
Chapter 31
Matrices and  

Determinants

31.1 Matrix

A rectangular array of (m × n) objects arranged along m-horizontal lines (called rows) and along  
n-vertical lines (called columns) as shown below:

11 12 ln

1 2 3 mn

a a ........ a

am am am a

 
 
 
  

   

Here, aij = elements in ith row and jth column. The matrix as shown here, is denoted by [aij]m×n.
Order of Matrix: Matrix having m-rows and n–columns is said to have order m × n.
Real Matrix: A matrix having all real elements.
Complex Matrix: A matrix having atleast one imaginary element.
Complex Conjugate of a Matrix: A matrix obtained by replacing the elements of a complex matrix  

A = [aij]m× n by their conjugate is called complex conjugate of matrix A, and it is denoted by 
×

 =  ij m n
A a .

Rectangular Matrix: A matrix of order m × n; where m, n ∈ ℕ and m ≠ n. These are of two types:
 (a) Horizontal Matrix: A matrix of order m × n; where n > m, i.e., number of columns is greater than  

number of rows.
 (b) Vertical Matrix: A matrix of order m × n; where m > n, i.e., number of rows is greater than number 

of columns.
Row Matrix: A matrix of order 1 × n, that is, a matrix having one row only.
Column Matrix: A matrix of order n × 1, that is, a matrix having one column only.

Remark:

Clearly, row matrix is horizontal, whereas column matrix is vertical.

Square Matrix: Matrix of order m × n; that is, a matrix having equal number of rows and columns.  
Such a matrix is called m–rowed square matrix.
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Principal (Leading) Diagonal and Off-diagonal of Square Matrix
Diagonal along which the elements a11, a22, a33,…, ann lie, is called 
principal diagonal, or simply diagonal, when there is number chance 
of confusion. The other diagonal is called off-diagonal.

The elements lying diagonal are called diagonal elements.

Trace of a Square Matrix: The sum of diagonal elements 

i.e., 
n

ii 11 22 33 nn
i 1

(notation)

a (a a a .... a ) Tr(A)
=

= + + + + =∑


.

Diagonal Matrix: A square matrix having all non-diagonal elements zeros, i.e., 
 
 
 
 
 
 
 
 
  

11

22

33

nn

a 0 0 ... ... 0
0 a 0 ... ... 0
0 0 a ... ... 0
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... ... a

 = diagonal [a11, a22, a33, …., ann] or 11 22 33 nn

(Notation)

diagonal .(a a a .....,a )


Scalar Matrix: A diagonal matrix having all diagonal elements equal, i.e., 
 
 
 
 

= 
 
 
 
  

k 0 0 ... ... 0
0 k 0 ... ... 0
0 0 k ... ... 0

diagonal(k k k ....k)
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... ... k

Unit Matrix (Identity Matrix): A scalar matrix having each diagonal element unit, i.e., 1.
 
 
 
 
 
 
 
 
  

1 0 0 ... ... 0
0 1 0 ... ... 0
0 0 1 ... ... 0
... ... ... ... ... ...
... ... ... ... ... ...
0 0 0 ... ... 1

Remark:

I1 = [1]; 
 

   = =       
2 3

1 0 0
1 0

I ; I 0 1 0
0 1

0 0 1

 are called unit matrix of order 1, order 2 

and order 3 and so on, respectively.

Null Matrix (Zero Matrix): A matrix having its all elements zero.

Triangular Matrix: A square matrix, in which, all the elements above 
the principal diagonal, or below the principal diagonal, are zero, is called  
triangular matrix.
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Lower Triangular Matrix: A square matrix having its all elements  
above diagonal zeros, i.e., having non-zero elements (if not, only null) on 
principal diagonal or below it, i.e., aij  = 0 for a11 i < j.

Upper Triangular Matrix: Square matrix having its all elements below 
diagonal zero, i.e., having non-zero elements (if non-null) on or above the 
principal diagonal, i.e., aij = 0 for all i > j

Example:
Upper triangle contains non-zero elements if non-null matrix.

Remarks:

 (i) Null square matrix is simultaneously both upper as well as lower triangular matrix. 

 (ii) Minimum number of zeros in a triangular matrix of order 
−

=
n( n 1)

n
2

.

 (iii) Maximum number of non-zero entries in a triangular matrix of order 
+

=
n( n 1)

n
2

.

 (iv) Diagonal matrix is simultaneously both upper as well as lower triangular matrix.

 (v) Minimum number of zero entries  in a diagonal matrix = (n2 – n) = n (n–1).

 (vi) Maximum number of non-zero entries in a diagonal matrix of order n = n.

 (vii) Maximum number of zero entries in a diagonal matrix of order n = n2 (when its is null).

 (viii) Maximum number of different elements in a triangular matrix of order 
+ +

=
2n n 2

n
2

.

 (ix) Minimum number of different elements in a non-null diagonal matrix of order n = 2.
 (x) Minimum number of different elements in a non-null triangular matrix = 2.
 (xi) Minimum number of zeros in a scalar matrix = (n2 – n).
 (xii) Number of zeros in a non-null scalar matrix = (n2 – n).
 (xiii) Number of different entries in a non null scalar matrix = 2.
 (xiv) A triangle matrix is called strictly triangular iff aii  = 0, for all i; 1 ≤ i ≤ n.

31.2 Sub Matrix

Matrix obtained by leaving some rows, or columns, or both of a matrix A, is called a sub-matrix of matrix A.

For example, 
2 5
7 9
 
 
 

 is a sub-matrix of matrix 
 
 
 
  

2 5 8
7 9 4
1 3 5

.

31.2.1 Equal Matrices

Two matrices are said to be equal iff they are of same order and the elements on their  
corresponding positions are same, i.e., A = [aij]m × n = B [bij]r × p ⇔ m = r, n = p and aij = bij.

