	ELECTRO	CHE	MISTRY EXERCISE-I
1.	 Which of the following statement is wrong about galvanic cell ? (1) cathode is positive charged (2) anode is negatively charged (3) reduction takes place at the anode (4) reduction takes place at the cathode 	8.	From the following E° values of half cells, (i) $A + e \rightarrow A^-$; E° = -0.24 V (ii) $B^- + e \rightarrow B^{2-}$; E° = +1.25 V (iii) $C^- + 2e \rightarrow C^{3-}$; E° = -1.25 V (iv) D + 2e $\rightarrow D^{2-}$; E° = +0.68 V What combination of two half cells would result in
2.	 A standard hydrogen electrode has zero electrode potential because (1) hydrogen is easier to oxidise (2) electrode potential is assumed to be zero (3) hydrogen atom has only one electron (4) hydrogen is the lightest element. A standard reduction electrode potentials of four 	9.	a cell with the largest potential ? (1) (ii) and (iii) (2) (ii) and (iv) (3) (i) and (iii) (4) (i) and (iv) Which of the following will increase the voltage of the cell with following cell reaction $\operatorname{Sn}_{(s)} + 2\operatorname{Ag}_{(aq)}^{+} \rightarrow \operatorname{Sn}_{(aq)}^{+2} + 2\operatorname{Ag}_{(s)}$ (1) Decrease in the concentration of Ag ⁺ ions (2) Increase in the concentration of Sn ⁺² ions
	metals are A = -0.250 V, B = -0.140 V $C = -0.126 V, D = -0.402 V$ The metal that displaces A from its aqueous solution is :- (1) B (2) C	10.	(3) Increase in the concentration of Ag ⁺ ions (4) (1) & (2) both At 25°C the standard emf of cell having reactions involving two electrons change is found to be 0.295V. The equilibrium constant of the reaction is - (1) 29.5×10^{-2} (2) 10
4.	(3) D (4) None of the above The standard electrode potentials for the reactions $Ag^+(a) + e^- \longrightarrow Ag(s)$ $Sn^{2+}(a) + 2e^- \longrightarrow Sn (s)$ at 25 °C are 0.80 volt and -0.14 volt, respectively. The standard emf of the cell. $Sn_{(s)} Sn^{2+}_{(aq)}(1M) Ag^+_{(aq)}(1M) Ag_{(s)}$ is :	11.	(3) 10^{10} (4) 29.5×10^{10} The emf of the cell in which the following reaction, $Zn(s) + Ni^{2+}_{(aq)} (a = 0.1) \rightarrow Zn^{2+}_{(aq)} (a = 1.0) + Ni(s)$ occurs, is found to be 0.5105 V at 298 K. The standard e.m.f. of the cell is :- (1) -0.5105 V (2) 0.5400 V (3) 0.4810 V (4) 0.5696 V What is the potential of the cell containing two
5.	(1) 0.66 volt (2) 0.80 volt (3) 1.08 volt (4) 0.94 volt The thermodynamic efficiency of cell is given by- (1) $\frac{\Delta H}{\Delta G}$ (2) $\frac{nFE_{cell}}{\Delta G}$ (3) $-\frac{nFE_{cell}}{\Delta H}$ (4) Zero	13.	hydrogen electrodes as represented below Pt $H_2(g)$ $H_{(aq)}^*(10^{-8} \text{ M})$ $H_{(aq)}^*(0.001 \text{ M})$ $H_2(g)$ Pt (1) - 0.295 V (2) - 0.0591 V (3) 0.295 V (4) 0.0591 V Consider the cell, Cu Cu ⁺² Ag ⁺ Ag. If the concentration of Cu ⁺² and Ag ⁺ ions becomes ten times the emf of the cell :-
6.	The reduction potential values are given below: $Al^{3+} \mid Al = -1.67 \text{ volt},$ $Mg^{2+} \mid Mg = -2.34 \text{ volt}$ $Cu^{2+} \mid Cu = + 0.34 \text{ volt},$ $I_2 \mid 2I^- = + 0.53 \text{ volt}$ Which one is the best reducing agent ? (1) Al (2) Mg (3) Cu (4) I ₂	14.	(1) Becomes 10 times (2) Remains same (3) Increase by 0.0295 V (4) Decrease by 0.0295 V Given electrode potentials : $Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$; $E^{\circ} = 0.771$ volts $I_{2(g)} + 2e^{-} \longrightarrow 2I^{-}_{(aq)}$; $E^{\circ} = 0.536$ volts E°_{a} for the cell reaction.
7.	$E^{\circ}(Ni^{2+} Ni) = -0.25 \text{ volt}, E^{\circ}(Au^{3+} Au) = 1.50 \text{ volt}.$ The standard emf of the voltaic cell. $Ni_{(s)} Ni^{2+}_{(ac)} (1.0 \text{ M}) Au^{3+}_{(ac)} (1.0 \text{ M}) Au_{(s)} \text{ is :}$ (1) 1.25 volt (2) -1.75 volt (3) 1.75 volt (4) 4.0 volt		$2Fe^{3_{+}} + 2I_{(aq)}^{-} \longrightarrow 2Fe^{2_{+}} + I_{2(g)} \text{ is } -$ (1) (2 × 0.771 - 0.536) = 1.006 volts (2) (0.771 - 0.5 × 0.536) = 0.503 volts (3) 0.771 - 0.536 = 0.235 volts (4) 0.536 - 0.771 = -0.235 volts

