Parabola

GENERAL EQUATION OF A CONIC : FOCAL DIRECTRIX PROPERTY

The general equation of a conic with focus (p, q) & directrix lx + my + n = 0 is:

$$(l^2 + m^2) \left[(x - p)^2 + (y - q)^2 \right] = e^2 \left(lx + my + n \right)^2$$

3

CHAPTER

$$\equiv ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$

Case (i) When the focus lines on the directrix

In this case $D = abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$ & the general equation of a conic represents a pair of straight lines and if:

e > 1, $h^2 > ab$ the lines will be real & distinct intersecting at S.

e = 1, $h^2 = ab$ the lines will coincident.

e < 1, $h^2 < ab$ the lines will be imaginary.

When the focus does not lie on the directix

The conic represents:

a parabola	an ellipse	a hyperbola	a rectangular hyperbola	
$e = 1; D \neq 0$ $h^2 = ab$	$0 < e < 1; D \neq 0$ $h^2 < ab$		$e > 1; D \neq 0$ $h^2 > ab; a + b = 0$	

Standard equation of a parabola is $y^2 = 4ax$. For this parabola:

- (*i*) Vertex is (0, 0)
- (*ii*) Focus is (*a*, 0)
- (*iii*) Axis is y = 0
- (*iv*) Directrix is x + a = 0

Latus rectum

A focal chord perpendicular to the axis of a parabola is called the LATUS RECTUM. For $y^2 = 4ax$.

- (*i*) Length of the latus rectum = 4a.
- (*ii*) Length of the semi latus rectum = 2a.
- (*iii*) Ends of the latus rectum are L(a, 2a) & L'(a, -2a).

PARAMETRIC REPRESENTATION

The simplest & the best form of representing the co-ordinates of a point on the parabola $y^2 = 4ax$ is $(at^2, 2at)$. The equation $x = at^2$ & y = 2at together represents the parabola $y^2 = 4ax$, t being the parameter.

TYPES OF PARABOLA

Four standard forms of the parabola are $y^2 = 4ax$; $y^2 = -4ax$; $x^2 = 4ay$; $x^2 = -4ay$.

Parabola	Vertex	Focus	Axis	Directrix	Length of Latus rectum	Ends of Latus rectum	Para- metric equation	Focal length
$y^2 = 4ax$	(0, 0)	(<i>a</i> , 0)	y = 0	x = -a	4 <i>a</i>	$(a, \pm 2a)$	$(at^2, 2at)$	x + a
$y^2 = -4ax$	(0, 0)	(- <i>a</i> , 0)	y = 0	x = a	4 <i>a</i>	$(-a, \pm 2a)$	$(-at^2, 2at)$	x – a
$x^2 = +4ay$	(0, 0)	(0, <i>a</i>)	x = 0	y = -a	4 <i>a</i>	(±2 <i>a</i> , <i>a</i>)	$(2at, at^2)$	y + a
$x^2 = -4ay$	(0, 0)	(0, -a)	x = 0	y = a	4 <i>a</i>	(±2a, -a)	$(2at, -at^2)$	y – a
$(y-k)^2$ = 4a(x-h)	(h, k)	(h+a, k)	y = k	x+a-h=0	4 <i>a</i>	$(h + a, k \pm 2a)$	$(h + at^2, k + 2at)$	x-h+a
$(x-p)^2$ = 4b(y-q)	(p, q)	(p, b+q)	<i>x</i> = <i>p</i>	y+b-q=0	4b	$\begin{array}{c} (p \pm 2a, \\ q + a) \end{array}$	$(p+2at, q+at^2)$	y-q+b

POSITION OF A POINT RELATIVE TO A PARABOLA

The point (x_1, y_1) lies outside, on or inside the parabola $y^2 = 4ax$ according as the expression $y_1^2 - 4ax_1$ is positive, zero or negative.

CHORD JOINING TWO POINTS

The equation of a chord of the parabola $y^2 = 4ax$ joining its two points $P(t_1)$ and $Q(t_2)$ is $y(t_1 + t_2) = 2x + 2at_1t_2$.

NOTES

(i) If PQ is focal chord then $t_1 t_2 = -1$.

- (*ii*) Extremities of focal chord can be taken as $(at^2, 2at) & \left(\frac{a}{t^2}, \frac{-2a}{t}\right)$.
- (*iii*) If $t_1 t_2 = k$ then chord always passes a fixed point (-*ka*, 0).

LINE & A PARABOLA

(a) The line y = mx + c meets the parabola $y^2 = 4ax$ in two points real, coincident or imaginary according as a > = < cm

⇒ condition of tangency is, $c = \frac{a}{m}$. Note: Line y = mx + c will be tangent to parabola

$$x^2 = 4ay$$
 if $c = -am^2$

(b) Length of the chord intercepted by the parabola $y^2 = 4ax$ on the line y = mx + c is: $\left(\frac{4}{m^2}\right)\sqrt{a(1+m^2)(a-mc)}$.