31.2.1.1 Addition of matrices

Two matrices A = [aij] and B =[Bij] are said to be conformable for addition iff they are of same order. 
Further, A + B = [aij + bij]m × n; where A = [aij]m×n and B = [bij]m ×n.
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Properties of Matrix Addition:
 1. Matrix addition is commutative: A + B = B + A. 
  Matrix addition is associative: A + (B + C) = (A + B) + C.
 2. Null matrix of order m × n additive identity in the set of matrices of order m × n: If [aij]m×n = 0 and 
  B = [bij]m×n, then [aij]m×n + [bij]m×n = [bij]m×n = [bij]m×n + [aij]m×n; where aij  = O for all i and j.
 3. –A = [–aij]m×n is additive inverse of A = [aij]m×n.
 4. Left cancellation law: A + B = A + C ⇒ B = C.
  Right cancellation law: A + B = C + B  ⇒ A = C.
 5. A + X = O has a unique solution X = –A; of order m × n, and X = [–aij]m ×n if A = [aij]m ×n 

Subtraction of Matrices: If A = [aij]m ×n and B = [bij]m ×n, i.e., A and B are of same order (conformable for 
subtraction), then A – B = [aij – bij]m ×n.

Properties of Subtraction of Matrices:
 1. Neither commutative nor associative.
 2. Follows left concellation and right concllation.
 3. Left cancellation law: A – B = A – C ⇒ B = C.
 4. Right cancellation law: A – B = C – B ⇒ A = C.
 5. Equation A – X = O; where O is a null matrix of order m × n and A and X are matrices of order  

(m × n), has a unique solution X = A.

Multiplication of Matrix by a Scalar:
l.A = l[aij]m×n = [laij]m×n, i.e., scalar multiplication of a matrix. A gives a new matrix of same order whose 
elements are scalar (l) times the corresponding elements of matrix A.

Scalar Multiplication is Commutative and Distributive:

 (i) Matrix addition is commutative and associative.
 (ii) Follows cancellation and right cancellation law.

31.3 Multiplication of Matrix

Two matrices, A and B, are said to be conformable for the product AB, if A = (aij) is of the order m × n and  

B = (bij) is of the order n × p, the resulting matrix is of the order m × p, and AB = (Cij); where 
n

ij ik kj
k 1

(C ) a b
=

=∑  

= ai1 b1j + ai2 b2j + .......ainbnj for i = 1, 2, 3,......,m  and j = 1, 2, 3,.......,p.
As an aid to memory, denote the rows of matrix A by R1, R2, 

R3 and columns of B by C1, C2 and C3.

Also, 
1 1 1 1 2 1 3

2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

R R C R C R C
A B R (C .C .C ) R C R C R C

R R C R C R C

   
   × = × =   
      

;

where Ri Cj is the scalar product of Ri and Cj.
The diagrammatical working of product of two matrices is 

shown as in the figure.
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Remarks:
 (i) In the product AB, A is called post-multiplied by B and B is called P multiplied by A.

 (II) A = [a1, a2,.......,an] and 

 
 
 =
 
 
  



1

2

n

b

b
B

b

; ⇒ AB = [a1 b1 + a2 b2 + ..... + an bn].

31.3.1 Properties of Multiplication of Matrices
 1. AB and BA both may be defined yet AB ≠ BA.
 2. AB and BA both may be defined and AB = BA.
 3. One of the products AB or BA may not be defined.
 4. If A be a square matrix of the same order as I, then IA = A, I = A and OA = AO = O, where O is a null 

matrix, i.e., multiplication by identity and null matrix is commutative.
 5. AB may be a zero matrix, and BA may be a non-zero matrix, or vice versa, when A ≠ O,  

B ≠ O.
 6. AB and BA both may be a zero matrix, when A ≠ 0, B ≠ 0.
 7. Multiplication of matrices is associative and distributive over addition.
 8. The matrix AB is the matrix B pre-multiplied by A and the matrix BA is the B post multiplied  

by A.
 9. If A, B are suitable matrices and λ is a scalar, then λ (AB) = (λA)B = A(λB).
 10. Existence of multiplicative Identity: If A = [aij ] is an m × n matrix, then ImA = A = AIn.
 11. The product of any matrix, and null matrix of a suitable order is a null matrix.
  If A = [aij] is an m × n matrix, then Op × m A = Op × n and AOn × q = Om × q.
 12. Powers of a square matrix: Let A be a square matrix of order n, then AA makes sense, and it is also 

a square matrix of order n. We define: 
  A1 = A; A2 = AA,.......,Am = Am – 1A = AAm – 1 for all positive integers m.

31.3.2 Transpose of a Matrix

A matrix obtained by interchanging rows and columns of a matrix A is called the transpose of a matrix. 

If A is a matrix, then its transpose must be denoted as A′ or AT, e.g., if 
2 3 5

A
5 6 8
 

=  
 

, then T

2 5
A 3 6

5 8

 
 =  
  

.

Properties of Transpose of a Matrix

 (i) (AT)T = A, i.e., the transpose of the transpose of a matrix is the matrix itself.
 (ii) (A + B) T = AT + BT, i.e., the transpose of the sum of two matrices is the sum of their transpose.
 (iii) (kA)T = kAT (where k is a scalar).
 (iv) (AB)T = BTAT, i.e., the transpose of the product of two matrice is the product in reverse order of  

their transpose.
 (v) (–A)T = ((–1) A)T = (–1)AT = –AT.
 (vi) (A – B)T = (A + (–B))T = AT + (–B)T = AT + (–BT) = AT – BT).
 (vii) If A is m × n matrix, then AT is n × m matrix.
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31.3.3 Symmetric Matrix
A square matrix will be called symmetric, if the elements across principal diagonal are symmetrically equal.

Skew Symmetric Matrix: A square matrix A = [aij]m×n is said to be skew symmetric, iff aij = –aij ∀ i and j
⇒ aii= 0 ∀ i; i.e., the diagonal elements are zeros.