15. The equilibrium constant for the reaction

> $Sr(s) + Mg^{+2}$ (aq) \implies Sr^{+2} (aq) + Mg(s) is 4×10^{12} at 25°C The E° for a cell made up of the $Sr\,|\,Sr^{+2}$ and Mg^{+2} | Mg half cells $(\log 2 = 0.3)$ (1) 0.3717 V (2) 0.7434 V

(3) 0.1858 V (4) 0.135 V

- 16. Which of the substances Na, Hg, S, Pt and graphite can be used as electrodes in electrolytic cells having aqueous solution? (2) Hg, Pt and graphite
 - (1) Hg and Pt (3) Na, S
 - (4) Na, Hg, S
- 17. The products formed when an aqueous solution of NaBr is electrolyzed in a cell having inert electrodes are :
 - (1) Na and Br_2 (2) Na and O_2
 - (3) H_2 , Br_2 and NaOH(4) H_2 and O_2
- When an aqueous solution of lithium chloride is 18. electrolysed using graphite electrodes
 - (1) Cl_2 is liberated at the anode.
 - (2) Li is deposited at the cathode
 - (3) as the current flows, pH of the solution remains constant
 - (4) as the current flows, pH of the solution decreases.
- 19. The ratio of weights of hydrogen and magnesium deposited by the same amount of electricity from aqueous H_2SO_4 and fused $MgSO_4$ are :
 - (2) 1 : 12 (1) 1 : 8
 - (3) 1 : 16(4) None of these
- 20. The same amount of electricity was passed through two separate electrolytic cells containing solutions of nickel nitrate [Ni(NO₃)₂]and chromium nitrate [Cr(NO₃)₃] respectively. If 0.3 g of nickel was deposited in the first cell, the amount of chromium deposited is :

(at. wt. of Ni = 59, at. wt. of Cr = 52)

(1) 0.1 g (2) 0.17 g (3) 0.3 g (4) 0.6 g

- 21. 1 mole of Al is deposited by X coulomb of electricity passing through aluminium nitrate solution. The number of moles of silver deposited by X coulomb of electricity from silver nitrate solution is : (1) 3(2) 4 (3) 2(4) 1
- Calculate the volume of hydrogen at STP obtained 22. by passing a current of 0.536 ampere through acidified water for 30 minutes. (2) 0.224 litre
 - (1) 0.112 litre (4) 0.448 litre
 - (3) 0.056 litre

