1.	Match	the	List I	with	List	II.

List I			List II
(Hydride)		Γ)	Type of Hydride)
А.	NaH	I.	Electron precise
В.	PH_3	II.	Saline
C.	GeH ₄	III.	Metallic
D.	$LaH_{2.87}$	IV.	Electron rich

Choose the correct answer from option given below: (2023)

- (a) A-III, B-IV, C-II, D-I
- (b) A-II, B-III, C-IV, D-I
- (c) A-I, B-III, C-II, D-IV
- (d) A-II, B-IV, C-I, D-III
- 2. Match List I with List II:

	List I		List II
А.	Coke	I.	Carbon atoms are sp ³ hybridsed
В.	Diamond	II.	Used as a dry lubricant
C.	Fullerene	III.	Used as a reducing agent
D.	Graphite	IV.	Cage like molecules

Choose the correct answer from the options given below: (2023)

- (a) A-IV, B-I, C-II, D-III
- (b) A-III, B-I, C-IV, D-II
- (c) A-III, B-IV, C-I, D-II
- (d) A-II, B-IV, C-I, D-III
- The element expected to form largest ion to achieve the nearest noble gas configuration is (2023)
 - (a) F
 - (b) N
 - (c) Na
 - (d) O
- 4. Match List I with List II:

List I	List II
(Oxoacids or Sulphur)	(Bonds)

А.	Peroxodisulphuric acid	I.	Two S-OH, Four S=O, One S-O-S
В.	Sulphuric acid	II.	Two S-OH, One S=O
C.	Pyrosulphuric acid	III.	Two S-OH, Four S=O, One S-O-O- S
D.	Sulphurous acid	IV.	Two S-OH, Two S=O

Choose the correct answer from the option given below: (2023)

- (a) A-III, B-IV, C-I, D-II
- (b) A-I, B-III, C-IV, D-II
- (c) A-III, B-IV, C-II, D-I
- (d) A-I, B-III, C-II< D-IV
- 5. Match List I with List II:

	List I (Compounds)		List II (Molecular
			formula)
А.	Borax	I.	NaBO ₂
В.	Kernite	II.	$Na_2B_4O_7.4H_2O$
C.	Orthoboric acid	III.	H ₃ BO ₃
D.	Borax bead	IV.	$Na_2B_4O_7.10H_2O$

Choose the correct answer from the options given below: (2022)

- (a) A-I, B-III, C-IV, D-II
- (b) A-IV, B-II, C-III, D-I
- (c) A-II, B-IV, C-III, D-I
- (d) A-III, B-I, C-IV, D-II
- Which of the following reactions is a part of the large-scale industrial preparation of nitric acid? (2022)
 - (a) $Cu(NO_3)_2 + 2NO_2 + 2H_2O \xrightarrow{Pt} 500K,9bar 4HNO_3 + Cu$
 - (b) NaNO₃ + H₂SO₄ $\xrightarrow{\text{Pt}}$ NaHSO₄ + HNO₃
 - (c) $4NH_3 + 5O_2$ (from air) $\xrightarrow{Pt} 4NO + 6H_2O$

- (d) $4\text{HPO}_3 + 2N_2O_5 \xrightarrow{\text{Pt}} 4\text{HNO}_3 + P_4O_{10}$
- 7. Na₂B₄O₇ $\xrightarrow{\text{heat}}$ X + NaBO₂ In the above reaction the product "X" is: (2022)
 - (a) NaB_3O_5
 - (b) H₃BO₃
 - (c) B_2O_3
 - (d) $Na_2B_2O_5$
- 8. Match List I with List II.

List I			List II
(Hydrides)			(Nature)
А.	MgH_2	I.	Electron precise
В.	GeH ₄	II.	Electron deficient
C.	B_2H_6	III.	Electron rich
D.	HF	IV.	Ionic

Choose the correct answer from the options given below: (2022)

- (a) A-IV, B-I, C-II, D-III
- (b) A-III, B-I, C-II, D-IV
- (c) A-I, B-II, C-IV, D-III
- (d) A-II, B-III, C-I, D-IV
- 9. Which of the following statement is not correct about diborane? (2022)
 - (a) There are two 3-centre-2-electron bonds
 - (b) The four terminal B-H bonds are two centre two electron bonds
 - (c) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane
 - (d) Both the Boron atoms are sp² hybridised
- 10. Given below are two statements.