31.3.3.1 Properties of symmetric/skew-symmetric matrix

 1. A symmetric/skew-symmetric matrix is necessarily a square matrix.
 2. Symmetric matrix does not change by interchanging the rows and columns.
  i.e., symmetric matrices are transpose of themselves.
 3. A is symmetric, if AT = A and A is skew-symmetric if AT = – A.
 4. A + AT is a symmetric matrix, and A – AT is a skew-symmetric matrix.
  Consider (A + AT) = AT + (AT) T = AT + A = A + AT = A + AT is symmetric.
  Similarly, we can prove that A – AT is skew-symmetric.
 5. The sum of two symmetric matrix is a symmetric matrix and the sum of two skew-symmetric matrix, 

is a skew symmetric matrix.
 6. If A and B are symmetric matrices, then AB + BA is a symmetric matrix and AB – BA is a skew 

symmetric matrix.
 7. Every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric matrix. 

 8. Maximum number of distinct entries in a symmetric matrix of order n is 
n(n 1)

2
+

.

 9. Maximum number of distinct elements in a skew symmetric matrix of order n = n2  – n +1. 
 10. Maximum number of distinct non–zero elements in a skew-symmetric matrix of order  

n = (n2 – n) = n (n – 1).

 11. Maximum number of elements with distinct magnitude in a skew-symmetric matrix = 
2n n 1
2

 −
+ 

 
.

 12. The matrix (B') AB is symmetric or skew-symmetric, according as A is symmetric or  
non-symmetric, respectively.

 13. The determinant of a skew-symmetric matrix with real entries and odd order always vanishes.
 14. The determinant of a skew-symmetric matrix with even real entries order is always a perfect square.

31.3.3.2 Properties of trace of a matrices

 (i) tr(lA) = ltr(A)
 (ii) tr (A ± B) = tr (A) ± tr(B)
 (iii) tr(AB) = tr(BA)
 (iv) tr (skew-symmetric matrix) = 0
 (v) tr(A) = na; where A is a scalar matrix of order n and with diagonal elements a. 
 (vi) tr [diagonal (a, b, c), diagonal (d, e, f)] = tr [diagonal (ad, be, cf)] = (ad + be + cf)

 (vii) tr(A) tr(A); A= = conjugate matrix of A.

 (viii) tr(A′) = tr(A); A′ = transpose of matrix A.
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31.4 HerMitian Matrix

If A = [aij]m×n is such that ija aji= ; i.e., ( ) =A ' A, i.e., Aq = A; where Aq = ( ) ( )A' A '=

e.g., ( )2 3 2i 2 3 2i 2 3 2i
A A ' A ' A

3 2i 7 3 2i 7 3 2i 7
+ − +     

⇒ ⇒ = =     − + −     
.

31.4.1 Properties of Hermitian Matrices
 1. Diagonal elements are purely real, ii ii ii iia a a a 0= ⇒ − =  ⇒ 2Im (aii) = 0. 

 2. Every symmetric matrix with real number as elements is hermitian, e.g., ij ij jia a a A= = → is hermitian. 

31.4.2 Skew-Hermitian Matrix

If A = [aij]m×n is such that ij ija a− = , i.e., (A ') A= − , i.e., Aq = –A, e.g., 
3i 1 3i 2

A 1 3i 0 4 i
2 4 i 2i

 −
 = − − + 
 − − + 

.

31.4.2.1 Properties of hermitian/skew–hermitian matrix

 1. Elements on principal diagonal are either purely imaginary or zero, e.g., for i = j

  ii iia a= −  ⇒ ℝ(aii) = 0 ⇒ aii, is purly imaginary.
 2. Every skew-symmetric matrix with real numbers as elements is skew-Hermitian.
 3. Every square matrix can be uniquely represented as the sum of a hermitian and skew-Hermitian 

matrices.

 4. If A is any matrix, then 1 1A {A A } {A A }
2 2

θ θ= + + −  = Hermitian + skew-Hermitian.

31.4.3 Orthogonal Matrix
A square matrix A is called an orthogonal matrix, if the product of the matrix A and its transpose A' is an 
identity matrix, i.e., AA' = A'A = I. 

31.4.3.1 Properties of Orthogonal Matrix 

 (i) If AA′ = I then A–1 = A′ Q AA′ = I ⇒ A–1 (AA′) = A–1.I = A–1 ⇒ A′ = A–1 
 (ii) If A and B are orthogonal, then AB is also orthogonal.
  Q (AB) (AB) = (AB) (B′A′) = A(BB′)A′ = AIA′ = AA′ = I; similarly (AB′) (AB) = I.
 (iii) Value of corresponding determinant of orthogonal matrix is ±1.

31.4.4 Idempotent Matrix
A square matrix A is called idempotent, provided that it satisfies the relation A2 = A.

Properties:

 (i) If A and B are idempotent matrices, then AB is as idempotent matrix, if AB = BA.
 (ii) If A and B are idempotent matrices, then A + B is an idempotent if AB + BA = O.
 (iii) A is idempotent and A + B = I, then B is also idempotent and AB = BA = O.
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31.4.5 Periodic Matrix
A square matrix A is called periodic, if Ak+1 = A; where k is a positive integer. If k is the least positive 
integer, for which Ak+1 = A, then k is said to be period of A. For k = 1, we get A2 = A, and we called it to be 
an idempotent matrix.

31.4.6 Nilpotent Matrix
A square matrix A is called Nilpotent matrix of order k, provided that it satisfies the relation Ak = O and 
Ak–1 ≠ A; where k is positive integer and O is null matrix, and k is the order of the nilpotent matrix A.

31.4.7 Involutory Matrix
A square matrix A is called involutory matrix, provided that it satisfies the relation A2 = I; where I is  

identity matrix, e.g., 
1 0

A
0 1
 

=  − 
  and 2 1 0

A I
0 1
 

= = 
 

.

Properties:
 (i) A is involutory iff (A + I) (A – I) = O.
 (ii) Identity matrix is a trivial example of involutory matrix.

31.4.8 Unitary Matrix

A square matrix A is called a unitary matrix if A. Aq = I, where I is an identity matrix and Aq is the trans-
pose conjugate of A.

