CHAPTER 21

NOMENCLATURE OF ORGANIC COMPOUNDS

21.1 CLASSIFICATION OF ORGANIC COMPOUNDS

All the known organic compounds have been broadly divided into the following classes. These are discussed below

21.1.1 Acyclic Compounds

Example:

21.1.2 Cyclic Compounds

(a) **Homocyclic compounds:** Contain rings which are made up of only one kind of atoms. These are of two types:

(i) Alicyclic compounds: are carbocyclic compounds which resemble aliphatic compounds in their properties. For example

Cyclopropane

Cyclohexane

(ii) Aromatic compounds: These are also called benzenoid compounds or arenes. For example

- (b) **Heterocyclic compounds:** Cyclic compounds containing one or more heteroatoms (e.g., O,N,S, etc.) in the ring are called heterocyclic compounds. These are of two types:
 - (i) Alicyclic heterocyclic compounds: Heterocyclic compounds which resemble aliphatic compounds in their properties are called alicyclic heterocyclic compounds, For example

Oxirane or Tetrahydrofuran 1,4-Dioxane Pyrrolidine Epoxyethane (THF)

 (ii) Aromatic heterocyclic compounds. Heterocyclic compounds which resemble benzene and other aromatic compounds in most of their properties are called aromatic heterocyclic compounds. For example

1,4-Dioxane

21.2 SYSTEM OF NOMENCLATURE FOR ORGANIC COMPOUNDS

Nomenclature of organic compounds consists of the following two systems.

21.2.1 Trivial System or Derived System

In the trivial system, the name of the compound could indicate a compound source from which it is derived.

Compound	Source	Root Word
Malec acid	Apples	Malus
Tartaric acid	Grapes	Tartar
Acetic acid	Vinegar	Acetum
Formic acid	Ants	Formical
Citric acid	Lemon	Citrus

21.2.2 IUPAC Name or Standard System

According to the IUPAC rule, 'Any given organic structure has only one IUPAC name and any IUPAC name represents only one molecular structure of compound'. The complete IUPAC name of an organic compound consists of the following parts:

Secondary prefix + Primary prefix + Word root + Primary suffix + Secondary suffix

(a) **Root word:** Select the word root to denote the longest possible continuous chain of carbon atoms containing the functional group.

Chain Length	Root Word	Chain Length	Root Word	Chain Length	Root Word
C ₁	Meth-	C ₂	Eth-	C ₃	Prop-
C ₄	But-	C ₅	Pent-	C ₆	Hex-
C ₇	Hept-	C ₈	Oct-	C ₉	Non
C ₁₀	Dec	C ₁₁	Undec	C ₁₂	Dodec
C ₁₃	Tridec	C ₁₄	Tetradec	C ₁₅	Pentadec
C ₂₀	Eicos				

(b) **Suffix:** They are of two types:

Primary suffix. A primary suffix is added to the word root to indicate whether the carbon chain is saturated or unsaturated. The three basic primary suffixes are:

If the carbon chain contains more than one double or triple bonds, then the name of root word is modified by adding 'a' suffix.

21.2.2.1 Secondary Suffix

	Functional group	Suffix	Prefix
1. Carboxylic acids	—СООН	-oic acid	Carboxy
2. Anhydride	0 0 -COC	-oic anhydride	
3. Ester	O II C_OR	-oate	Carboalkoxy
4. Acid halide	O □□ □−C−−X	-oyl halide	Haloformyl or halomethanoyl
5. Amide	$\overset{O}{\overset{ }{_{-C}-NH_2}}$	-amide	Carbomoyl or carboxamido

6. Cyanides	—C ≡ N	nitrile	Cyano
7. Isocyanide	−N≅C	isonitrile	Isocyano
8. Aldehydes	О —С—Н	-al	Formyl or methanoyl or aldo
9. Ketones	0 C	-one	Oxo, keto
10. Alcohol	-OH	-ol	Hydroxyl
11. Ethers	-0-		Alkoxy
12. Amines	-NH ₂	amine	Amino

(c) **Secondary suffix:** A secondary suffix indicates the functional group present in the organic compound. Some important secondary suffixes are:

Chain terminating functional group when attached with alicyclic ring have different secondary suffix.