Statement I: The boiling points of the following hydrides of group 16 elements increases in the order-

 $H_2O < H_2S < HeSe < H_2Te$

Statement II: The boiling points of these hydrides increase with increase in molar mass.

In the light of above statements, choose the most appropriate answer from options given below: (2022)

- (a) Both Statement I and Statement II are correct.
- (b) Both Statement I and Statement II are incorrect.
- (c) Statement I is correct but Statement II is incorrect.
- (d) Statement I is incorrect but Statement II is correct.

- 11. Identify the correct statements from the following: (2020)
 - (1) $CO_2(g)$ is used as refrigerant for icecream and frozen food.
 - (2) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (3) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (4) CO is colorless and odourless gas.
 - (a) 1 and 3 only
 - (b) 2 and 3 only
 - (c) 3 and 4 only
 - (d) 1, 2 and 3 only

12. Match the following :

(2020)

	Oxide		Nature
A.	CO	(i)	Basic
В.	BaO	(ii)	Neutral
C.	Al_2O_3	(iii)	Acidic

D. Cl₂O7 (iv) Amphoteric

Which of the following is correct option?

	(A)	(B)	(C)	(D)
(a)	(ii)	(i)	(iv)	(iii)
(b)	(iii)	(iv)	(i)	(ii)
(c)	(iv)	(iii)	(ii)	(i)
(d)	(i)	(ii)	(iii)	(iv)

- 13. Which of the following is not correct about carbon monoxide? (2020)
 - (a) It reduces oxygen carrying ability of blood.
 - (b) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxyhaemoglobin.
 - (c) It is produced due to incomplete combustion.
 - (d) It forms carboxyhaemoglobin.

14. Which of the following oxide is amphoteric in nature? (2020 Covid Re-NEET)

- (a) SiO_2
- (b) GeO₂
- (c) CO_2
- (d) SnO_2
- 15. Which of the following species is not stable? (2019)
 - (a) $[SiF_6]^{2-}$
 - (b) [*GeCl*₆]²⁻
 - (c) $[Sn(OH)_6]^{2-1}$
 - (d) $[SiCl_6]^{2-}$

 16. Which of the following is incorrect statement? (2019) (a) PbF₄ is covalent in nature (b) siCl₄ is easily hydrolysed (c) GeX₄ (X = F, Cl, Br, I) is more stable than GeX₂ (d) SnF₄ is ionic in nature 	 23. The stability of +1 oxidation state among Al, Ga, In and Tl increases in the sequence: (2015 Re) (a) In < Tl < Ga < Al (b) Ga < In < Al < Tl (c) Al < Ga < In < Tl (d) Tl < In < Ga < Al
 17. The correct order of atomic radii in group 13 elements is (2018) (a) B < Al < In < Ga < Tl (b) B < Al < Ga < In < Tl (c) B < Ga < Al < In < Tl (d) B < Ga < Al < Tl < In 	 24. Which of these is not a monomer for a high molecular mass silicone polymer? (2013) (a) MeSiCl₃ (b) Me₂SiCl₂ (c) Me₃SiCl (d) PhSiCl₃
18. Which one of the following elements is unable to form MF_6^{3-} ion? (2018) (a) Ga (b) Al (c) In (d) B	25. The basic structural unit of silicates is: (2013) (a) SiO (b) SiO_4^{4-} (c) SiO_3^{2-} (d) SiO_4^{2-}
 19. It is because of inability of ns² electrons of the valence shell to participate in bonding that : (2017-Delhi) (a) Sn⁴⁺ is reducing while Pb⁴⁺ is oxidising (b) Sn²⁺ is reducing while Pb⁴⁺ is oxidising (c) Sn²⁺ is oxidising while Pb⁴⁺ is reducing (d) Sn²⁺ and Pb²⁺ are both oxidising and reducing 	 26. Which of the following structure is similar to graphite? (2013) (a) BN (b) B (c) B₄C (d) B₂H₆
20. The tendency to form monovalent compounds among the Group 13 elements is correctly exhibited in: (2017-Gujarat) (a) $B \approx A \approx Ga \approx In \approx Tl$ (b) $B < Al < Ga < In < Tl$ (c) $Tl < In < Ga < Al < B$ (d) $Tl \approx In < Ga < Al < B$	
 21. Boric acid is an acid because its molecule: (2016-II) (a) Accepta OH- from water releasing proton (b) Combines with proton from water molecule (c) Contains replaceable H+ ion (d) Gives up a proton 	
 22. AlF₃ is soluble in HF only in presence of KF. It is due to the formation of: (2016-II) (a) K₃[AlF₃H₃] (b) K₃[AlF₆] (c) AlH₃ (d) K[AlF₃H₃] 	

