WORK SHEET-06

Single Correct

- True statements regarding S_N1 reaction is/are Q.1
 - (A) Perfect racemisation is observed
- (B) Only Walden inversion is observed
- (C) Total retention of configuration is observed (D) None of these
- Pick an ether which cannot be prepared by direct Williamson's synthesis. Q.2
 - (A) CH₃CH₂CH₂-O-CH₂CH₂CH₃ (B) Ph-O-CH₂CH₃ (C) (CH₃)₃C-O-C₃H₄ (D) CH₃CH=CH-O-CH₂CH₃

 $(C) (CH_3)_3C-O-C_3H_5$

- (D) $CH_3CH=CH-O-CH=CH_3$
- Which of the alkyl halides will under go $S_N 1$ reaction at a fastest rate? Q.3

- (A) $Cl-CH_2-CN$ (B) $Cl-CH_2-NO_2$ (C) $Cl-CH_2-OMe$ (D) $Cl-CH_2-CH_3$
- Select the correct product from the following Q.4

P₁ & P₂ are respectively.

Q.6
$$\longrightarrow$$
 COOAg $\xrightarrow{Br_2/CCl_4}$ $\xrightarrow{Na/ether}$ Major product.
(A) \longrightarrow (C) \longrightarrow (D) \longrightarrow

Q.8
$$\xrightarrow{H} \xrightarrow{CH_3} \xrightarrow{Br} \xrightarrow{HBr} (X) \xrightarrow{NaI} (Y) (Major)$$

Product (Y) is
(A) cis-2-butene (B) trans-2-butene (C) 1-butene (D) Iso-butene

Comprehension

Paragraph for question nos. 9 to 11

Wurtz reaction

$$R-X \xrightarrow{Na} R-R+NaX+Disproportionation product$$

Wurtz reaction take place via free radical mechanism as well as ionic mechanism. Generally major product will form by radical combination reaction if radical is 1° or 2° and major product will form by disproportionation reaction if radical is 3°. If diradical generate during reaction then generally major product form by intramolecular combination.

- Q.9 Which statement is incorrect about Wurtz reaction.
 - (A) Reactivity order for halides is R-I > R-Br > R-CI > R-F
 - (B) If two type of halides are used then cross products also form during reaction.

(C) If
$$H_2C - CH_2 - CH_2 - CI$$
 is used during reaction then major product will be OH

(D) Na metal acts as oxidising agent during reaction.

Q.10
$$H \longrightarrow C1 \xrightarrow{Na/Dry \text{ ether}} Product(s)$$

Which product should not form during reaction.

Q.11 3-Methylhexane can be prepared by

(A)
$$X$$
 + X Na/ether X Na/ether X (C) $H_3C - CH_2 - X + X$ Na/ether X Na/

More than one may be correct

Q.12
$$CD_3 - CH - CH_3 \xrightarrow{alc.KOH}$$

True about above reaction is/are:

- (A) It is E^2 elimination
- (B) Saytzeff's alkene is major product in above reaction
- (C) CD₃-CH=CH₂ is major product
- (D) It is anti elimination

Q.13 Which of the following can give ppt. of AgCl with both aq. AgNO₃ & alc. AgNO₃.

(A)
$$\bigcirc$$
 (B) \bigcirc (C) $(Me_3C)_3C$ -Cl (D) Cl

Q.14 Methane will be produced in which of the following reaction:

(A)
$$Be_2C \xrightarrow{H_2O}$$
 (B) $CH_3OH \xrightarrow{LAH}$
(C) $CH_3-Cl \xrightarrow{Na}$ (D) $Al_4C_3 \xrightarrow{H_2O}$

Q.15 Which of the statement is correct?

(A) is more reactive than towards
$$S_N I$$
 mechanism due to aromaticity.

- (B) Inversion of configuration take place during $S_{\rm N}2$ mechansim at α -chiral carbon.
- (C) Formation of R-Cl from R-OH by reaction with SOCl₂ is best method because byproducts are gases.
- (D) CH₄ can be prepared by decarboxylation of carboxylic acid.