31.4.8.1 Properties of Unitary Matrix

 (i) If A is unitary matrix, then A′ is also unitary.
 (ii) If A is unitary matrix, then A–1 is also unitary.
 (iii) If A and B are unitary matrices, then AB is also unitary. 

31.4.8.2 Determinant of a square matrix

A number associate with every square matrix A is called its determinant and denoted by |A| or det (A).

Let 
a b

A ,
c d
 

=  
 

then 
a b

A (ad bc)
c d

= = − .

Evaluation of Determinant of Order 3:

Let 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a a a a
A a a a , then A a a a

a a a a a a

 
 = = 
  

 = 22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

a a a a a a
a a a

a a a a a a
− + .

Singular Matrix: Square matrix having its determinant = 0.

31.4.9 Non-singular Matrix

Square matrix A, for which |A| ≠ 0. 
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31.4.9.1 Minor of elements of a square matrix

The determinant obtained by deleting the ith row and jth column, passing through the aij element, is called 

minor of element aij, and is denoted by Mij, e.g., 11 12
23

31 32

a a
M

a a
=  = (a11.a32 – a31a12) = minor element a23; 

where 11 12

31 32

a a
A

a a
 

=  
 

.

Co-factors of Element of Square Matrix: The determinant obtained by deleting ith row and jth column 
when multiplied by (–1)i+j gives us the co-factors of element aij and is denoted by Aij or Cij. In other words, 

Cij = (–1)i + j Mij, i.e., (–1)i+j times the minor of element aij. 

e.g., 11 122 3 5
23 23 11 32 31 12

31 32

a a
C ( 1) M ( 1) (a .a a .a )

a a
+= − = − = − −  = co-factor of element a23.

Remarks:

 (i) |A| = a11C11 + a12 C12 + a13 C13; in general, 
=

= ∑
3

ik ik
k 1

A a C ; i = 1 or 2 or 3 (expansion along rows), or 

  =

= ∑
3

kj kj
k 1

A a .C ; j = 1 or 2 or 3 (expansion along columns)

 (ii) 
= =

= = ≠∑ ∑
3 3

ik jk ki kj
k 1 k 1

a C a C 0 for i j

31.5 adjoint of a Square Matrix

The transpose of the matrix containing co-factors of elements of square matrix A. It is denoted by Adj(A)

i.e., 
11 12 13

21 22 23

31 32 33

C C C
Adj(A) C C C

C C C

 
 =  
  

; where Cij = co-factors of aij  ⇒ 
11 12 13

21 22 23

31 32 33

C C C
Adj(A) C C C

C C C

 
 =  
  

31.5.1 Properties of Adjoint of Square Matrix A

 (i) A(adj A) = (adj A) (A) = |A| In; where A is a square matrix of order n.
 (ii) If A is a singular matrix, then A(Adj A) = (Adj A). A = 0 (Q |A| = 0).
 (iii) |Adj A| = |A|n–1.
 (iv) Adj (AB) = (Adj B). (Adj A); provided that A, B are non-singular square matrices of order n.
 (v) Adj (AT) = (Adj A)T.
 (vi) Adj.( Adj A) = |A|n–2 .A.

 (vii) 
2(n 1)Adj (Adj A) A −

= .
 (viii) Adjoint of a diagonal matrix is a diagonal matrix.
 (ix) adj(l.A) = ln–1. (Adj A); where l is a scalar and (A)n×n.

31.5.2 Inverse of Non-singular Square Matrix

A square matrix B of order n, is called inverse of non-singular square matrix.
A of order n  iff A.B. = B.A = In.
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Let 
AdjA

B ; A 0
A

= ≠  ⇒ n
n

A .IA.(AdjA)
A.B I

A A
= = = ; similarly, n

n

A .I(AdjA)
B.A .A I

A A
= = = .

Thus, A.B. = B.A. = In ⇒ B = A–1. Thus, 1 AdjA
A

A
− = ; provided that |A| ≠ 0.

Invertible Matrix: A square matrix iff it is non-singular, i.e., |A| ≠ 0.

31.5.2.1 Properties of inverse of square matrix 

 1. Every invertible matrix possesses a unique inverse.
 2. A square matrix is invertible, if and only if, it is non-singular.
 3. If A, B be two non-singular matrices of the same order, then AB is also non-singular and  

(AB)–1 = B–1 A–1 (reversal law of inverse).
 4.  (i) AB = AC ⇒ B = C  (ii) BA = CA ⇒ B = C
 5.  Since, we already know that (AB)–1 = B–1 A–1, therefore, in general, we can say that  

(ABC,.......,Z)–1 = Z–1 Y–1 ....B–1 A–1.
 6. If A is an invertible square matrix, then adj (A′) = (adj A)′.
 7. (AT)–1 = (A–1)T

 8. T 1 1 T(A ) (A )− −=
 9. AA–1 = A–1A = I
 10. (A–1)–1 = A

31.6 Matrix polynoMial

Let f(x) = a0 x
m + a1 x

m–1 + .... + am–1 x + am be a polynomial in x and A be a square matrix of order n, then 
f(A) = a0 A

m + a1 A
m–1 + .... + am–1 A + am In is called a matrix polynomial in A. Thus, to obtain f (A), replace 

x by A in f(x), and the constant term is multiplied by the identity matrix of the order equal to that of A.
The polynomial equation f (x) = 0 is said to be satisfied by the matrix A iff f(A) = O.
e.g., if f(x) = 2x2 – 3x + 7 and A is a square matrix of order 3 then f(A) = 2A2 – 3A + 7I3.
The polynomial | A – x In|, is called characteristic polynomial of square matrix A.
The equation | A – x In| = O, is called characteristic equation of matrix A.

31.6.1 Cayley Hamilton Theorem
Every matrix satisfies its characteristics equation |A – xI| = 0 because |A – AI| = |A – A| = 0.