Note: length of the focal chord making an angle α with the *x*-axis is $4a \csc^2 \alpha$.

TANGENT TO THE PARABOLA $y^2 = 4ax$:

- (a) Point form: Equation of tangent to the given parabola at its point (x_1, y_1) is $yy_1 = 2a (x + x_1)$.
- (b) Slope form: Equation of tangent to the given parabola whose slope is 'm', is

$$y = mx + \frac{a}{m}, (m \neq 0)$$

Point of contact is $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

(c) Parametric form: Equation of tangent to the given parabola at its point P(t), is-

$$ty = x + at^2$$

Note: Point of intersection of the tangents at the point $t_1 \& t_2$ is $[at_1, t_2, a(t_1 + t_2)]$. (i.e. G.M. and A.M. of abscissae and ordinates of the points).

NORMAL TO THE PARABOLA $y^2 = 4ax$

- (a) Point form: Equation of normal to the given parabola at its point (x_1, y_1) is $y - y_1 = -\frac{y_1}{2a} (x - x_1)$.
- (b) Slope form: Equation of normal to the given parabola whose slope is 'm', is $y = mx 2am am^3$ foot of the normal is $(am^2, -2am)$.
- (c) Parametric form: Equation of normal to the given parabola at its point P(t), is $y + tx = 2at + at^3$.

NOTES

- (*i*) Point of intersection of normals at $t_1 \& t_2$ is $(a(t_1^2 + t_2^2 + t_1t_2 + 2), -at_1t_2 (t_1 + t_2)).$
- (ii) If the normal to the parabola $y^2 = 4ax$ at the point t_1 , meets the parabola

again at the point t_2 , then $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$.

(iii) If the normals to the parabola $y^2 = 4ax$ at the points $t_1 \& t_2$ intersect again on the parabola at the point ' t_3 ' then $t_1t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining $t_1 \& t_2$ passes through a fixed point (-2a, 0).

CHORD OF CONTACT

Equation of the chord of contact of tangents drawn from a point $P(x_1, y_1)$ is $yy_1 = 2a(x + x_1)$.

Remember that the area of the triangle formed by the tangents from the point (x_1, y_1) & the chord of contact is $\frac{(y_1^2 - 4ax_1)^{3/2}}{2a}$. Also note that the chord of contact exists only if the point *P* is not inside.

CHORD WITH A GIVEN MIDDLE POINT

Equation of the chord of the parabola $y^2 = 4ax$ whose middle point is (x_1, y_1) is $y - y_1 = \frac{2a}{y_1} (x - x_1)$.

DIAMETER

The locus of the middle points of a system of parallel chords of a Parabola is called a DIAMETER. Equation to the diameter of a parabola is y = 2a/m, where m = slope of parallel chords.

CONORMAL POINTS

Foot of the normals of three concurrent normals are called conormals point.

- (i) Algebraic sum of the slopes of three concurrent normals of parabola $y^2 = 4ax$ is zero.
- (*ii*) Sum of ordinates of the three conormal points on the parabola $y^2 = 4ax$ is zero.
- (*iii*) Centroid of the triangle formed by three co-normal points lies on the axis of parabola.
- (*iv*) If $27ak^2 < 4(h 2a)^3$ satisfied then three real and distinct normal are drawn from point (h, k) on parabola $y^2 = 4ax$.
- (v) If three normals are drawn from point (h, 0) on parabola $y^2 = 4ax$, then h > 2a and one the normal is axis of the parabola and other two are equally inclined to the axis of the parabola.

IMPORTANT HIGHLIGHTS

(a) If the tangent & normal at any point 'P' of the parabola intersect the axis at T & G then ST = SG = SP where 'S' is the focus. In other words the tangent and the normal at a point P on the parabola are the bisectors of the angle between the focal radius SP & the perpendicular from P on

the directrix. From this we conclude that all rays emanating from *S* will become parallel to the axis of the parabola after reflection.

- (b) The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the **focus**.
- (c) The tangents at the extremities of a focal chord intersect at right angles on the **directrix**, and a circle on any focal chord as diameter touches the directrix. Also a circle on any focal radii of a point $P(at^2, 2at)$ as diameter touches the tangent at the vertex and intercepts a chord of a length $a\sqrt{1+t^2}$ on a normal at the point *P*.
- (d) Any tangent to a parabola & the perpendicular on it from the focus meet on the tangent at the vertex.
- (e) Semi latus rectum of the parabola $y^2 = 4ax$, is the harmonic mean beetween segments of any focal chord

i.e.
$$2a = \frac{2bc}{b+c}$$
 or $\frac{1}{b} + \frac{1}{c} = \frac{1}{a}$.

(f) Image of the focus lies on directrix with respect to any tangent of parabola $y^2 = 4ax$.