Polynomial in one variable

An algebraic expression of the form

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x^1 + a_0 x^0$, where

(ii) $a_0, a_1, a_2, \dots a_n$ are real numbers

(iii) power of x is a positive integer, is called a polynomial in one variable.

Hence, a_n , a_{n-1} , a_{n-2} ,...., a_0 are coefficients of x^n , x^{n-1} ,, x^0 respectively and $a_n x^n$, $a_{n-1} x^{n-1}$, $a_{n-2} x^{n-2}$,... are terms of the polynomial. Here the term $a_n x^n$ is called the *leading term* and its coefficient a_n , the *leading coefficient*.

Degree of polynomials

Degree of the polynomial in one variable is the largest exponent of the variable. For example, the degree of the polynomial $3x^7 - 4x^6 + x + 9$ is 7 and the degree of the polynomial $5x^6 - 4x^2 - 6$ is 6.

Classification of polynomials

• Polynomials classified by degree

Degree	Name	General form	Example
$-\infty$ (undefined)	Zero polynomial	0	0
0	(Non-zero) constant polynomial	a; (a ≠ 0)	1
1	Linear polynomial	ax + b; (a ≠ 0)	x + 1
2	Quadratic polynomial	$ax^{2} + bx + c$; (a \neq 0)	$x^{2} + 1$
3	Cubic polynomial	$ax^{3} + bx^{2} + cx + d$; (a \neq 0)	x ³ + 1

A polynomial of degree n, for n greater than 3, is called a polynomial of degree n.

Polynomials classified by terms

Monomials : Polynomials having only one term are called monomials. E.g. 2, 2x, $7y^5$, $12t^7$ etc. **Binomials :** Polynomials having exactly two terms are called binomials. E.g. p(x) = 2x + 1, $r(y) = 2y^7 + 5y^6$. etc. **Trinomials :** Polynomials having exactly three terms are called trinomials. E.g. $p(x) = 2x^2 + x + 6$,

 $q(y) = 9y^6 + 4y^2 + 1$ etc.

Zeros / Roots of a polynomial / equation

The value of the variable x, for which the polynomial f(x) becomes zero is called zero of the polynomial.

E.g. : consider, a polynomial $p(x) = x^2 - 5x + 6$; replace x by 2 and 3.

 $p(2) = (2)^2 - 5 \times 2 + 6 = 4 - 10 + 6 = 0,$

 $p(3) = (3)^2 - 5 \times 3 + 6 = 9 - 15 + 6 = 0$

 \therefore 2 and 3 are the zeros of the polynomial p(x).

Roots of a polynomial equation

An expression f(x) = 0 is called a polynomial equation if f(x) is a polynomial of degree $n \ge 1$. A real number α is a root of a polynomial f(x) = 0 if $f(\alpha) = 0$ i.e. α is a zero of the polynomial f(x). E.g. consider the polynomial f(x) = 3x - 2, then 3x - 2 = 0 is the corresponding polynomial equation.

Here,
$$f\left(\frac{2}{3}\right) = 3\left(\frac{2}{3}\right) - 2 = 0$$

- i.e. $\frac{2}{3}$ is a zero of the polynomial f(x) = 3x 2
- or $\frac{2}{3}$ is a root of the polynomial equation 3x 2 = 0

Important concepts

- A non-zero constant is a polynomial of degree zero, but the degree of zero polynomial is not defined.
- If the sum of the co-efficients of polynomial is zero, then (x 1) is a factor of the polynomial.
- A polynomial in x is said to be a polynomial in standard form, if the powers of x are either in ascending order or in descending order.
- A polynomial of degree $n \ge 1$ can have at the most n real zeros.
- A non-zero constant polynomial has no zero.
- Every linear polynomial has one and only one zero.
- A quadratic polynomial $ax^2 + bx + c$, $a \neq 0$ can have at most two real zeros. In some cases, it may not have any real zero.
- Zero of a polynomial is actually the solution of the curve, y = f(x) and the line y = 0.

Remainder theorem

• **Statement :** Let p(x) be a polynomial of degree ≥ 1 and 'a' is any real number. If p(x) is divided by (x - a), then the remainder is p(a).

►	p(–a) is remainder on dividing $p(x)$ by $(x + a)$	$[\because x + a = 0 \Rightarrow x = -a]$
►	$p\left(\frac{b}{a}\right)$ is remainder on dividing p(x) by (ax – b)	$[\because ax - b = 0 \Rightarrow x = b/a]$
Þ	$p\left(\frac{-b}{a}\right)$ is remainder on dividing p(x) by (ax + b)	$[\because ax + b = 0 \Rightarrow x = -b/a]$
►	$p\left(\frac{b}{a}\right)$ is remainder on dividing p(x) by (b – ax)	$[\because b - ax = 0 \Rightarrow x = b/a]$