- 23. One mole of electron passes through each of the solution of AgNO₃, CuSO₄ and AlCl₃ when Ag, Cu and Al are deposited at cathode. The molar ratio of Ag, Cu and Al deposited are
 - (1) 1 : 1 : 1(2) 6 : 3 : 2
 - (3) 6 : 3 : 1(4) 1 : 3 : 6
- 24. The charge required for the oxidation of one mole

 Mn_3O_4 into MnO_4^{2-} in presence of alkaline medium is

(2) 96500 C

- (1) 5 × 96500 C
- (3) 10 × 96500 C (4) 2 × 96500 C
- The resistance of 0.01 N solution of an electrolyte 25. was found to be 200 ohm at 298 K using a conductivity cell of cell constant 1.5 cm⁻¹. The equivalent conductance of solution is :-
 - (1) 750 mhocm² eq^{-1} (2) 75 mho $cm^2 eq^{-1}$
 - (3) 750 mho⁻¹ cm² eq⁻¹ (4) 75 mho⁻¹ cm² eq⁻¹
- 26. If the pressure of H_2 gas is increased from 1 atm to 100 atm keeping H^+ concentration constant at 1 M, the change in reduction potential of hydrogen half cell at 25°C will be
 - (1) 0.059 V (2) 0.59 V (3) 0.0295 V (4) 0.118 V
- 27. Salts of A (atomic weight = 7), B (atomic weight = 27) and C (atomic weight = 48) were electrolysed under identical conditions using the same quantity of electricity. It was found that when 2.1 g of A was deposited, the weights of B and C deposited were 2.7 and 7.2 g. The valencies of A, B and C respectively are
 - (1) 3, 1 and 2 (2) 1, 3 and 2
 - (3) 3, 1 and 3 (4) 2, 3 and 2
- 28. The cost of electricity required to deposit 1 g of Mg is Rs. 5.00. How much would it cost to deposit 9 g of Al (At wt. Al = 27, Mg = 24) (1) Rs. 10 (2) Rs. 27 (3) Rs. 40 (4) Rs. 60
- 29. The resistance of 0.5 M solution of an electrolyte in a cell was found to be 50 Ω . If the electrodes in the cell are 2.2 cm apart and have an area of 4.4 cm² then the molar conductivity (in S m² mol⁻¹) of the solution is (1) 0.2
 - (2) 0.02
 - (3) 0.002(4) None of these
- 30. Equivalent conductance of 0.1 M HA(weak acid) solution is 10 Scm²equivalent⁻¹ and that at infinite dilution is 200 Scm²equivalent⁻¹ Hence pH of HA solution is (4) 3.7

```
(1) 1.3
              (2) 1.7
                            (3) 2.3
```

ANSWER KEY Exercise-l 9 Que. 2 3 4 5 6 7 8 10 1 3 2 3 3 2 3 Ans. 4 1 3 3 11 12 13 14 15 16 17 18 19 20 Que 2 2 2 2 Ans. 3 3 3 1 3 1 23 Que. 21 22 24 25 26 27 28 29 30 2 3 1 2 4 3 3 Ans. 1 1 1 16