Answer Key

S1. Ans. (d)

S2. Ans. (b)

S3. Ans. (b)

S4. Ans. (a)

S5. Ans. (b)

S6. Ans. (c)

S7. Ans. (c)

S8. Ans. (a)

S9. Ans. (d)

S10. Ans. (b)

S11. Ans. (c)

S12. Ans. (a)

S13. Ans. (b)

S14. Ans. (d)

S15. Ans. (d)

S16. Ans. (a)

S17. Ans. (c)

S18. Ans. (d)

S19. Ans. (b)

S20. Ans. (b)

S21. Ans. (a)

S22. Ans. (b)

S23. Ans. (c)

S24. Ans. (c)

S25. Ans. (b)

S26. Ans. (a)

S1. Ans.(d)

 $LaH_{2.87} \rightarrow Non-stoichiometric$

 \rightarrow Metallic/Interstitial hydride.

S2. Ans.(b)

Coke: It is used as reducing agent in carbon reduction methods. (in metallurgical process)

Diamond: It is a allotrope of carbon in which each carbon is sp³ hybridised.

Fullerene: It contains pentagonal & hexagonal rings (cage like structure)

Graphite: It is soft solid because graphite layers are bonded with weak Vander Wall attractions.

S3. Ans.(b)

F-1, N-3, Na⁺ and O-2

all ions are isoelectronic containing 10e⁻

 $Z_{\rm eff} \longrightarrow Na^{\scriptscriptstyle +} > F^- > 0^{-2} > N^{-3}$

order of radius $\rightarrow N^{-3} > 0^{-2} > F^{-} > Na^{+}$

 \rightarrow Nitrogen to achieve Noble gas configuration is tan 3e^ and form N^{-3}

S4. Ans.(a)

 $A \rightarrow$ Peroxodisulphuric acid

 $B \rightarrow Sulphuric acid$

H₂SO₄ HO-S-OH

 $C \rightarrow Pyrosulphuric \ acid \ H_2S_2O_7$

 $D \rightarrow Sulphurous acid H_2SO_3$

S5. Ans.(b)

Borax:

 $Na_2B_4O_7.10H_2O = Na_2[B_4O_5(OH)_4].8H_2O$

Kernite: Na₂B₄O₇.4H₂O

Orthoboric acid: H₃BO₃=B(OH)₃

Borax bead: NaBO₂ (Sodium metaborate)

S6. Ans.(c)

 $4NH_3 + 5O_2 \text{ (from air)} \xrightarrow{Pt} 4NO + 6H_2O$ $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ $3NO_2(g) + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g)$

This is industrial method of preparation of nitric acid.

S7. Ans.(c)

 $Na_2B_4O_7 \xrightarrow{\Delta} B_2O_3 + 2NaBO_2$

Product X is B₂O₃

S8. Ans.(a)

List I ydrides)	List II (Nature)	
MgH_2	\rightarrow	Ionic
GeH ₄	\rightarrow	Electron precise
B_2H_6	\rightarrow	Electron deficient
HF	\rightarrow	Electron rich
	List I ydrides) MgH ₂ GeH ₄ B ₂ H ₆ HF	List I ydrides) \rightarrow MgH2 \rightarrow GeH4 \rightarrow B2H6 \rightarrow HF \rightarrow

A-IV, B-I, C-II, D-III

S9. Ans.(d)

Each boron atoms in diborane uses sp^3 hybrid orbitals for bonding.