Factor theorem

- **Statement :** Let f(x) be a polynomial of degree ≥ 1 and a be any real constant such that f(a) = 0, then (x a) is a factor of f(x). Conversely, if (x a) is a factor of f(x), then f(a) = 0.
- P(x) is a polynomial of degree ≥ 1 and "a" is a real number then
 - $p(a) = 0 \Rightarrow (x a)$ is a factor of p(x)
 - (x a) is a factor of p(x) then p(a) = 0
 - ax b is a factor of p(x) then $P\left(\frac{b}{a}\right) = 0$
 - ax + b is a factor of p(x) then $P\left(\frac{-b}{a}\right) = 0$
 - (x a) is a factor of $x^n a^n$ where "n" is an odd positive integer
 - (x + a) is a factor of $x^n a^n$ where "n" is an odd positive integer
 - (x + a) is factor of $x^n a^n$ where "n" is positive even integer.
 - $(x^n + a^n)$ is not divisible by x + a when "n" is even
 - $x^n + a^n$ is not divisible by x a for any "n"
 - If x 1 is a factor of polynomial of degree 'n' then the condition is sum of the coeffecients is zero.
 - ► If (x + 1) is a factor of polynomial of degree 'n' then the condition is sum of the coefficients of even terms is equal to the coefficients of odd terms.

Relationship between the zeros and coefficients of a polynomial

For a linear polynomial ax + b, (a \neq 0), we have,

zero of a linear polynomial =-	b_	(constant term)
	 a	$\overline{(\text{coefficient of } x)}$

For a quadratic polynomial $ax^2 + bx + c$ (a $\neq 0$), with α and β as it's zeros, (x - α) and (x - β) are the factors of $ax^2 + bx + c$.

Therefore, $ax^2 + bx + c = K(x - \alpha)(x - \beta)$, (where K is a constant to balance the equation of the coefficient of x^2 i.e. $a \neq 1$.)

 $= K x^2 - K (\alpha + \beta) x + K \alpha \beta$

comparing the coefficients of x^2 , x and constant terms on both the sides, we get

 $a = K, b = -K (\alpha + \beta) and c = K \alpha \beta$

This gives

Sum of zeros	$-\alpha + \beta -$	b _	(coefficient of x)
Sumorzeros	Sum of zeros $= \alpha + \beta = -$	a	$\overline{(\text{coefficient of } x^2)}$
Product of zero	$c = \alpha \beta = c$	_ (cc	onstant term)
FIOUUCIOIZEI	a a a b a b a	_(co	efficient of x^2)

If α and β are the zeros of a quadratic polynomial f(x). Then polynomial f(x) is given by

 $f(x) = K\{x^2 - (\alpha + \beta)x + \alpha\beta\}$

or $f(x) = K\{x^2 - (\text{sum of the zeros}) x + \text{product of the zeros}\}$

where K is a constant.

Symmetric functions of the zeros

Let α,β be the zeros of a quadratic polynomial, then the expression of the form $\alpha + \beta$; $(\alpha^2 + \beta^2)$; $\alpha\beta$ are called the functions of the zeros. By symmetric function we mean that the function remain invariant (unaltered) in values when the roots are changed cyclically. In other words, an expression involving α and β which remains unchanged by interchanging α and β is called a symmetric function of α and β .

Some useful relations involving α and β are :-

- $\bullet \qquad \alpha^2 + \beta^2 = (\alpha + \beta)^2 2\alpha\beta$
- $\bullet \qquad (\alpha \beta)^2 = (\alpha + \beta)^2 4\alpha\beta$
- $\bullet \qquad \alpha^2 \beta^2 = (\alpha + \beta) (\alpha \beta) = (\alpha + \beta) \sqrt{(\alpha + \beta)^2 4\alpha\beta}$
- $\bullet \qquad \alpha^3 + \beta^3 = (\alpha + \beta)^3 3\alpha\beta (\alpha + \beta)$
- $\bullet \qquad \alpha^3 \beta^3 = (\alpha \beta)^3 + 3\alpha\beta (\alpha \beta)$
- $\bullet \qquad \alpha^4 \beta^4 = (\alpha^2 + \beta^2) (\alpha + \beta) (\alpha \beta) = [(\alpha + \beta)^2 2\alpha\beta] (\alpha + \beta) \sqrt{(\alpha + \beta)^2 4\alpha\beta}$
- $\bullet \qquad \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 2(\alpha\beta)^2 = [(\alpha + \beta)^2 2\alpha\beta]^2 2(\alpha\beta)^2$
- $\bullet \qquad \alpha^5 + \beta^5 = (\alpha^3 + \beta^3)(\alpha^2 + \beta^2) \alpha^2\beta^2(\alpha + \beta) = [(\alpha + \beta)^3 3\alpha\beta(\alpha + \beta)][(\alpha + \beta)^2 2\alpha\beta] (\alpha\beta)^2(\alpha + \beta)$

Division algorithm for polynomials

If f(x) is a polynomial and g(x) is a non-zero polynomial, then there exist two polynomials q(x) and r(x) such that $f(x) = g(x) \times q(x) + r(x)$, where r(x) = 0 or degree r(x) < degree g(x). In other words,

Dividend = Divisor × Quotient + Remainder

Remark : If r(x) = 0, then polynomial g(x) is a factor of polynomial f(x).

Algebraic identities

An algebraic identity is an algebraic equation that is true for all values of the variables present in the equation.