PR	EVIOUS YEARS' QUESTIONS		EXERCISE-II
1.	A gas X at 1 atm is bubbled through a solution	7.	The half cell reactions for rusting of iron are:
	containing a mixture of $1~\text{M}~\text{Y}$ and $1~\text{M}~\text{Z}$ at $25^\circ\!\text{C}.$		1
	If the reduction potential of $Z > Y > X$, then		$2H^+ + \frac{1}{2}O_2 + 2e^- \longrightarrow H_2O; E^0 = + 1.23 V,$
	[JEE 1999]		$E_{a}^{2+} + 2a^{-} \longrightarrow E_{a} \cdot E_{a}^{0}0.44 V$
	(1) Y will oxidise X and not Z		ΛG^0 (in kJ) for the reaction is: [JEE 2005]
	(2) Y will oxidise Z and X		(1) -76 $(2) -322$ $(3) -122$ $(4) -176$
	(3) Y will oxidise both X and Z	8.	The molar conductivities, $\Lambda_{\rm u.c.}^0$ and $\Lambda_{\rm u.c.}^0$ at
2	(4) I will reduce both X and Z. For the electrochemical call $M \parallel M^+ \parallel \parallel X^- \parallel X$		infinite dilution in water at 25° C are 91.0 and
2.	$E^{\circ}(M^{+} M) = 0.44 \text{ V and } E^{\circ}(X X^{-}) = 0.33 \text{ V}. \text{ From}$		426.2.5 cm ² mol respectively. To calculate $\Lambda_{\rm eff}^0$
	this data , one can deduce that [JEE 2000]		the additional value required is : [AIEEE 2006]
	(1) M + X \longrightarrow M ⁺ + X ⁻ is the spontaneous reaction		(1) KCl (2) NaOH (3) NaCl (4) H_2O
	(2) $M^+ + X^- \longrightarrow M + X$ is the spontaneous reaction	9.	Resistance of a conductivity cell filled with a solution
	(3) $E_{cell} = 0.77 V$		of an electrolyte of concentration $0.1M$ is 100Ω .
	(4) $E_{cell} = -0.77 V$		The conductivity of this solution is 1.29 Sm^{-1} .
3.	Saturated solution of KNO ₃ is used to make salt		Resistance of the same cell when filled with 0.02M
	bridge because [JEE 2001]		of 0.02M solution of the electrolyte will be.
	(1) $\frac{1}{1}$		[AIEEE 2006]
	(1) velocity of \mathbf{K}^{\prime} is greater than that of \mathbf{NO}_3		(1) $124 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$
	(2) valocity of NO^{-} is greater than that of K^{+}		(2) $1240 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$
	(2) velocity of 140_3 is greater than that of K		(3) 1.24×10^4 Sm ² mol ⁻¹
	(3) velocities of both K^+ and $N\Omega^-$ are nearly the	10	(4) 12.4×10^{-4} Sm ² mol ⁻¹
	(b) velocities of contriviant rives are nearly the	10.	Age + $F_{c} \rightarrow Age + e^{-}$ F° = 0.152V
	same		$Ag_{(s)} \rightarrow Ag^+_{(sq)} + e^-, E^\circ = -0.800 \text{ V}$
4	(4) KINO ₃ is highly soluble in water		What is the value of log K_{sp} for AgI ?
4.	In the electrolytic cell, flow of electrons is from:		(Where K _{sp} = solubility product)
	(1) Cathode to anode in solution		(a a BT a a Tar)
	(2) Cathode to anode through external supply		$\left(\frac{2.303}{F} = 0.059V\right)$ [AIEEE 2006]
	(2) Cathode to anode through external supply		(1) -8 12 $(2) +8 612 (3) -37 83 (4) -16 13$
	(d) Anode to esthode through internal supply		Paragraph for Questions 11 to 12
5	Find the equilibrium constant at 200 K for the		The concentration of potassium ions inside a
J.	reaction		biological cell is at least twenty times higher than
	$Cu^{2+}(aq) \pm In^{2+}(aq) \xrightarrow{\sim} Cu^{+}(aq) \pm In^{3+}(aq)$		the outside. The resulting potential difference
	Given that $(aq) \leftarrow Cu (aq) + m (aq)$		across the cell is important in several processes such
	Given mar		as transmission of nerve impuses and maintaining the ion balance A simple model for such a
	$\dot{E}_{0,2+10,+}^{\circ} = 0.15V \dot{E}_{1,3+10,+}^{\circ} = -0.42V$		concentration cell involving a metal M is :
	$Cu^2 Cu^2 \rangle Cu^2 \rangle In^2 In^2 \rangle $		M(s) M ⁺ (aq ; 0.05 molar) M ⁺ (aq ; 1 molar) M(s)
	$\mathbf{E}^{\circ} = 0.40 \mathbf{V}$		For the above electrolytic cell the magnitude of the
	$E_{In^{2+} In^{+}} = -0.40 v$ [JEE 2004]		cell potential $ E_{cell} = 70$ mV. [JEE 2010]
	(1) 10^4 (2) 10^6 (3) 10^8 (4) 10^{10}	11.	For the above cell :-
6.	$Zn \mid Zn^{2+}$ (a = 0.1M) \mid Fe ²⁺ (a = 0.01M) Fe.		(1) $E_{cell} < 0$; $\Delta G > 0$ (2) $E_{cell} > 0$; $\Delta G < 0$ (2) $E_{cell} > 0$; $\Delta G < 0$
	The emf of the above cell is 0.2905 V. Equilibrium	12	(3) $E_{cell} < 0$; $\Delta G > 0$ (4) $E_{cell} > 0$; $\Delta G < 0$ If the 0.05 molar solution of M^+ is replaced by a
	constant for the cell reaction is [JEE 2004]	12.	0.0025 molar M ⁺ solution then the magnitude of
	(1) $10^{0.3210.0591}$ (2) $10^{0.3210.0295}$		the cell potential would be :-
	(3) $10^{0.2610.0295}$ (4) $e^{0.3210.295}$		(1) 35 mV (2) 70 mV
			(3) 140 mV (4) 700 mV