Match the column

Q.16 Column I (Reaction)

Column II (Mechanism of reaction for major product)

$$(P)$$
 $S_N 1$

$$(Q)$$
 S_N^2

(C)
$$H_3C \longrightarrow OH \longrightarrow SOCl_2 \longrightarrow CH_2CH_3 \longrightarrow O$$

(D)
$$H_3C \longrightarrow Br \longrightarrow KCN \longrightarrow$$

(S)
$$S_NAE$$

(T) $S_N EA$

Subjective

Q.17 Consider following reactions:

(a) $\xrightarrow{\text{HBr/H}_2\text{O}_2} \xrightarrow{\text{KCN}} \xrightarrow{\text{H}^+/\text{H}_2\text{O}} \xrightarrow{\text{H}^+/\text{H}_2\text{O}}$

(b)
$$C1 \xrightarrow{NH_3} \xrightarrow{PCl_5} \xrightarrow{H^+/H_2O} \rightarrow$$

(c)
$$\xrightarrow{\text{HBr}} \xrightarrow{\text{AgCN}} \xrightarrow{\text{H}^+/\text{H}_2\text{O}} \xrightarrow{\text{P}^+/\text{H}_2\text{O}}$$

(d)
$$H^+/CO/H_2O \rightarrow$$

(e)
$$\xrightarrow{\text{(i)BH}_3.\text{THF}} \xrightarrow{\text{Jone's reagent}}$$

Number of reactions which can produce Butyric acid as major product is / are____.

Q.18 Consider following compounds.

Number of compounds in above compound which are more reactive than $\sum_{N=0}^{\infty} C1$ for $S_N 1$ reaction is / are _____.

ANSWER KEY									
Q.1	D	Q.2	D	Q.3	C	Q.4	C	Q.5	В
Q.6	C	Q.7	\mathbf{C}	Q.8	В	Q.9	D	Q.10	C
Q.11	В	Q.12	ACD	Q.13	ABC	Q.14	ACD	Q.15	BCD
Q.16	I(A) S, (B) P,	(C) R	D) Q]	Q.17	[3]	Q.18	[4]		

WORK SHEET-06

HINTS & SOLUTION

- Q.1 (D)
- Q.2 (D)
 As for its preparation we have to take CH₃-CH=CH-X + CH₂=CH-ONa or CH₃-CH=CH-ONa + CH₂=CH-X. But in either case ether will not be prepared as in both cases there are vinylic halides.

by resonance

- Q.3 (C) $Cl-CH_2-OMe \xrightarrow{-Cl^{\Theta}} CH_2 OMe \longleftrightarrow CH_2 = O-Me$ cation is stabilized
- Q.4 (C) $SOCl_2 \rightarrow Retention of configuration \rightarrow S_N i mechanism$ $PCl_3 \rightarrow Inversion \rightarrow S_N 2$ mechanism
- Q.5 (B)

$$CH_{3} \xrightarrow{Et} O \xrightarrow{S_{N}^{2}} H_{3}C \xrightarrow{CH_{3}-1} OCH_{3}$$

Q.6 (C) \sim COOAg $\xrightarrow{Br_2/CCl_4} \sim$ Br $\xrightarrow{Na/ether} \sim$ Hunsdiecker reaction

Q.7 (C

$$\begin{array}{c} & & & \\ & &$$

Q.8 (B)

$$\begin{array}{c|c} H & \xrightarrow{CH_3} Br & \xrightarrow{HBr} & \xrightarrow{HBr} & \xrightarrow{CH_3} Br & \xrightarrow{Br_{M_3}} & \xrightarrow{CH_3} & \xrightarrow{CH_3} \\ H & \xrightarrow{CH_3} & & \xrightarrow{CH_3} & \xrightarrow{CH_3} & \xrightarrow{CH_3} & \xrightarrow{Br} & \xrightarrow{CH_3} & \xrightarrow{Br} & \xrightarrow{CH_3} & \xrightarrow{Br} & \xrightarrow{CH_3} & \xrightarrow{CH_$$

 $(NGP + S_N^2)$ retention of configuration)

- Q.9 (D)
- Q.10 (C)
- Q.11 (B)

(B)

- (D)
- Q.12 (A) (C) (D) B.E. C-D>C-HH effect H>DStability $CD_3-CH=CH_2< CH_3-CH=CD_2$
- Q.13 (A) (B) (C) A,B,C all capable of giving $S_N 1$
- Q.14 (A) (C) (D) (A), (C), (D) Be₂C + 4H₂O \rightarrow CH₄ + 2Be (OH)₂ CH₃-Cl $\xrightarrow{\text{Na}}$ CH₄ Al₄C₃ + 12 H₂O \rightarrow 3CH₄ + 4Al(OH)₃
- Q.15 (B)(C)(D)

- (B) in SN₂ inversion takes place
- (C) R-OH + SOCl₂ \rightarrow RCl + SO₂(\uparrow) + H(\uparrow) because by product are in gaseous state so reaction goes in foward direction.

(D) Me–COOH
$$\xrightarrow{\text{NaOH+CaO}}$$
 Me–H + CO₂ (\uparrow)

- Q.16 (A) S, (B) P, (C) R, (D) Q
- Q.17 3
- Q.18 4