- $(x + y)^2 = x^2 + 2xy + y^2$
- $(x y)^2 = x^2 2xy + y^2$
- $x^2 y^2 = (x + y)(x y)$
- $(x + a) (x + b) = x^2 + (a + b) x + ab$
- $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$
- $(x + y)^3 = x^3 + y^3 + 3xy (x + y)$
- $(x y)^3 = x^3 y^3 3xy (x y)$
- $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
- $x^3 y^3 = (x y)(x^2 + xy + y^2)$
- $x^3 + y^3 + z^3 3xyz = (x + y + z)(x^2 + y^2 + z^2 xy yz zx)$
- If a + b + c = 0, then $a^3 + b^3 + c^3 = 3abc$

POLYNOMIAL

EXERCISE

			8.	If
1.	If $x + \frac{1}{x} = 5$, then the value	of $x^3 + \frac{1}{3}$ is		(1
	X	x ³		(3
	(1) 110 (2) 90	9.	0
	(3) 80 (4) 50		ge
2.	If $x^3 - (x + 1)^2 = 2001$ then	the value of x is		(1
	(1) 14 (2) 13		(3
	(3) 10 (4)) None	10.	Fa
	2 2	0		(1
3.	The square root of $\frac{x^2}{y^2} + \frac{y^2}{4x^2}$	$-\frac{x}{y} + \frac{y}{2x} - \frac{3}{4}$ is		(3
	y 4x	y Ex I		
	x 1 v	x 1 v	11.	Fa
	(1) $\frac{x}{y} - \frac{1}{2} - \frac{y}{2x}$ (2)	$\frac{x}{y} + \frac{1}{2} - \frac{y}{2x}$		
				(1
	(3) $\frac{x}{y} + \frac{1}{2} + \frac{y}{2x}$ (4)	$\frac{x}{y} - \frac{1}{4} - \frac{y}{2x}$		(-
	y 2 2x	y 4 2x		
4.	If the zeros of the polynomi	al ax ² + bx + c be in		(3
	the ratio m : n, then			
	(1) $b^2 mn = (m^2 + n^2) ac$		12.	V
	(2) $(m + n)^2 ac = b^2 mn$		12.	v
	(3) $b^2 (m^2 + n^2) = mnac$			a
_	(4) None of these			(1
5.	If $\alpha \neq \beta$ and the difference bet			` (3
	polynomials $x^2 + ax + b$ and same, then	$a x^2 + bx + a$ is the	13.	If
	(1) $a + b + 4 = 0$			th
	(2) $a + b - 4 = 0$			(1
	(3) $a - b + 4 = 0$			(3
	(4) $a - b - 4 = 0$		14.	In
6.	If $\alpha \neq \beta$ and $\alpha^2 = 5\alpha - 3$, β	$^2 = 5\beta - 3$, then the		ez fa
	polynomial whose zeros are	$\frac{\alpha}{2}$ and $\frac{\beta}{2}$ is .		fa (1
		F &		(1
) x ² – 5x + 3) 3x ² – 19x + 3		(2
7				
7.	The factors of $a^2(b^3 - c^3) + b^3$ are	$2(c^{2}-a^{2})+c^{2}(a^{2}-b^{2})$		(3
	(1) $(a - b) (b - c) (c - a) (ab + b)$	bc + ca)		(4
	(2) $(a + b) (b + c) (c + a) (ab + c)$		15.	Fa
	(3) (a – b) (b – c) (c – a) (ab –			(1
	(4) None of these			(3
			I	

8.	If p,q are zeros of x^2 +	px + q, then				
	(1) $p = 1$	(2) $p = 1 \text{ or } 0$				
	(3) $p = -2$	(4) $p = -2 \text{ or } 0$				
9.	On simplifying $(a + b)^3$	+ (a – b) ³ + 6a(a ² – b ²) we				
	get					
	(1) 8a ²	(2) 8a ² b				
	(3) 8a ³ b	(4) 8a ³				
10.	Factors of $(42 - x - x^2)$	are				
	(1) $(x - 7)(x - 6)$	(2) $(x + 7)(x - 6)$				
	(3) (x + 7)(6 – x)	(4) $(x + 7)(x + 6)$				
11.	Factors of $\left(x^2 + \frac{x}{6} - \frac{1}{6}\right)$	are				
	6 6					
		4				
	(1) $\frac{1}{6}(2x+1)(3x+1)$	(2) $\frac{1}{6}(2x+1)(3x-1)$				
	0	0				
	(3) $\frac{1}{6}$ (2x-1)(3x-1)	(4) $\frac{1}{2}(2x-1)(3x+1)$				
	6 , , ,	() 6 () / (
	3,3	3 3 9 1				
12.	Value of $\frac{a^3 + b^3}{a^3 + b^3}$	$\frac{b^{2}+c^{3}-3abc}{a-a^{2}-b^{2}-c^{2}}$, when				
	$ab + bc + ca - a^{-} - b^{-} - c^{-}$					
	a = -5, b = -6, c = 10 is					
	(1) 1	(2) –1				
	(3) 2	(4) –2				
13.	If $(x + y + z) = 1$, $xy + yz$	z + zx = -1, $xyz = -1$, then				
	the value of $x^3 + y^3 + z^3$	z ³ is				
	(1) –1	(2) 1				
	(3) 2	(4) –2				
14.	In method of factor	ization of an algebraic				
	expression, Which of t	he following statements is				
	false?					
	(1) Taking out a commo	on factor from two or more				
	terms					
	(2) Taking out a comm	on factor from a group of				
	terms					
	(3) By using remainder	theorem				
	(4) By using standard id	entities				
15.	Factors of $(a + b)^3 - (a$	$(-b)^3$ are				