- **13.** Resistance of 0.2 M solution of an electrolyte is 50Ω . The specific conductance of the solution is 1.3 S m^{-1} . If resistance of the 0.4M solution of the same electrolyte is 260Ω , its molar conductivity is:-[AIEEE 2011]
 - (1) 6250 S m² mol⁻¹

(2) $6.25 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

(3) $625 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$

(4) 62.5 S m² mol⁻¹

- The reduction potential of hydrogen half-cell will be negative if :- [AIEEE 2011]
 - (1) $p(H_2) = 2 \text{ atm } [H^+] = 1.0 \text{ M}$
 - (2) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M
 - (3) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M
 - (4) $p(H_2) = 1$ atm and $[H^+] = 1.0$ M
- **15.** Consider the following cell reaction :

 $2Fe_{(s)}+O_{2(g)}+4H^{+}_{(aq)} \rightarrow 2Fe^{2+}_{(a)}+2H_{2}O(\ell) \quad E^{\circ} = 1.67 \text{ V}$ At[Fe²⁺] = 10⁻³ M, P(O₂) = 0.1 atm and pH = 3, the cell potential at 25°C is - [JEE 2011] (1) 1.47 V (2) 1.77 V

- (3) 1.87 V (4) 1.57 V
- **16.** The standard reduction potentials for $Zn^{2+} | Zn$, Ni²⁺ | Ni and Fe²⁺ | Fe are -0.76, -0.23 and -0.44 V respectively. The reaction $X + Y^{+2} \rightarrow X^{2+} + Y$ will be spontaneous when **[AIEEE 2012]**

(1) X = Zn, Y = Ni (2) X = Ni, Y = Fe(3) X = Ni, Y = Zn (4) X = Fe, Y = Zn

17. Given :

 $E_{Cr^{3+}/Cr}^{0} = -0.74 V$; $E_{MnO_{4}^{-}/Mn^{2+}}^{0} = 1.51 V$

[JEE-MAINS 2013]

$$E^{0}_{Cr_{2}O^{2^{-}}_{7}/Cr^{3+}} = 1.33 \text{ V} ; E^{0}_{Cl/Cl^{-}} = 1.36 \text{ V}$$

Based on the data given above, strongest oxidising agent will be :

18. Resistance of 0.2 M solution of an electrolyte is 50 Ω . The specific conductance of the solution is 1.4 S m⁻¹. The resistance of 0.5 M solution of the same electrolyte is 280 Ω . The molar conductivity of 0.5 M solution of the electrolyte in S m² mol⁻¹ is :