S10. Ans.(b)

Compound	Boiling point (K)
H_2O	373
H_2S	213
H_2Se	232
H ₂ Te	269

The boiling points of these hybrids not exactly increases with increase in molar mass.

H₂O has maximum boiling point due to intermolecular hydrogen bonding.

S11. Ans.(c)

Dry ice, $CO_2(s)$, is used as refrigerant

 C_{60} contains 20 six membered rings, 12 five membered rings statement 3 and 4 are correct.

S12. Ans.(a)

CO is Neutral oxide

BaO is Basic oxide

Al₂O₃ is Amphoteric oxide

Cl₂O₇ is Acidic oxide

S13. Ans.(b)

Carbon monoxide binds with Hb to form 300 times more stable compound carboxyhaemoglobin than oxyhaemoglobin complex.

S14. Ans.(d)

 CO_2 : acidic

 SnO_2 : amphoteric

- SiO_2 : acidic
- GeO_2 : acidic
- S15. Ans.(d)

Due to presence of vacant d-orbital in si, Ge and Sn they form species like SiF_6^{2-} , $[GeCl_6]^2$, $[Sn(OH)_6]^{2-}$. $SiCl_6^{2-}$ does not exist because six large chloride ions cannot be accommodated around Si⁴⁺ due to its small size.

S16. Ans.(a)

 PbF_4 is ionic in nature, because cation is bigger and anion is smaller.

 SiF_4 is easily hydrolysed because it has unoccupied 3d orbital that are able to accept electron pairs from the oxygen atoms on water to form bond.

$$SiCl_4 + 3H_2O \rightarrow H_2SiO_3 + 4HCl$$

 GeX_4 is more stable than GeX_2 as in GeX_4 all the orbitals are fully filled.

 SnF_4 is ionic in nature as F atom is very small and Sn atom is very large. So, it is ionic in nature according to Fajan's rule.

S17. Ans.(c)

Group 13 order of atomic radius is not regular due to transition contraction.

So order is: B < Ga < Al < In < Tl

S18. Ans.(d)

: 'B' has no vacant d-orbitals in its valence shell, so it can't extend its covalency beyond 4, i.e., 'B' cannot form the ion like MF_6^{3-} i.e. BF_6^{3-} .

Hence, the correct option is (d).

S19. Ans.(b)

 Sn^{2+} is reducing while Pb^{4+} is oxidizing. This is because of absence of f-orbital (fully filled) in Sn^{2+} and presence in Pb^{4+} due to which Pb^{4+} show inert pair effect but not Sn^{2+} .

S20. Ans.(b)

+1 oxidation state increases down the group as the fully filled d- and f- orbitals will get added due to which inert pair effect will come into role.

Tl > In > Ga > Al > B

S21. Ans.(a)

Boric acid is a Lewis acid, it accepts a pair of electron in aqueous solution to complete its octet because it is an electron deficient compound.

$$B(OH)_3 + H_2 O \rightleftharpoons [B(OH)_4]^- H^+$$

S22. Ans.(b)

 $AlF_3 + 3KF \xrightarrow{HF} K_3[AlF_6]$

AlF₃ is insoluble in Anhydrous HF because F- ion are not available in Hydrogen bonded HF.

S23. Ans.(c)

Order of oxidation state in group 13 is Al < Ga < In < Tl

(+1) oxidation state stability increases down the group because of inert pair effect.

S24. Ans.(c)

Me₃SiCl is not a monomer for high molecular mass silicone polymer because it generates Me₃SiOH when subjected to hydrolysis which contains only one reacting site.

Hence, the polymerization stops just after first step.

$$Me - Si - O - Si - Me$$

$$Me - Me$$

$$Me$$

$$Me$$

$$Me$$

S25. Ans.(b)

Basic unit for silicates is SiO_4^{4-}

S26. Ans.(a)

BN is also known as inorganic graphite with sp² hybridisation and hexagonal structure.