- 5. Factors of $(a + b)^3 (a b)^3$ are (1) $2ab(3a^2 + b^2)$ (2) $ab(3a^2 + b^2)$
 - (3) $2b(3a^2 + b^2)$ (4) $3a^2 + b^{20}$

16.	The homogeneous funct	ion of the second degree	25.	The L.C.M.	of 22x(x + 1) ²	² and 36x ² (2x	$x^2 + 3x + 1$)
	in x and y having $2x - y$ as			is			
	2 when $x = y = 1$ and var			(1) $2x(x + 1)$.)		
	(1) $2x^2 + xy - y^2$			(2) 396x ² (x	$(+ 1)^2(2x + 1)^2$)	
	(3) $x^2 + xy - 2y^2$	(4) None of these		(3) 792x ³ (x	+ 1) ² (2x ² +	3x + 1)	
17.	The common quantity th			(4) None of	these		
	term of $a^2 : b^2$ to make i	t equal to a : b is	26.	The L.C.M	of $x^3 - 8$ and	$x^2 - 5x + 6$	is
		а		(1) x – 2			
	(1) ab (2) a + b	(3) a – b (4) $\frac{a}{b}$		(2) $x^2 + 2x$	+ 4		
				(3) $(x - 2)(x^2)$	² + 2x + 4)		
18.	If the polynomial $16x^4$ –			(4) (x −2)(x −	- 3)(x ² + 2x +	4)	
	be a perfect square, then (1) 12 (2) -12		27.	If the G.C.D). of the polyn	omials x ³ -3x	$x^2 + px + 24$
10				and $x^2 - 7x^2$	x + q is (x –	2), then th	e value of
19.	If $a - b = 3$, $a + b + x$ $(a - b)[x^3 - 2ax^2 + a^2x - b](a - b)[x^3 - a$,		(p + q) is:			
		(3) 32 (4) 36		(1) 0	(2) 20	(3) –20	(4) 40
20.	If $abx^2 = (a - b)^2(x + b)^$		28 .		M. of two poly		• · ·
20.	$\int d d x = (d - d) (x + d)$	i), then the value of			2) ² (x – 6) and		
	$1 + \frac{4}{x} + \frac{4}{x^2}$ is:-				3)(x – 2) ² , the		
	$x x^2$				ĸ − 2)		
					+ 12		
	$(1)\left(\frac{a-b}{a+b}\right)^2$	(2) $\left(\frac{a+b}{a-b}\right)^2$	29.		of two polyno		
	$\left(\frac{1}{a+b}\right)$	$\left(\frac{a}{a-b}\right)$			x ⁶ — 1. If one in the other pol		
					i the other po		
	$(2)^{2}$	$(h)^2$			1		
	$(3)\left(\frac{a}{a+b}\right)^2$	(4) $\left(\frac{b}{a+b}\right)^2$	30.		of 2x and 8 is		inese
			50.	(1) 2x	(2) 4x	, (3) 8x	(4) 16x
21.	Let α,β be the zeros of			(1) 2A	(2) 1	(0) 0X	(4) 10X
	$(x - b) - c$ with $c \neq 0$. Then		31	If $x^2 + \frac{1}{x^2} = \frac{1}{x^2}$	= 38, then the	value of $x - $	$\frac{1}{1}$ is
	mial $(x - \alpha) (x - \beta) + c$ ar			x ²	00, 11011 110		x
	(1) a, c	(2) b, c		(1) 6	(2) 4	(3) 0	(4) None
	(3) a, b	(4) $a + c, b + c$	32.	The simples	st form of (2x	+ 3) ³ – (2x –	3) ³ is
22.	A homogeneous express	ion of second degree in x		(1) 54 + 72		(2) 72 + 54	
	& y is			(3) 54 + 54	x ²	(4) None of t	these
		(2) $ax^2 + bx + cy$	33.	The simples	st form of (p –	$(q)^{3} + (q - r)^{3}$	+ (r – p) ³ is
	(3) $ax^2 + bx + cy^2$	()		(1) 4(p – q)(q – r)(r – p)	(2) 2 (p – q)((q – r)(r – p)
23.	If the sum of the zeros of the			(3) (p – q)(q	– r)(r – p)	(4) None of t	these
	is equal to the sum of the	-	34.	The square	root of $x^4 + 6$	$x^3 + 17x^2 + 2$	24x + 16 is
		(2) $p^2 + q^2 = 2q$		(1) $x^2 + 3x$	+ 4	(2) $2x^2 + 3x^2$	x + 4
	(3) $p^2 + p = 2q$			(3) $3x^2 + 3x^2$	x + 4	(4) None of t	these
24.			35.	The square	root of $x^4 - 2$	$2x^3 + 3x^2 - 2$	2x + 1 is
		(2) $(x - 2)(x - 1)$		(1) $x^2 + x +$	- 1	(2) $x^2 - x +$	1
	(3) $(x - 2)^2$	(4) $(x - 2)^3(x - 1)$		(3) x ² + x -	- 1	(4) x ² – x –	1