So, a0 A
n + a1 A

n – 1 + .... + a2 A
n – 2 + ..... + an I = O  ⇒  1 n 1 n 20 1

n n

a aA A A ......
a a

− − − 
= − + + 

 

31.6.2 Elementry Transformation
 • Interchange of any two rows or columns: Denotion by i jR R↔  or 

i jC C↔ .

 • Multiplication by non-zero scalar: Denotion 
i iR kR↔  or 

j jC kC↔ .
 • Replacing the ith row (or column) by the sum of its elements and scalar multiplication of  

corresponding elements of any other row (or column).
Denotion: Ri → Ri + kRj or Ci → Ci + k Cj.
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	 • Transformed matrix using sequence of elementary transformations (one or more) is known as 
equivalent matrix of A.

31.6.3 Elementary Matrix
Elementary matrix obtained from identities matrix by single elementary transformation:

e.g., 
1 3

1 0 0 0 0 1
0 1 0 R R 0 1 0
0 0 1 1 0 0

   
   ↔   
      

.

31.6.4 Equivalent Matrices
Two matrices A and B are equivalent, if one can be obtained from the other by a sequence of elementary 
transformations denoted by A ~ B. 

31.6.4.1 Inverse of a matrix A by using elementary row operations

Step 1: Write A = In · A; i.e., 

11 12 1n

21 22 2n

n1 n2 nn

a a .. .. a 1 0 0 .. 0
a a .. .. a 0 1 0 .. 0

.A
.. .. .. .. .. .. .. .. .. ..

a a .. .. a 0 0 0 .. 1

   
   
   =   
   
      

.

Step 2: Now, applying the sequence of elementary row operation on matrix A and matrix In,  
simultaneously till matrix A on L.H.S of the above equation get converted to identity matrix In.
Step 3: After (Step 2) reaching at In = B.A ⇒ B = A–1.

31.6.4.2 Inverse of matrix A by using elementary column operations

Step 1: Write A = A In.
Step 2: Now, apply as above sequence of elementary column operations on matrix A on the left hand 
side, and same sequence of elementary column operations on identity matrix. In on the right hand side of 
the above equation till matrix A on the left hand side gets converted to In.
Step 3: After (Step 2) reaching at In = A.B ⇒ B = A–1.

31.6.4.3 System of simultaneous equations

The system of n equations in n-unknown, given by: a11x1  + a12x2 + a13x3  + … + a1nxn = b1
a21x1  + a22x2 + a23x3  + … + a2nxn = b2
an1x1  + an2x2 + an3x3  + … + annxn = bn; where b1, b2, b3 ,……, bn  are not all zeros, is called non-homogenous 
system of equations.

This system of equation can be written in matrix form, as: 

12 1n11 1 1

22 2n21 2 2

n2 nnn1 n n

a aa ....... x b
a aa x b

a aa ....... x b

     
     
     =     
     
         

 
  

   

AX = B. Here, A is a square matrix. A system is said to be consistent if it has atleast one set of solution;  
otherwise, known as inconsistent equation.
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31.6.4.4 Solutions of non-homogenous systems of equation

There are three methods of solving non-homogenous equations in three variables 

 (i) Matrix method 
 (ii) Determinant method (Cramer’s rule)
 (iii) By using elementary row and column operations 

31.6.4.5 Matrix method of solving non-homogeneous system of equations 

Let the given system of equation be AX = B ⇒ X = A–1B, gives us:
 1. Unique solution of system of non-homogenous equations, provided |A| ≠ 0.
 2. No solution, if |A| = 0 and (adj A). B ≠ 0 (null matrix).
 3. Infinitely many solutions, if |A| = 0 and (adj A). B = 0. For getting infinitely many solutions, take 

any (n –1) equations. Take any one variable, say xn = k, and solve these (n –1) equations for x1, x2,  
x3,…, xn–1 in terms of k.

  The infinitely many solutions are given by x1 = f1(k), x2 = f2(k) ,…, xn–1 = fn–1(k); xn = k and k ∈ ℝ.

31.7  deterMinant MetHod (craMer′S rule) for Solving  
non-HoMogenouS equationS

31.7.1 For Two Variables

Let a1x + b1y = C1 and a2x + b2y = C2, then take 1 1 1 1 1 1
1 2

2 2 2 2 2 2

a b c b a c
; ;

a b c b a c
∆ = ∆ = ∆ = .

i.e., D is determinant formed by coefficient of x and y.
D1 is determinant formed by replacing elements of first column of D by C1 and C2  and D2 is  

determinant formed by replacing elements of second column of D by C1 and C2.

Case (i): If D ≠ 0; then system of equation has a unique solution given by 1 2x ; y∆ ∆
= =
∆ ∆

.

Case (ii): If D = 0; 
 (a) If D1, D2  both are not zeros, i.e., atleast one of D1 and D2 is non zero, then there is no solution.
 (b) If  D1  =  D2  = 0, then the system of equation has infinitely many solution. Take x or y say y = k

  ⇒ 1 1

1

C b kx
a
−

= . Thus, 1 1

1

C b kx
a
−

= ; y = k; k ∈ ℝ gives infinitely many solutions.

31.7.2 For Three Variables

a1x + b1y + c1z = d1; a2x + b2y + c2z = d2;  a3x + b3y + c3z = d3 

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2 3 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

a b c d b c a d c a b d
a b c ; d b c ; a d c ; a b d
a b c d b c a d c a b d

∆ = ∆ = ∆ = ∆ =

Case (i): For D ≠ 0, there will be unique solutions 31 2x ; y ; z
∆∆ ∆

= = =
∆ ∆ ∆

.
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Case (ii): For D = 0
 (a) If atleast one of D1, D2, D3  is non-zero, there is no solution. i.e., system of equations is consistent.
 (b) If  D1 = D2 = D3 = 0, then there will be infinitely many solutions. For these infinitely many solu-

tions take any two equations, say (i) and (ii) and put z = k, to obtain  a1x + b1y = d1 
 – c1k and   

a2x + b2y = d2 – c2k. Solving, we get x and y in term of k (say) x = f1(k) and y = f2(k).
  Thus x = f1(k); y = f2(k); z = k; k ∈ ℝ gives us infinitely many solutions.