15.	
(1) 5×10^3	(2) 5 × 10 ²
(3) 5 × 10 ⁻⁴	(4) 5×10^{-3}
	•

At 298 K, the standard reduction potentials are 19. 1.51 V for $MnO_{\overline{4}} | Mn^{2+}$, 1.36 V for $Cl_2 | Cl_2$, 1.07 V for $Br_2\,|\,Br^{-},$ and 0.54 V for $I_2\,|\,I^{-}$. At pH = 3, permanganate is expected to oxidize $\left(\frac{RT}{F} = 0.059 \text{ V}\right)$:- [JEE-MAINS (ONLINE) 2015] (1) Cl- and Br-(2) Cl-, Br- and I-(3) Br- and I-(4) I- only A variable, opposite external potential (E_{ext}) is 20. applied to the cell $Zn \mid Zn^{2+}$ (1 M) \mid Cu²⁺ (1 M) \mid Cu, of potential 1.1 V. When $E_{ext} < 1.1$ V and $E_{ext} > 1.1$ V, respectively electrons flow from : [JEE-MAINS (ONLINE) 2015] (1) anode to cathode in both cases (2) anode to cathode and cathode to anode (3) cathode to anode in both cases (4) cathode to anode and anode to cathode 21. What will occur if a block of copper metal is dropped into a beaker containing a solution of 1M ZnSO₄ [JEE-MAINS (ONLINE) 2016] (1) The copper metal will dissolve and zinc metal will be deposited (2) No reaction will occur (3) The copper metal will dissolve with evolution of oxygen gas (4) The copper metal will dissolve with evolution of hydrogen gas 22. Oxidation of succinate ion produces ethylene and carbon dioxide gases. On passing 0.2 Faraday electricity through on aqueous solution of potassium succinate, the total volume of gases (at both cathode and anode) at STP (1 atm and 273 K) is : [JEE-MAINS (ONLINE) 2016] (1) 8.96 L (2) 2.24 L (3) 4.48 L (4) 6.72 L For the following electrochemical cell at 298K, 23. $Pt(s) \mid H_2(g, 1bar) \mid H^+(aq, 1M) \mid M^{4+}(a), M^{2+}(a) \mid Pt(s)$ $E_{cell} = 0.092 \text{ V}$ when $\frac{[M^{2+}(aq.)]}{[M^{4+}(aq.)]} = 10^{x}$ Given : $E^{0}_{M^{4+}/M^{2+}} = 0.151V$; 2.303 $\frac{RT}{F} = 0.059V$

 The value of x is [JEE-Adv. 2016]