- **36.** The value of λ for which one zero of $4x^2 (1 + 4\lambda)x + \lambda^2 + 2$ may be one-third of the other is
 - (1) 4 (2) $\frac{33}{8}$
 - (3) $\frac{17}{4}$ (4) $\frac{31}{8}$
- **37.** The factors of $a^{3}(b c) + b^{3}(c a) + c^{3}(a b)$ are (1) (a + b + c) (a - b) (b - c) (c - a)(2) - (a + b + c) (a - b) (b - c) (c - a)(3) 2 (a + b + c) (a - b) (b - c) (c - a)(4) - 2 (a + b + c) (a - b) (b - c) (c - a)**46.**
- **38.** The value of 'a', for which one root of the quadratic polynomial $(a^2 5a + 3)x^2 + (3a 1)x + 2$ is twice as large as the other, is

$$(1) - \frac{1}{3} \qquad (2) \frac{2}{3} \\ (3) - \frac{2}{3} \qquad (4) \frac{1}{3}$$

- **39.** If the polynomial $x^{19} + x^{17} + x^{13} + x^{11} + x^7 + x^5 + x^3$ is divided by $(x^2 + 1)$, then the remainder is (1) 1 (2) $x^2 + 4$ (3) -x (4) x
- **40.** If (x 2) is a common factor of $x^3 4x^2 + ax + b$ and $x^3 - ax^2 + bx + 8$, then the values of a and b are respectively
 - (1) 3 and 5 (2) 2 and -4 (3) 4 and 0 (4) 0 and 4
- **41.** If the expressions $ax^3 + 3x^2 3$ and $2x^3 5x + a$ on dividing by x 4 leave the same remainder, then the value of a is

$$(1) 1 (2) 0 (3) 2 (4) -1$$

- **42.** If the polynomial $x^6 + px^5 + qx^4 x^2 x 3$ is divisible by $x^4 1$, then the value of $p^2 + q^2$ is (1) 1 (2) 5 (3) 10 (4) 13
- **43.** If $3x^3 + 2x^2 3x + 4 = (Ax + B)(x 1)(x + 2) + C(x 1) + D$ for all values of x, then A + B + C + D is

(1) 0 (2) 14

(3) 10 (4) All

- **44.** The expression $x^3 + gx^2 + hx + k$ is divisible by both x and x 2 but leaves a remainder of 24 when divided by x + 2 then the values of g, h and k are
 - (1) g = 10, h = -3, k = 0
 (2) g = 3, h = -10, k = 0
 (3) g = 10, h = -2, k = 3
 - (4) None of these
 - The value of m if $2x^m + x^3 3x^2 26$ leaves a remainder of 226 when it is divided by x - 2.
 - (1) 0 (2) 7
 - (3) 10 (4) All of these
 - **5.** The expression $Ax^3 + x^2 + Bx + C$ leaves remainder of $\frac{21}{4}$ when divided by 1 – 2x and 18 when divided by x. Given also the expression has a factor of (x – 2), the values of A, B and C are (1) A = 5, B = – 9, C = 3 (2) A = 27, B = – 18, C = 4

(3)
$$A = 4, B = -27, C = 18$$

(4) None of these

- **47.** If $h(x) = 2x^3 + (6a^2 10) x^2 + (6a + 2) x 14a 2$ is exactly divisible by x - 1 but not by x + 1, then the value of a is
 - (1) 0 (2) -1
 - (3) 10 (4) 2
- **48.** Given the polynomial is exactly divided by x + 1, and when it is divided by 3x 1, the remainder is 4. The polynomial gives a remainder hx + k when divided by $3x^2 + 2x 1$ then the values of h and k are
 - (1) h = 2, k = 3 (2) h = 3, k = 3
 - (3) h = 3, k = 2 (4) None of these
- **49.** The remainder when $f(x) = (x^4 x^3 + 2x 3) g(x)$ is divided by x 3, given that x 3 is a factor of g(x) + 3, where g(x) is a polynomial is
 - (1) 0 (2) -171 (3) 10 (4) 2
- **50.** If $x^3 hx^2 + kx 9$ has a factor of $x^2 + 3$, then the values of h and k are
 - (1) h = 3, k = 3
 (2) h = 2, k = 2
 (3) h = 2, k = 1
 (4) None of these