31.8  Solution of non-HoMogeneouS linear equationS  
by eleMentary row or coluMn operationS

Let 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b
A a a a ; X x ;B b

a a a x b

     
     = = =     
          

 be such that AX = B, i.e., 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b
a a a x b
a a a x b

     
     =     
          

 

(by using elementary row operations)
Apply elementary row operations on matrix A, and same operations simultaneously on B, to reduce  

it into 
a b c x
0 d e y
0 0 f z

     λ
     = µ     
     α     

⇒ ax + by + cz = l ...(i)  dy + ez = m ….(ii)  fz + a ….(iii)

 from equation (iii), we get z = a/f; from equation (ii), we get 
e

fy
d

α µ −  
 = .

And from equation (i), we get 

e
fd C

d f

x
a

 α µ −   α   λ − −     
 
 =  (By using elementary column  

operations).
Now applying elementary column operations to A′ and simultaneously same elementary column  

operation’s to B′, to get:

⇒ 1 2 3

a 0 0
[x x x ] b d 0 [ ]

c e f

 
  = λ µ α 
  

⇒ ax1 + bx2  + cx3  = l  ……(i)
 dx2 + ex3  =  m  ……(ii) 
 fx3 = a …..(iii)

\ From (iii) 3x
f
α

= ; from (ii) 2

e
fx

d

α µ −  
 = ; from (iii) 1

e
fd C

d f

x
a

 α µ −   α   λ − −     
 
 = .
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31.8.1 Solutions of Homogenous System of Equation
Consider the following system of homogenous linear equation in n unknowns x1, x2,...., xn 

11 1 22 2 1n m

22 1 22 2 2n m

m1 1 m2 2 mn n

a x a x ..... a x 0
a x a x ..... a x 0
................................................
a x a x ..... a x 0

+ + + =
+ + + =

+ + + =

This system of equation can be written in matrix form, as follows:

12 1n11 1

22 2n21 2

n2 nnn1 n

a aa ....... x 0
a aa x 0

a aa ....... x 0

     
     
     =     
     
         

 
  

 ⇒ AX = O

 (i) If | A | ≠ 0, the system of equations has only trivial solution and that will be the only solution.
 (ii) If | A | = 0, the system of equations has non-trivial solution and it has infinite solutions.
 (iii) If number of equations < Number of unknowns, then it has non-trivial solution.

Remark:
If numbers of equations < number of unknown variables, then either the system of equations have no 
solutions or infinitely many solutions.

31.9 eliMinant

Eliminant of a given number of equation in some variables is an expression which is obtained by  
eliminating the variables out of these equations. 

31.9.1 Linear Transformation
The transformation in which the straight line remains straight and origin does not change its position.  

We represent point (x, y) by column matrix  
 
 
 

x
y

 and transformation mapping is denoted by a matrix 

operation which transform 
x X

to
y Y
   
   
   

.

Definition: Any transformation of  
x
y
 
 
 

 to 
X
Y
 
 
 

  that can be expressed by the linear equation  

a1x + b1y = X and a2x + b2y = Y is called linear transformation.

1 1

2 2

a b x X
a b y Y
     

=     
     

 operator 1 1

2 2

a b
M

a b
 

=  
 

 is matrix of transformation.

Origin remains invariant of such transformation. Some common linear transformations are:
 1. Drag by a factor k along x-axis  4. Rotation through any angle about origin
 2. Enlargment or reduction  5. Shearing parallel to x-axis/y-axis
 3. Reflection in any line through origin
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31.9.2 Compound Transformation
When a transformation (2) is carried out after (1) the compound transformation is denoted by a matrix 
operator M2 o M1 = M2 M1, where M2 and M1 are respective matrix operators for (i) and (ii) operation.  
M2 o M1 is known as composition of M2 with M1 (order of performance of operations must be mentioned).

Matrix representing reflection in x-axis 
If P(x,y) be any point and P′ (X,Y) is its reflection on x –axis, then X = 1(x) + 0(y) and Y = 0(x) + (–1)y

⇒ 
X 1 0 x
Y 0 1 y
     

=     −     
. Thus 

1 0
0 1
 
 − 

described reflection of point P(x,y) on x-axis 

Matrix representing  reflection in y-axis
Here, X = (–1)x + 0(y) and  Y = (0) x + 1(y).

Matrix representing  reflection through the origin 
If P(x,y) is any point then P′ (X,Y), i.e., reflection of P(x,y) on origin is given by X = –1(x) + 0(y) and  

Y = 0(x) + (–1)y ⇒ 
X 1 0 x
Y 0 1 y

−     
=     −     

.

Matrix representing reflection in the line y = x

Let, P(x,y) be any point, and (X,Y) be its reflection on line y = x
Here, X = y and Y = x

⇒ X = 0(x) + 1(y) and Y =1(x) + 0(y) ⇒ 
X 0 1 x
Y 1 0 y
     

=     
     

.

Matrix representing  reflection in the line y = x tanq 

⇒ 
X cos2 sin2 x
Y sin2 cos2 y

θ θ     
=     θ − θ     

Matrix representing rotation through an angle q 

⇒ 
X cos sin x
Y sin cos y

θ − θ     
=     θ θ     

 

Expansion of determinant using co-factor (Laplace method)

Let, 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

∆ = be determinant or order 3 × 3, then 

3

i1 i1 i2 i2 i3 i3 ik ik
k 1

a C a C a C a C
=

∆ = + + + =∑  = expansion of D along ith  

rows and 
3

1j 1j 2 j 2 j 3j 3j kj kj
k 1

a C a C a C a C
=

∆ = + + + =∑ = expansion of  D along 

jth column.