 (1) -2
 (2) -1
 (3) 1
 (4) 2

24.	Given	[JEE-MA	MNS - 2017]	27.	How long (approxin	nate) should water be		
	$E^{o}_{Cl_2/Cl^-} = 1.36 V, E^{o}_{Cr^{3+}}$	$_{/Cr} = -0.74 V$			electrolysed by passing current so that the oxyge burn 27.66 g of diborat	g through 100 amperes en released can completely ne ?		
	$E^{o}_{Cr_2O_7^{2-}/Cr^{3+}} = 1.33 V, E$	$^{o}_{MnO_{4}^{-}/Mn^{2+}} = 1.51$	V .		[JE	E-MAINS (OFFLINE) 2017]		
	Among the following, the strongest reducing agent				(Atomic weight of $B = 2$	10.8 u)		
	is				(1) 0.8 hours	(2) 3.2 hours		
	(1) Cr (2) Mn ²⁺	(3) Cr ³⁺	(4) Cl-		(3) 1.6 hours	(4) 6.4 hours		
25.	What is the standard	reduction pote	ntial (E°) for	28.	For the following cell :	[JEE-Adv. 2017]		
	$Fe^{3+} \rightarrow Fe$?	[JEE-MAINS (OI	NLINE) 2017]		$Zn(s) \mid ZnSO_4 (aq.) \mid CuSO_4 (aq.) \mid Cu(s)$			
	24. Given [JEE-MAINS - 2017 $E_{Cl_2/Cl^-}^{0} = 1.36 \text{ V}, E_{Cr^{2^+/Cr}}^{0} = -0.74 \text{ V}$ $E_{Cr_2O_7^{2^-/Cr^{3+}}}^{0} = 1.33 \text{ V}, E_{MnO_4^-/Mn^{2+}}^{0} = 1.51 \text{ V}$. Among the following, the strongest reducing agents (1) Cr (2) Mn ²⁺ (3) Cr ³⁺ (4) Cl ⁻ 25. What is the standard reduction potential (E ⁹) for Fe ³⁺ → Fe ? [JEE-MAINS (ONLINE) 201 Given that : $Fe^{2+} + 2e^- \rightarrow Fe \text{ ; } E_{Fe^{2^+}/Fe}^{0} = -0.47 \text{ V}$ $Fe^{3+} + e^- \rightarrow Fe^{2+} \text{ ; } E_{Fe^{3^+}/Fe}^{0} = +0.77 \text{ V}$ (1) +0.30 V (2) +0.057 V (3) -0.057 V (4) -0.30 V 26. To find the standard potential of M ³⁺ M electroded the following cell is constituted: Pt M M ³⁺ (0.001 mol L ⁻¹) Ag ⁺ (0.01 mol L ⁻¹) A The emf of the cell is found to be 0.421 volt a 298 K. The standard potential of half reaction M ³⁺ + 3e ⁻ → M at 298 K will be: [JEE-MAINS (ONLINE) 2017 (Given $E_{Ag^+/Ag}^{\ominus}$ at 298 K = 0.80 Volt) (1) +0.30 V (2) +0.057 V		47 N		when the concentration of Zn^{2+} is 10 times the concentration of Cu^{2+} , the expression for ΔG			
$Fe^{2+} + 2e^- \rightarrow Fe \ ; \ E^{o}_{Fe^{2+}/Fe} = -0.47 \ V$					(in J mol ⁻¹) is			
	$Fe^{3+} + e^- \rightarrow Fe^{2+}$	$E_{Fe^{3+}/Fe^{2+}}^{o} = +0$).77 V		[F is Faraday constant temperature , Eº(cell) =	, R is gas constant, T is 1.1V]		
	(1) +0.30 V	(2) +0.057	V		(1) 2.303 RT + 1.1F	(2) 2.303 RT – 2.2F		
	(3) –0.057 V	(4) –0.30 V	J		(3) 1.1 F	(4) –2.2 F		
26.	To find the standard p the following cell is co	otential of M ³⁺ onstituted:	M electrode,	29	When an electric current water, 112 mL of hydr	is passed through acidified		
	Pt M M ³⁺ (0.001 mo	L-1) Ag+(0.01	mol L-1) Ag		collected at the catode in 965 seconds. The current			
	The emf of the cell is found to be 0.421 volt at				passed, in ampere, is : [JEE-MAINS (ONLINE) 2018]			
	298 K. The standard potential of half reaction		(1) 2.0		(2) 1.0			
	$M^{3+} + 3e^- \rightarrow M$ at 2	98 K will be:			(3) 0.1	(4) 0.5		
	[JEE-MAINS (ONLINE) 2017] (Given $E_{Ag^+/Ag}^{\ominus}$ at 298 K = 0.80 Volt)				When 9.65 ampere current was passed for 1.0 hour into nitrobenzene in acidic medium, the amount of p-aminophenol produced is :-			
	(1) +0.30 V	(2) +0.057	V		[J]	EE-MAINS (ONLINE) 2018]		
	(3) –0.057 V	(4) -0.30 V	J		(1) 10.9 g	(2) 98.1 g		

. ,	0		5
(3) 10	9.0 g	(4) 9.81	g

PREVIOUS YEARS QUESTIONS			AN	SWER K	KEY	Exercise-II				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	2	3	3	4	2	2	3	1	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	2	1	4	1	4	4	3	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	4	1	3	2	2	2	2	4
				-						