51.	The polynomial $f(x)$ has roots of equations 3, -3, -k. Given that the coefficient of x^3 is 2, and that $f(x)$ has a remainder of 8 when divided	62.
	by $x + 1$, the value of k is	63.
	(1) 1/2 (2) 1/4 (3) 1/5 (4) 2	00.
52 .	One of the factors of $x^3 + 3x^2 - x - 3$ is	64.
	(1) $x + 1$ (2) $x + 2$	0 11
	(3) x - 2 (4) x - 3	
53.	If $ax^2 + 2a^2x + b^3$ is divisible by $x + a$, then	
	(1) $a = b$ (2) $a + b = 0$	
	(3) $a^2 - ab + b^2 = 0$ (4) $a^2 + 2ab + b^2 = 0$	
54.	If $x^3 + 2x^2 + ax + b$ is exactly divisible by (x + a)	
	and (x – 1), then	65.
	(1) $a = -2$ (2) $b = -1$	
	(3) $a = -1$ (4) $b = 1$	
55.	If $f(x) = ax^2 + bx + c$ is divided by $(bx + c)$, then	
	the remainder is	
	(1) $\frac{c^2}{b^2}$ (2) $\frac{ac^2}{b^2} + 2c$	
	0 0	66.
	(3) $f\left(-\frac{c}{b}\right)$ (4) $\frac{ac^2 + 2b^2c}{b^2}$	00.
56.	$ax^4 + bx^3 + cx^2 + dx + e$ is exactly divisible by	
	x ² – 1, when:	
	(1) $a + b + c + e = 0$ (2) $a + c + e = 0$	
	(3) $a + b = 0$ (4) $a + c + e = b + d = 1$	67.
57.	The remainder of $x^4 + x^3 - x^2 + 2x + 3$ when	
	divided by $x - 3$ is	
-	(1) 105 (2) 108 (3) 10 (4) None	
58.	If $x - 3$ is a factor of $x^3 + 3x^2 + 3x + p$, then	
	the value of p is (1) $0 = (2) (2) (2) (2) 10 = (4) N_{\text{creat}}$	
50	(1) 0 (2) -63 (3) 10 (4) None The value of $ax^2 + bx + c$ when $x = 0$ is 6. The	68 .
59.	remainder when dividing by $x + 1$ is 6. The	
	remainder when dividing by $x + 2$ is 8. Then the	
	sum of a, b and c is	
	(1) 0 (2) -1 (3) 10 (4) None	69 .
60.	$x^n - y^n$ is divisible by $x + y$, when n is	
	(1) An odd positive integer	
	(2) An even positive integer	
	(3) An integer	
	(4) None of these	70.
61.	If α,β are the zeros of the quadratic polynomial	
	$4x^2 - 4x + 1$, then $\alpha^3 + \beta^3$ is –	
	1 1	
	(1) $\frac{1}{4}$ (2) $\frac{1}{8}$ (3) 16 (4) 32	

If α,β,γ are the zeros of the polynomial $x^3 + 4x + 1$, then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$ (1) 2(2) 3 (3) 4 (4) 5 The remainder when x^{1999} is divided by $x^2 - 1$ is (2) 3x (1) – x (3) x (4) None For the expression $f(x) = x^3 + ax^2 + bx + c$, if f(1) = f(2) = 0 and f(4) = f(0). The values of a, b & c are (1) a = -9, b = 20, c = -12(2) a = 9, b = 20, c = 12(3) a = -1, b = 2, c = -3(4) None of these If x + 1 is a factor of $ax^4 + bx^3 + cx^2 + dx + e = 0$ then (1) a + c + e = b + d(2) a + b = c + d(3) a + b + c + d + e = 0(4) a + c + b = d + eIf (x - 3) is the factor of $3x^3 - x^2 + px + q$ then (1) p + q = 72(2) 3p + q = 72(3) 3p + q = -72(4) q - 3p = 72For what values of n, (x + y) is a factor of $(x - y)^n$. (1) for all values of n (2) 1 (3) only for odd numbers (4) none of these $f(x) = 3x^5 + 11x^4 + 90x^2 - 19x + 53$ is divided by x + 5 then the remainder is _____. (1) 100 (2) - 100(3) - 102(4) 102 If (x - 3), (x - 3) are factors of $x^3 - 4x^2 - 3x + 18$; then the other factor is (1) x + 2(2) x + 3(3) x - 2 (4) x + 6 If $f\left(\frac{-3}{4}\right) = 0$; then for f(x), which of the following is a factor? (1) 3x - 4 (2) 4x + 3 (4) 4x - 3 (3) - 3x + 4