−C≡N	Carbonitrile	H C==0	Carboldehyde
OH _C=0	Carboxylic acid	H C==0	Carboxamide
	Carbonyl halide	OR _C=0	Carboxylate

Prefix: Prefixes are of two types:

- (a) **Primary prefix:** A primary prefix is used simply to distinguish cyclic compound from acyclic compounds. For example, in case of carbocyclic compounds, a primary prefix cyclo is used immediately before the word root.
- (b) **Secondary prefix:** In the IUPAC system of nomenclature, certain groups are not considered as functional groups but instead are treated as substituents. They are arranged in alphabetical order to denote the substituent or the side chains.

Side chain

Alkane
$$\xrightarrow{-\text{ane}}_{+\text{yl}}$$
 Alkyl e.g., $-CH_3 \xrightarrow{-}_2H_5$
methyl ethyl

Cycloalkane $\xrightarrow{-ane}{+yl}$ Cycloalkyl e.g.,

.

cyclopropyl cyclobutyl

Unsaturated side chain

Alkene
$$\xrightarrow{-e}_{+yl}$$
 Alkenyl e.g., $-CH = CH_2 - CH_2 - CH = CH_2$
_{ethenyl} propenyl

Alkyne
$$\xrightarrow{-e}_{+yl}$$
 Alkynyl e.g., $-C \equiv CH_2 - C \equiv C - CH_2$

21.3 RULES FOR WRITING NOMENCLATURE OF ORGANIC COMPOUNDS HAVING NO FUNCTIONAL GROUP

21.3.1 Selection of Principal Chain

Select the longest continuous chain of carbon atoms contaning maximum number of side chains or substitutents in the molecule. For example

21.3.2 Numbering of Principal Chain

Numbering of principal chain is done on the basis of the following three rules in their given order of priority.

(a) **Lowest locant rule:** Number the carbon atoms of the parent chain starting from that end which gives the lowest possible number to the carbon atom carrying the substituent.

$$\begin{array}{c} \mathsf{CH}_3 & \mathsf{CH}_3 \\ \mathsf{CH}_3 \overset{3|}{\mathsf{CH}}_2 \overset{-}{\longrightarrow} \mathsf{CH}_- \mathsf{CH}_2 \mathsf{CH}_2 \overset{4}{\mathsf{CH}}_2 \overset{5}{\mathsf{CH}}_3 & \mathsf{CH}_3 \overset{-}{\longrightarrow} \overset{5}{\longrightarrow} \overset{4|}{\mathsf{CH}} \overset{3}{\longrightarrow} \overset{-}{\longrightarrow} \overset{2}{\mathsf{CH}}_2 \overset{1}{\overset{1}{\mathsf{CH}}}_1 \overset{3}{\longrightarrow} \overset{-}{\overset{1}{\mathsf{CH}}}_2 \overset{1}{\overset{1}{\mathsf{CH}}}_1 \overset{-}{\overset{1}{\mathsf{CH}}}_3 \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{1}{\mathsf{CH}}} \overset{-}{\overset{-}{\mathsf{CH}}} \overset{-}{\overset{-}{{}}} \overset{-}{{}} \overset{-}}{{} \overset{-}{{}} \overset{-}}{{}} \overset{-}{{}} \overset{-}{{}} \overset{-}{{}}$$

The number that indicates the position of the substituent on the parent chain is called the positional number or the locant.

(b) **Lowest sum rule:** When two or more substituents are present, then numbering of the carbon atoms of the parent chain is done in such a way that the sum of locants is the lowest. This is called the lowest sum rule.