Sarrus rule of expanding a determinant of third order

Sarrus gave a rule for evaluating a determinant of the order three mentioned as follows:

Y

P(x, y)

P'(X,Y)

r

r

X

y

LQ x

R

O
φ

θ
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Rule: Write down the three rows of the determinant, and rewrite the first two rows just below them.  
The three diagonals sloping down to the right give the three positive terms and the three diagonals  

sloping down to the left give the three negative terms. If 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

∆ = , then

31.9.3 Application of Determinant

Out of wide applications of determinants, a few are given below:
•	 Area of D with vertices A(x1, y1), B(x2, y2), C(c3, y3)

⇒ 
1 1

2 2

3 3

x y 1
1 x y 1
2

x y 1
∆ = ; where |x| denotes absolute value of x.

•	 Cross product of vectors x y z x y z
ˆ ˆˆ ˆ ˆ ˆa a i a j a k;b b i b j b k= + + = + +




⇒ x y z

x y z

ˆˆ ˆi j k
a b a a a

b b b
× =


 .

It is also used to find the scalar triple product of three vector a.(b c)×


   is S.T.P. of 
x y z

x y z

x y z

a a a
[abc] b b b

c c c
=



 

 .

31.9.4 Properties of Determinants
Property 1. The value of determinant remains unaltered, if the rows are changed into columns and 

columns into rows. For example, if 1 1

2 2

a b
a b

∆ =  (a1 b2 – b1 a2) and 1 2
1 2 2 1

1 2

a a
(a b a b )

b b
′∆ = = −  ⇒ D = D′.

Property 2. If all the elements of a row/column are zero, then the value of determinant will be zero.

Property 3. Reduction and increase of order of determinant
 (a) If all the elements in a row (or a column) except one element, are zeros the determinant reduces  

to a determinant of an order less by one.
 (b) A determinant can be replaced by a determinant of a higher order by one as per the requirment.
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Property 4. If any two rows or two columns of a determinant are interchanged, the determinant retains 
its absolute value, but changes its sign and symbolically the interchange of ith and jth rows or ith and  
jth columns is written as 

i jR R∆ = −∆
 i jC C(or )−∆



.

Property 5. The value of a determinant is zero, if any two rows or columns are identical. Symbolically, it 
is written as DRi ≡ Rj

 = 0 or DCi ≡ Cj
 = 0.

Property 6. (a) If every element of a given row of matrix A is multiplied by a number l, the matrix thus  
obtained has determinant equal to l (det A). As a consequence, if every element in a row of a determinant has 
the same factor this can be factored out of the determinant. Symbolically, it is written as 

i i
1R R
m

m.
→

∆ = ∆ . 

 (b) If all the elements of a row (column) of a determinant are multiplied by a constant (k), then the 
determinant gets multiplied by that constant.

Property 7. The value of the determinant corresponding to a triangular determinant is equal to product 
of its principal diagonal elements.

Property 8. If any row or column of a determinant be passed over n rows or columns, the resulting 
determinant will be (–1)n times the original determinant.
Property 9. (a) If every element of a column or (row) is the sum (difference) of two terms, then the 
determinant is equal to the sum (difference) of two determinants of same order; one containing only 
the first term in place of each sum, the other only the second term. The remaining elements of both 
determinants are the same as in the given determinant.
 (b) A determinant having two or more terms in the elements of a row (or column) can be written as the 

sum of two or more determinants.
Property 10. The value D of a determinant A remains unchanged, if all the elements of one row (column) 
are multiplied by a scalar and added or subtracted to the corresponding elements of another row (column). 
Symbolically, it is written as 

i i jR R mR→ +∆ = ∆ (or 
j j iC C mC→ +∆ ) and operation is, also symbolically written as 

Ri → Ri + mRj or Cj = Cj + mCi.

Property 11. (a) The sum of the products of elements of a row (or column) with their corresponding 
co-factors is equal to the value of the determinant. For example, a11C11 + a12 C12 + a13 C13 = a21 C21 + a22 C22  
+ a23 C23 = D
 (b) Sum of the products of elements of any row (or  column) with the co-factors of the corres sponding  

elements of a parallel row (or column) is always zero. For example, a11 C21 + a12 C22 + a13C23 = 0
Property 12. If the elements of a determinant D involve x, i.e., the determinant is a polynomial in 
x and if it vanishes for x = a, then (x – a) must be a factor of D. In other words, if two rows (or two 
column) become identical for x = a then (x – a) is a factor of D. Generalizing this result, we can say, if r 
rows (or r columns) become identical when a is substituted for x, then (x – a)r – 1 should be a factor of D.  

For example, if 2

3

x 5 2
x 9 4
x 16 8

∆ =  at x = 2, D = 0 (∵ C1 and C2 become identical at x = 2).

31.9.5 Caution
While applying all the above properties from property 1 to property 10, atleast one row (or column) must 
remain  unchanged.
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31.10 Special deterMinant

31.10.1 Symmetric Determinant
Symmetric determinant is a determinant in which the elements situated at equal distance  
(symmetrically) from the principle diagonal are equal both in magnitude and sign, i.e., (i, j)th element  

(aij) = (j, i)th element (aji); e.g., 2 2 2

a h g
h b f abc 2fgh af bg ch
g f c

+ − − − .

31.10.2 Skew-Symmetric Determinant
All the diagonal elements are zero and the elements situated at equal distance from the diagonal are equal 
in magnitude but opposite in sign, i.e., (i, j)th element = –(j, i)th element, i.e., aij = –aji. The value of a  

skew-symmetric determinant of odd order is zero, e.g., 
0 b c
b 0 a 0
c a 0

−
∆ = − =

−

.

31.10.3 Cyclic Determinants
Determinants in which if a is replaced by b, b by c and c by a, then value of determinants remains  
unchanged are called cyclic determinants.