	_		I				
71.	$f(x) = 16x^2 + 51x + 35$	then one of the factors	81.		ainder obtair	ned when x ²⁰	⁰⁷ is divisible
	of f(x) is			by x ² - 1.			
	(1) $x - 1$					(3) x + 1	
	(3) x - 3		82.			+ 15x + p, v	
72.		is divided by $(x + 2)$, the				mainder, then	p is equal to
	remainder is -6 ; then t	he value of 'a' is		(1) –16	(2) –5	(3) 20	(4) 10
		33	83.		-	eros of the	
	(1) -3 (2) -2	(3) 0 (4) $\frac{33}{8}$		$2x^3 - 6x^2 - 4$	4x + 30, then	n the value of ($\alpha\beta + \beta\gamma + \gamma\alpha$)
73.	If $a^3 - 3a^2b + 3ab^2 - b^3$	is divided by (a – b), then		is			
70.	the remainder is	is divided by (a - 0), men		(1) – 2		(2) 2	
	(1) $a^2 - ab + b^2$	(2) $a^2 + ab + b^2$		(-) -		(4) – 30	
	(3) 1	(4) 0	84.	If α , β and	$\boldsymbol{\gamma}$ are the z	eros of the	polynomial
74.		$^{3} = 44$, then α , β are the		<i>(</i>) 2		. 1 1	. 1
74.	$a + p = 4$ and $a^{+} + p$ zeros of the polynomial.	$=$ 44, men α ,p are me		$f(x) = ax^3 + $	$bx^2 + cx + c$	d, then $\frac{1}{\alpha} + \frac{1}{\beta}$	$\frac{\gamma}{\gamma} =$
	(1) $2x^2 - 7x + 6$	$(2) 3v^2 + 9v + 11$		h	C	C	C
	(1) $2x^{2} - 7x + 0$ (3) $9x^{2} - 27x + 20$			(1) $-\frac{a}{a}$	(2) $\frac{d}{d}$	(3) – c	(4) $-\frac{a}{a}$
75			85.	If α,β and	$\boldsymbol{\gamma}$ are the z	eros of the	polynomial
75.				$f(x) = ax^3 -$	$bx^2 + cx - d$	I, then $\alpha^2 + \beta$	$B^2 + \gamma^2 =$
	(1) mx + m + c			(1) $\frac{b^2 - ac}{ac}$		(2) $\frac{b^2 + 2ac}{b^2}$	
-	(3) $m^2x + mc + c$			u		0	
76.		3 + 7x, then the remainder		(3) $\frac{b^2 - 2ac}{2}$		(4) $\frac{b^2 - 2ac}{a^2}$	
	is		86.	a If α β and	v are the z	eros of the	polynomial
	(1) $\frac{490}{9}$ (2) $\frac{-490}{9}$	(2) $\frac{470}{(4)}$ (4) None	00.	n a, p una	f are the z		porynomia
	(1) 9 (2) 9	(5) 9 (4) None		$f(x) = x^3 + p$	$px^2 - pqrx +$	r, then $\frac{1}{\alpha\beta}$ +	$\frac{1}{8} + \frac{1}{8} =$
77.	The remainder whe	$f(x) = 3x^4 + 2x^3$				մի	ργ γα
	2			(1) $\frac{r}{-}$	(2) <u>p</u>	(3) $-\frac{p}{r}$	$(4) - \frac{r}{r}$
	$-\frac{x^2}{3}-\frac{x}{9}+\frac{2}{27}$ is divided	by $g(x) = x + \frac{2}{2}$ is	07	1	1	1	1-
	3 9 27	3	87.			+ px + q was ros were four	
	(1) -1 (2) 1	(3) 0 (4) -2				ne original pol	
78.	The remainder when 1 \cdot	$+ x + x^2 + x^3 + \dots +$		(1) 3, 7		(2) – 3, 7	
	x^{2006} is divided by x –	1 is		(1) 0, 7 (3) – 3, – 7		(2) - 3, -10)
	(1) 2005	(2) 2006	88.			he polynomia	
	(3) 2007	(4) 2008	00.				
79 .	If (x - 1), (x + 1) and	l (x – 2) are factors of		and $\frac{1}{2}$, 2β be	e the zeros o	of $x^2 - qx +$	r. Then the
	$x^4 + (p - 3)x^3 - (3p - 5)$)x ² + (2p – 9) x + 6 then		value of r is	_		
	the value of p is			(1) $\frac{2}{2}(p-q)(2)$	2q – p)	(2) $\frac{2}{9}(q-p)$	(2p – q)
	(1) 1	(2) 2		9		9	
	(3) 3	(4) 4		(3) $\frac{2}{2}(q-2p)$	(2q – p)	(4) $\frac{2}{9}(2p-c)$	д)(2q – р)
80.	If the remainder when the	e polynomial f(x) is divided				<u>, 9</u> , ,	'
		, 8 respectively then the	89.	When \mathbf{x}^{200} .	+ 1 is divided	by $x^2 + 1$, th	e remainder
	remainder when f(x) is d	ivided by $(x - 1)(x + 1)$ is		is equal to –			
	(1) 7 – x	(2) $7 + x$		(1) x + 2		(2) 2x – 1	
	(3) 8 – x	(4) $8 + x$		(3) 2		(4) – 1	
			I				

90.	If a $(p + q)^2 + 2bpq + c$ 2bqr + c = 0 then pr is e		99.
	(1) $p^2 + \frac{a}{c}$	(2) $q^2 + \frac{c}{a}$	
91.	(3) $p^2 + \frac{a}{b}$ If a,b and c are not all e zeros of the polynomial of $(1 + \alpha + \alpha^2) (1 + \beta + \beta)$	$ax^2 + bx + c$, then value	100
	(1) 0	(2) positive	
92.	(3) negative If 2 and 3 are the zeros of then the values of m and		101
0.0	(1) -5, - 30 (3) 5, 30	(2) -5, 30 (4) 5, - 30	
93.	are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ i	e polynomial whose zeros s –	102
	(1) $3x^2 + 4p^2x + p^4$ (3) $3x^2 - 4p^2x + p^4$		
94.	If c, d are zeros of $x^2 - 10a$ of $x^2 - 10cx - 11d$, then	value of $a + b + c + d$ is	
95.	(1) 1210 (2) – 1 If the ratio of the roots of is the same as that of t $x^{2} + qx + r$, then		103
	(1) $br^2 = qc^2$ (3) $q^2c^2 = b^2r^2$	(2) $cq^2 = rb^2$ (4) $bq = rc$	104
96.	The quadratic polynomial zeros of $2x^2 - 5x + 2 =$ (1) $8x^2 - 10x + 2$		
		$\begin{array}{l} (2) \ x^2 - 5x + 4 \\ (4) \ x^2 - 10x + 6 \end{array}$	
97.	If α,β,γ are the zeros of t 11, then the polynomial w and ($\gamma+\alpha$) is –	he polynomial x ³ – 3x + hose zeros are (α+β), (β+γ)	105
		(2) $x^3 - 3x + 11$	
		$(4) x^3 - 3x - 11$	106
98.	If α , β , γ are such that α + β $\alpha^3 + \beta^3 + \gamma^3 = 8$, then α		
	(1) 10	(2) 12	
	(3) 18	(4) None	