- (d) Rule of equivalent position:
 - (i) When two different side chains are present at equivalent positions, the numbering of the parent chain is done in such a way that the side chain which comes first in the alphabetical order (written first in the name) gets the lower number. For example

(ii) When two different substituents are present at equivalent positions, the numbering of the parent chain is done in such a way that the substituent which comes first in the alphabetical order (written first in the name) gets the lower number. For example

(iii) When a side chain and a substituent are present at equivalent position, then substituent gets less locant.

$$\overset{6}{\overset{}{\text{CH}_3}} \overset{5}{\overset{-}{\underset{\text{CH}_2}}} \overset{4}{\overset{-}{\underset{\text{CH}_2}}} \overset{3}{\underset{\text{CH}_2}} \overset{2}{\overset{-}{\underset{\text{CH}_2}}} \overset{1}{\underset{\text{CH}_3}} \overset{1}{\underset{\text{NO}_2}} \overset{2}{\underset{\text{CH}_3}} \overset{1}{\underset{\text{NO}_2}}$$

(e) Naming of the complex substituent:

If a side chain contains a side chain or a substituent inside is called complex side chain. The name of such a substituent is always enclosed in brackets to avoid confusion with the numbers of the parent chain. For example

- (b) While deciding the alphabetical order of the various substituents, the name of the complex substituent is considered to begin with the first letter of its complete name.
- (c) When the names of two or more substituents are composed of identical words, priority of citation is given to that substituent which has the lowest locant at the first cited point of difference within the complex substituent. For example

$$\begin{array}{cccc} \mathsf{CH}_3 & \mathsf{CH}_3 \\ & & \mathsf{CH}_3\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2 \\ & & \mathsf{CH}_3\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2 \\ & & \mathsf{CH}_3\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2 \\ \hline \\ 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \\ \hline \\ & & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \\ \hline \\ & & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \\ \hline \\ & & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \\ \hline \\ & & \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3 \\ \hline \\ & & \mathsf{CH}_3\mathsf{CH}_2$$

21.4 RULES FOR IUPAC NOMENCLATURE OF UNSATURATED HYDROCARBONS

1. The parent chain must contain the multiple bond regardless of the fact whether it also denotes the longest continuous chain of carbon atoms or not. For example

$$\overset{5}{\text{CH}_3} \overset{4}{-} \overset{3}{\text{CH}_2} \overset{-}{-} \overset{-}{\text{CH}_2} \overset{-}{-} \overset{-}{\text{CH}_3} \overset{-}{-} \overset{-}{-} \overset{-}{\text{CH}_3} \overset{-}{-} \overset{-}{-$$

2. If both double and triple bonds are present, the numbering of the parent chain should always be done from that end which is nearer to the double or the triple bond, i.e., the lowest locant rule for the multiple bonds must be followed. For example

3. If, however, there is a choice in numbering the double bond is always given preference over the triple bond. For example

4. If both double and triple bonds are present in the compound, their locants are written immediately before their respective suffixes and the terminal 'e' from the suffix 'ene' is dropped while writing its complete name.

For example, $\overset{5}{CH}_{3}$ — $\overset{4}{CH}$ = $\overset{3}{CH}$ — $\overset{2}{CH}$ = $\overset{1}{CH}_{2}$ Pent + 3-en(e) + 1-yne = Pent-3-en-1-yne

21.5 IUPAC NOMENCLATURE OF COMPOUNDS CONTAINING FUNCTIONAL GROUP

Classification of functional group: Functional groups are of two types as discussed hereunder.

21.5.1 Chain Terminating Functional Group

Functional group in which the carbon of functional group is appeared to be trivalent belongs to this category. Carbon of these functional groups always gets number one locant and number is usually not written with these functional group. E.g.,

-CN; -CHO; -COOH; -CONH₂; -COX; -COOH, etc.

21.5.2 Nonchain Terminating Functional Group

Carbon of these groups gets lowest locant but it may or may not get number one locant. E.g.,

 $-OH; -SH; -C-; -NH_2, etc.$

While naming organic compounds containing one functional group, double and triple bonds and substituents, the following additional rules are observed.