 (i) 
2 2 2

1 1 1
a b c (a b)(b c)(c a)
a b c

= − − −  (Already proved in previous article)

 (ii) 
3 3 3

1 1 1
a b c (a b)(b c)(c a)(a b c)
a b c

= − − − + +  (can be proved using factorization)

 (iii) 2 2 2

3 3 3

1 1 1
a b c (a b)(b c)(c a)(ab bc ca)
a b c

= − − − + +  (can be proved using factorization)

31.10.4 Circulants
Circulants are those determinants in which the elements of rows (or columns) are cyclic arrangements of 
letters

 (i) 

x a x b x c
x b x c x a
x c x a x b

+ + +
+ + +
+ + +

    (ii) 

a b c d
b c d a
c d a b
d a b c

, e.g.,
a b c
b c a (a b c 3abc)
c a b

= − + + −

 (iii) 3 3 3

a b c
b c a (a b c 3abc)
c a b

= − + + −  (iv) 

2 2 2

2 2 2

2 2 2

a b c x a y b z c
b c a ; y b z c x a

z c x a y ba b c

+ + +
+ + +
+ + +
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Remarks:
 1. An expression is called cyclic in x, y, z iff cyclic replacement of variables does not change the expression. 

e.g., x + y + z, xy + yz + zx  etc. Such expression can be abbreviated by cyclic sigma notation as below:

  
= + + = + + − =∑ ∑ ∑2 2 2 2x x y z , xy xy yz zx, ( x y ) 0  = + + + + + = +∑ ∑2 2 2 2x y z x y z x x

 2. An expression is called symmetric in variable x and y iff interchanging x and y does not change the 
expression. x2 + y2, x2 + y2 – xy; x3 + y3 + x2y + y2x . x3 – y3 is not symmetric.

31.10.5 Product of Two Determinant
Two determinants are conformable to multiply iff they are of same size. Since, |A| |B| = |AB| = |ATBT | = |AT 

B| = |A| BT|. There are four method of taking product of two determinant.

Let, 
1 1 1

1 2 2 2

3 3 3

a b c
a b c
a b c

∆ =  and  
1 2 3

2 1 2 3

1 2 3

m m m
n n n

∆ =
l l l

 and D = [Pij]3×3.

Method 1: Method of Multiplication (Row by column); D = |AB|

1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

1 2 2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a b m c n a b m c n a b m c n
. a b m c n a b m c n a b m c n

a b m c n a b m c n a b m c n

+ + + + + +
∆ = ∆ ∆ = + + + + + +

+ + + + + +

l l l
l l l
l l l

;

pij = scalar product of ith row vector and jth column vectors of D1 and D2 respectively.

Method 2: Method of multiplication (Row by Row); D =  |AB T |
Method 3: Method of multiplication (Column by Row); D = |ATBT | 
Method 4: Method of multiplication (Column by Column); D =  |ATB |

Remark:
Since  |AB| = |A||B| = |B||A| = |BA| = |BTA| = |BAT| = |BTAT|, thus |AB| can also be obtained by 
row-column, row-row, column-row or column-column multiplication of B and A. Thus there are eight ways 
of obtaining (D1. D2).

31.10.6 Adjoint or Adjugate of Determinant 
If D = |aij|n×n is a determinant of order n × n; then, D′ = |Cij|3×3; where Cij is co-factor of element aij is called  
Adjoint or Adjugate of determinant.

31.10.6.1 Jacobi′s theorm

Its states that D′ = Dn-1; D ≠ 0; where D′ = adjoint of D = determinant |Cij|; Cij = co-factor of aij.

31.10.6.2 Reciprocal determinant

If D = |aij| ≠ 0, then ijC
''∆ =

∆
; where Cij is the cofactor of aij is called the reciprocal determinant of D.

n 1
ij

ijn n n

C 1 ' 1" |C |
−∆ ∆

∆ = = = = =
∆ ∆ ∆ ∆ ∆
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31.10.6.3 Method to break a determinant as the product of two determinants

 (a) Observe the diagonal symmetry of the elements and apply the following facts:
	 	q	 	The determinant of skew symmetric determinant with odd order always vanishes. Therefore, any 

odd order skew symmetric determinant can be broken into product of two matrices of which 
atleast one is singular.

	 	q  The determinant of skew symmetric determinant with even order is a perfect square. Therefore, 
an even ordered skew symmetric determinant can be written as a square of a determinant having 
symmetrical elements.

 (b) Observe the symmetry of the elements and make sure whether (i, j)th element of the given  
determinant can be written as Ri. Cj; where Ri is the i th row of the first factor (determinant) and Cj is 
the jth column of the second factor (determinant).

 (c) While applying the approach (b), it is advised to choose the (i, j)th element to be diagonal elements.

31.11 differentiation of deterMinantS

The differentiation of a determinant can be obtained as the sum of as many determinants as the order. The 
process can be carried out along the row/column by differentiating one row/column at a time and retaining 
the others as they are:

\ If 1 2

1 2

f (x) f (x)
g (x) g (x)

∆ =  of order 2, which is a function of x, then

 1 2
1 2 1 2

1 2

f (x) f (x)d d d (f (x)g (x) g (x)f (x))
g (x) g (x)dx dx dx

∆
= = −

        = 1 2 2 1 1 2 2 1(f (x)g (x) g (x)f (x) g (x)f (x) f (x)g (x)′ ′ ′ ′− − −  = 1 2 1 2

1 2 1 2

f (x) f (x) f (x) f (x)
g (x) g (x) g (x) g (x)
′ ′

+
′ ′

Note:
In order to find out the coefficient of xr in any polynomial f(x), differentiate the given polynomial f(x) r times 
successively and then substitute x = 0.

i.e.,  the coefficient of 
 

=  
 

r
r f (0 )

x
r !

; where  
 

=  
 

r
r

r

d f ( x )
f (0 )

dx
 at x = 0.

31.11.1 Integration of a Determinant
Integration of a determinant: As determinant is a numerical value, so it can always be integrated by 
expanding but the integration of the determinant can be done without expansion, if it has only one variable 
row/column. 

Given a determinant D (x) = 
(where a, b, c, l, m and n are constants) as a function of x.

So, 

b b b

a a ab

a

f (x)dx g(x)dx h(x)dx

(x)dx a b c

m n

∆ =

∫ ∫ ∫
∫

l

.