If α,β are the roots of $ax^2 + bx + c$ and $\alpha + k$, $\beta + k$ are the roots of $px^2 + qx + r$, then k =

(1)
$$-\frac{1}{2}\left[\frac{a}{b} - \frac{p}{q}\right]$$
 (2) $\left[\frac{a}{b} - \frac{p}{q}\right]$
(3) $\frac{1}{2}\left[\frac{b}{a} - \frac{q}{p}\right]$ (4) (ab - pq)

100. The condition that $x^3 - ax^2 + bx - c = 0$ may have two of the roots equal to each other but of opposite signs is :

(1)
$$ab = c$$
 (2) $\frac{2}{3}a = bc$ (3) $a^2b = c$ (4) None

- 101. If one zero of the polynomial ax² + bx + c is positive and the other negative then (a,b,c ∈R, a ≠ 0)
 (1) a and b are of opposite signs.
 - (2) a and c are of opposite signs.
 - (3) b and c are of opposite signs.
 - (4) a,b,c are all of the same sign.
- **102.** If α,β are the zeros of the polynomial $x^2 px + q$, then $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2}$ is equal to – (1) $\frac{p^4}{p^4} + 2 - \frac{4p^2}{p^4}$ (2) $\frac{p^4}{p^4} - 2 + \frac{4p^2}{p^4}$

(1)
$$\frac{q^2}{q^2} + 2q^2 - \frac{q}{q}$$
 (2) $\frac{q^2}{q^2} - 2q + \frac{q}{q}$
(3) $\frac{p^4}{q^2} + 2q^2 - \frac{4p^2}{q}$ (4) None of these

103. If α , β are the zeros of the polynomial $x^2 - px + 36$ and $\alpha^2 + \beta^2 = 9$, then p =

(1)
$$\pm 6$$
 (2) ± 3 (3) ± 8 (4) ± 9

104. If α,β are zeros of $ax^2 + bx + c$, $ac \neq 0$, then zeros of $cx^2 + bx + a$ are –

(1)
$$-\alpha$$
, $-\beta$
(2) α , $\frac{1}{\beta}$
(3) β , $\frac{1}{\alpha}$
(4) $\frac{1}{\alpha}$, $\frac{1}{\beta}$

105. A real number is said to be algebraic if it satisfies a polynomial equation with integral coefficients. Which of the following numbers is not algebraic :

(1)
$$\frac{2}{3}$$
 (2) 2 (3) 0 (4) π

106. The cubic polynomials whose zeros are 4, $\frac{3}{2}$ and -2 is : (1) $2x^3 + 7x^2 + 10x - 24$

(1) $2x^3 + 7x^2 + 10x - 24$ (2) $2x^3 + 7x^2 - 10x - 24$ (3) $2x^3 - 7x^2 - 10x + 24$ (4) None of these

107.	. If the sum of zero	s of the polynomial	109.	Consider $f(x) = 8x^4 - 2x^4$	² + 6x – 5 and α,β,γ,δ are
	$p(x) = kx^3 - 5x^2 - 11x - $	- 3 is 2, then k is equal to		it's zeros then $\alpha + \beta + \gamma + \beta$	δ =
	(1) k = $-\frac{5}{2}$			(1) $\frac{1}{4}$	$(2) - \frac{1}{4}$
	(2) k = $\frac{2}{5}$			$(3) -\frac{3}{2}$	(4) None
	(3) k = 10 (4) k = $\frac{5}{2}$		110.		- $px + q = 0$ have a root in quation has equal roots, then
108.	If $f(x) = 4x^3 - 6x^2 + 5x$	– 1 and α , β and γ are its		(1) b + q = 2ap	
	zeros, then $\alpha\beta\gamma =$ (1) $\frac{3}{2}$	(a) ⁵		(2) b + q = $\frac{ap}{2}$	
	-	(2) $\frac{5}{4}$		(3) $b + q = ap$	
	$(3) -\frac{3}{2}$	(4) $\frac{1}{4}$		(4) None of these	

ANSWER F	KEY
----------	-----

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	2	1	2	1	4	1	1	4	3	2	1	2	3	3	1	1	3	2	
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	3	4	3	1	2	4	1	3	2	3	1	1	3	1	2	4	2	2	3	
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	3	2	2	2	3	4	2	2	1	1	1	1	3	3	2	2	2	1	
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	1	3	3	1	1	3	4	3	1	2	4	4	4	4	3	2	3	3	4	
Que.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	2	2	1	3	4	2	4	4	3	2	4	2	3	1	2	2	4	3	3	
Que.	101	102	103	104	105	106	107	108	109	110										
Ans.	2	1	4	4	4	3	4	4	4	2										