(a) Selection of parent chain: Select the longest possible chain of carbon atoms containing the functional group and the maximum number of multiple bonds as the parent chain without caring

whether it also denotes the longest possible carbon chain or not. Parent chain contains four rather than five carbon atoms

$$\begin{array}{ccccc} & & & & & & \\ 0 & & & & & \\ 1 & 2|| & 3 & 4| & 5 & 6 & 7 \\ CH_2 - C - CH_- CH_- CH_2 CH_2 CH_2 CH_3 \\ & & & \\ & & & \\ CH_3 \end{array}$$

Parent chain contains six rather than seven carbon atoms.

(b) **Numbering of principal chain:** Number the parent chain in such a way that the functional group gets the lowest possible number followed by double and triple bonds even if it violates the lowest sum rule.

(c) IUPAC name of alcohols: General name: Alkanol. E.g.,

 $(CH_3)_3C-OH \qquad \bigcirc \begin{array}{c} OH \\ -C-CH \\ \phi \end{array} CH_2-CH_2-CH_3 \\ CH_2-CH_2-CH_3 \\ 0 \\ CH_2-CH_2-CH_3 \\ CH_2-CH_3 \\ CH_2-CH_3 \\ CH_3-CH_3 \\ CH_3-C$

2-methyl-2-propanol 1-cyclohexyl-1-phenyl-2-propyl-1-pentane

(d) IUPAC name of ethers: General name: Alkoxy alkane or alkoxy cycloalkane

(e) IUPAC name of cyanides: General name: Alkane nitrile or cycloalkane carbonitrile

Cyclopropane carbonitrile 3-ethyl-4-methyl-2-propyl-hexane-nitrile

(f) IUPAC name of aldehyde: General name: Alkanal or cycloalkane carboldehyde

Br CHO CHO Br

^{2,2-}bis(2-bromopropyl)-1, 3-propanedial

2,2-dimethyl cyclohexane-carboldehyde

(g) IUPAC name of ketones: General name: Alkanone or cycloalkanone

(h) IUPAC name of carboxylic acid: General name: Alkanoic acid or cycloalkane carboxylic acid

(i) IUPAC name of acid anhydride:

1. Simple anhydride: General name: Alkanoic anhydride or cycloalkane carboxylic anhydride

2. Mixed anhydride: General name: Alkanoic alkanoic anhydride or cycloalkane carboxylic cycloalkane carboxylic anhydride or cycloalkane carboxylic alkanoic anhydride.

3. Cyclic anhydride: General name: Alkanedioic anhydride or cycloalkane dicarboxylic anhydride.

(j) IUPAC name of Acid halide: General name: Alkanoyl halide or cycloalkane carbonyl halide.

2-chloro-3-methylcyclopentane-carbonyl chloride

(k) IUPAC name of esters: General name: Alkyl alkanoate or alkyl cycloalkane carboxylate.

Alkyl group attaches with oxygen atom and in case of ester is always written first though it follows whatsoever order alphabatically.

(l) IUPAC name of amide: General name: Alkanamide or cycloalkane carboxamide.

(m) **IUPAC name of amines:** General name: Alkanamine (old name) and Amino alkane (new name).

CH₃CH₂NH₂ 1-amino ethane

3-ethyl-3-(N-ethyl-N-methyl amino) pentane

21.6 RULES FOR IUPAC NOMENCLATURE OF POLYFUNCTIONAL COMPOUNDS

Organic compounds which contain two or more functional groups are called polyfunctional compounds. Their IUPAC names are obtained as follows:

21.6.1 Principal Functional Groups

If the organic compound contains two or more functional groups, one of the functional groups is selected as the principal functional group while all the remaining functional groups (also called the secondary functional groups) are treated as substituents.

21.6.2 Selection of the Principal Chain

Select the longest continous chain of carbon atoms containing the principal functional group and maximum number of secondary functional groups and multiple bonds, if any.

21.6.3 Numbering of Principal Chain

Number the principal chain in such a way that the principal functional group gets the lowest locant followed by double bond, triple bond and the substituents.

