybridised. Both are having one lone pair on central atom hence they are pyramidal.
- **14.** (a) The number of lone pairs of electrons on central atom in various given species are

$\begin{tabular}{lll} \textbf{Species} & \textbf{Number of lone pairs on} \\ & & \textbf{central atom} \\ \hline \textbf{IF}_7 & \textbf{0} \\ \hline \textbf{IF}_5 & \textbf{1} \\ \textbf{CIF}_3 & \textbf{2} \\ \textbf{XeF}_2 & \textbf{3} \\ \hline \end{tabular}$

Thus the correct increasing order is

$$IF_7 < IF_5 < CIF_3 < XeF_2$$

0 1 2 3

H C 109°28' N N H H H H

Tetrahedral;

Trigonal pyramidal

NH₃

Bent

Note: The geometry of H_2O should have been tetrahedral if there are all bond pairs. But due to presence of two lone pairs the shape is distorted tetrahedral. Hence bond angle reduced to 104.5° from 109.5° .

- 16. (a) According to VSEPR theory order of repulsion in between lp lp, lp bp and bp bp is as under lp lp > lp bp > bp bp
- 17. (a) In NH₃ and BF $_4^-$ the hybridisation is sp³ and the bond angle is almost 109° 28'.
- 18. (d) In XeF_2 Total number of valence electrons of Xe = 8, two electrons shared with 2F atoms, 6 electrons left hence 3 lone pairs, in XeF_4 4 shared with 4 F atoms 4 left hence 2 lone pairs; in XeF_6 6 shared with 6 F atoms 2 left hence 1 lone pair.
- 19. (a) Hybridisation = $\frac{1}{2} \begin{bmatrix} \text{No. of electrons} \\ \text{in valence} \\ \text{shell of atom} \end{bmatrix} +$

 $\begin{pmatrix}
No.of monovalent \\
atoms around it
\end{pmatrix}$ - $\begin{pmatrix}
charge on \\
cation
\end{pmatrix}$ +

(charge on anion

(a) For AlH₃,

Hybridisation of Al atom = $\frac{1}{2} [3+3-0+0]$

$$= 3 = sp^2$$

For AlH₁⁻,

Hybridisation of Al atom = $\frac{1}{2} [3+4-0+1]$

$$= 4 = sp^3$$

(b) For H₂O,

Hybridisation of O atom

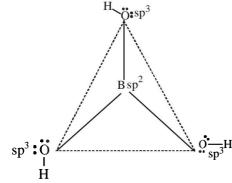
$$= \frac{1}{2} [6 + 2 - 0 + 0] = 4 = sp^3$$

For H₃O⁺, Hybridisation of O atom

$$= \frac{1}{2} [6+3-1+0] = 4 = sp^3$$

(c) For NH₃

Hybridisation of N atom


$$= \frac{1}{2} [5 + 3 - 0 + 0] = 4 = sp^3$$

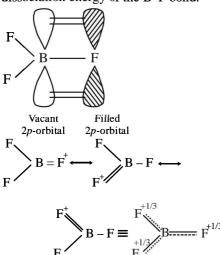
For NH_4^+ , Hybridisation of N atom

$$=\frac{1}{2}[5+4-1+0]=4=\mathrm{sp}^3$$

Thus hybridisation changes only in option (a).

20. (b)

- 21. (b) Hybridisation in $PO_4^{3-} = \frac{1}{2} [5 + 0 + 3 0] = 4 \text{ sp}^3$. In π bonding only d orbital of P, p orbital of O can be involved. Since hybrid atomic orbitals do not form π bond.
- 22. (b) The bond angle decreases on moving down the group due to decrease in bond pair-bond pair repulsion.


 NH₃ PH₃ ASH₃ SbH₃ BiH₃
 107° 94° 92° 91° 90°

 This can also be explained by the fact that as the size of central atom increases sp³ hybrid orbital becomes more distinct with increasing size of central atom i.e. pure p- orbitals are utilized in M-H bonding
- 23. (a) For any species to have same bond order we can expect them to have same number of electrons. Calculating the number of electrons in various species.

 O₂ (8+8+1=17); CN⁻ (6+7+1=14)

 NO⁺ (7+8-1=14); CN⁺ (6+7-1=12)

 We find CN⁻ and NO⁺ both have 14 electrons so they have same bond order. Correct answer is (a).
- **24.** (d) $\sigma_b^2 \sigma_a^{*2} \sigma_b^2 \sigma_a^{*2} (\pi_b^2 = \pi_b^2) \sigma_b^1 (N_2^+ = 13 \text{ electrons})$ it contains one unpaired electron hence paramagnetic
- **25. (b)** The delocalised $p\pi p\pi$ bonding between filled *p*-orbital of F and vacant *p*-orbital of B leads to shortening of B-F bond length which results in higher bond dissociation energy of the B-F bond.

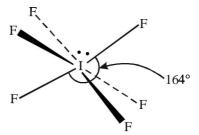
26. (b) Compounds involved in chelation become non-polar.

Consequently such compounds are soluble in nonpolar solvents like ether, benzene etc. and are only sparingly soluble in water whereas meta and para isomers are more soluble in water & less soluble in non-polar solvents.

- **27. (b)** According to Fajan's rules smaller, highly charged cation has greatest covalent character while large cation with smaller charge has greatest ionic character.
- 28. None of the given option is correct.

 The molecular orbital configuration of the given

molecules is


 $H_2 = \sigma 1s^2$ (no electron anti-bonding) $Li_2 = \sigma 1s^2 \sigma^* 1s^2 \sigma^2 2s^2$ (two anti-bonding electrons)

$$B_{2} = \sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \left\{ \pi 2 p_{y}^{1} = \pi 2 p_{z}^{1} \right\}$$

(4 anti-bonding electrons)

Though the bond order of all the species are same (B.O = 1) but stability is different. This is due to difference in the presence of no. of anti-bonding electron. Higher the no. of anti-bonding electron lower is the stability hence the correct order is $H_2 > Li_2 > B_2$

29. (a) The structure of IF₆⁻ is distorted octahedral This is due to presence of a "weak" lone pair.

30. (b) The molecular orbital configuration of the molecules given is

Total no. of electrons in NO = 7(N) + 8(O) = 15

Hence E.C. of NO =
$$KK[\sigma(2s)]^2[\sigma^*(2s)]^2[\sigma 2p_z]^2$$

 $[\pi(2p_x)]^2[\pi(2p_y)]^2[\pi^*(2p_x)]^1$

Due to presence of one unpaired electron NO is paramagnetic.

Except NO all are diamagnetic due to absence of unpaired electrons.