21.6.4 Alphabetical Order

Identify the prefixes and the locants for the secondary functional groups and other substituents and place them in alphabetical order before the word root as explained hereunder:

(i) CH_3 —C=CH—COOH | $COOC_2H_5$

IUPAC name: 2-carboethoxybut-2-en-1-oic acid

(ii)
$$H_2C \stackrel{6}{=} CH \stackrel{5}{-} CH \stackrel{3}{-} CH \stackrel{2}{-} CH \stackrel{1}{-} CH_2 \stackrel{1}{-} COCI \stackrel{1}{-} OH$$

011

IUPAC name: 3-hydroxy-4-methylhex-5-yn-1-oyl chloride

21.7 NOMENCLATURE OF BICYCLO AND SPIRO COMPOUNDS

21.7.1 Bicyclic Compounds

Compounds having two cyclic rings and two shared carbon atoms at the apex are called bicyclic compounds. Numbering in a bicyclic compound starts from one of the bridgehead carbon atom and longest bridge is numbered first followed by longer bridge followed by smallest bridge. This numbering rule is followed even in presence of principal functional group and mulptiple bond. General rule for writing IUPAC name is Prefixes+Bicyclo [x, y, z] + Root word + Primary suffix + Secondary suffix, where x > y > z.

21.7.2 Spiro Compounds

Compounds having two cyclic rings and one shared quaternary carbon atom are called spiro compounds. Numbering starts from adjacent to bridgehead carbon atom and smaller bridge is numbered first followed by longer bridge. This rule is followed even in presence of principal functional group and multiple bond. General rule for writing IUPAC name is Prefixes + Spiro [x, y] + Root word + Primary suffix + Secondary suffix, where x < y.

21.8 COMMON NAME OF ORGANIC COMPOUNDS

S. No.	Compound	Common Name	Specific Properties, if any
	Group A:	ALKANES	
1.	CH ₃ -CH-CH ₂ -CH ₃ CH ₃	Isopentane	
2.	$\begin{array}{c} CH_{3}\\ I\\ CH_{3}-\!$	Isooctane	Having octane number = 100
3.	$CH_{3} \\ H_{3} \\ -C \\ -C \\ CH_{3} \\ H_{3}$	Neopentane	
4.	CH ₃ H CH ₃ -C-CH-CH ₃ H CH ₃ CH ₃	Triptane	
5.	CH_3 — CH_2 — $CHCH_2$ CH_3	Iso-pentyl i.e., active amyl	
6.	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -	n-pentyl	Amyl group
	Group B:	ALKANES	
7.	CH ₃ -CH ₂ -CH=CH ₂	α-Butylene	
8.	CH ₃ -CH=CH-CH ₃	β-Butylene	
9.	$CH_3 - C = CH_2$	Isobutylene	
	CH3		
10.	CH_=CH-CH	Allyl group	
11.	CH ₂ =C=CH ₂	Allene	
	ĊH ₃		
12.	$CH_2 = C - CH = CH_2$	Isoprene	
13.	$CH_2 = CH$ -	Vinyl group	
	Group C:	ALKYNES	
14.	CH=CH	Purified acetylene or Norcelyne	
15.	CH ₂ =CH-CH=CH ₂	Vinyl acetylene	

16.	CHC≡CH		Allvlene	
17.	$HC \equiv C-CH -$		Propargyl group	
		Group D: A		
18.	CH CHCl	dioup 21	Ethylidene chloride	A gem dihalide
19.	CHCH_		Ethylene dichloride	A vic dihalide
			7	
20.			Mustard gas or sulphur	Poisonous; used in war
	ĊH,—S—ĊH,		musted	
21			Westron	Solvent
21.			westion	Solvent
	CHCl ₂			
22.	ClCH=CCl ₂		Westrosol or triclene	Solvent
23.	Cl ₂ C=CCl ₂		Tetraclene or perclene	Solvent
	CI			
24				TT : 11
24.			Chloropicrin	form
	ĊI			101111
	CCI ₃			
25			Chloretone	Hyppotic agent used in
23.			Chloretone	sleeping pill
	OH			01
	CI			
26.	CH ₂ =C-CH=CH ₂		Chloroprene	A monomer
27			Lowisito	Highly poisonous also
27.			Lewisite	called as war gas
	H—C—AsCl ₂			8
		Group E:	ALCOHOL	
28.	CH2-OH		Ethylene glycol	Anti-freezing agent
	L CH,_OH			
20			Channel	Tailandai a daabad
29.	$H_2 - CH - CH_2$		Glycerol	Irinydric alconol
	ÓH ÓH ÓH			
30.	CH≡C-CH ₂ -OH		Propargyl alcohol	
31.	CH ₂ =CH-CH ₂ -OH		Allyl alcohol	Vinyl carbinol
32.	CH ₂ =CH-OH		Vinyl alcohol	
	CH ₃			
33.	СН₃—С́—ОН		Pinacol	
	CH_—C—OH			
	CH3			

Group F: ETHER			
34.	C ₆ H ₅ -O-CH ₃	Anisole	Methyl phenyl ether
35.	$C_{6}H_{5}-O-C_{2}H_{5}$	Phenetole	Ethyl phenyl ether
36.	H_C <och<sup>3 OCH³</och<sup>	Methylal	Acetal of formaldehyde
	Group G:	ALDEHYDE	
37.	сно Г СООН	Glyoxalic acid	
38.	CH_3 CH_3 — C — CHO or $(CH_3)_3C$ - CHO CH_3	Pivaldehyde	
39.	CH ₃ CH=CH-CHO	Crotonaldehyde	
40.	CH ₂ =CH-CHO	Acrylaldehyde or acrolein	Having pungent odour
41.	(CH ₃) ₂ CHCHO	Isobutyraldehyde	
42.	CH ₃ CCH ₃ O O	Dimethyl glyoxal	
43.	Н ₂ С—СН—СНО - НО ОН	Glyceraldehyde	
44.	О С—Н С—Н U	Glyoxal	
45.	CH ₃ CCH O O	Methyl glyoxal or pyruvaldehyde	
	Group H	: KETONE	
46.	CH ₃ COCH ₃	Acetone	
47.	CH_3 C=CH-C-CH=C CH_3 CH $_3$ CH_3 CH	Phorone	
48.	CH ₃ C=CH-C-CH ₃ CH ₃ C=CH-C-CH ₃	Mesityl oxide	
49.	H H C=C=O	Ketene	
	Group I: CA	RBOXYLIC ACID	
50.	CH ₃ -CH ₂ -CH ₂ -CH ₂ -COOH	Valeric acid	n-Pentanoic acid
51.	CH ₃ (CH ₂) ₄ COOH	Caproic acid	n-Hexanoic acid

$\dot{C}H(OH)$ —COOHOHCitric acidPresent in lemon53. CH_2 —C CH_2 Citric acidPresent in lemon54. CH_2 =CH-COOHAcrylic acid55. CH_3 —C $-COOH$ Lactic acidPresent in curd56. HO —C $-OH$ Lactic acid57. CH_3 -CO-COOHPyruvic acid58. CH_3 -CH=CH-COOHCarbonic acid59. C_6H_5 —CH—COOHMendelic acid60. NH_2 -CH_2-COOHGlycineAmino acetic acid61. NH_2COH Carbamic acidAmino formic acid63. C_8H_5CH =CHCOOHCinnamic acid
OH 53.OH CH_2 Citric acidPresent in lemon53. CH_2 CH_2 Citric acidPresent in lemon54. CH_3 =CH-COOHAcrylic acid55. CH_3 C COOHLactic acidPresent in curd56. HO C OOH (H_2CO_3)Carbonic acid57. CH_3 -CO-COOHPyruvic acid58. CH_3 -CH=CH-COOHCrotonic acid59. C_8H_5 CH COOHMendelic acid60. NH_2 -CHCOOHGlycineAmino acetic acid61. NH_2 COOHCarbanic acid63. C_4H_5 CH=CHCOOHCinnamic acid CH_3 C_8H_5 CH_3
53. CH_2 COOH CH_2 COOHCitric acidPresent in lemon54. CH_2 =CH-COOH CHAcrylic acid55. CH_3 OH $C-C$ OHLactic acidPresent in curd56. $HO-C$ OHCoolCarbonic acid57. CH_3 -CO-COOH OHPyruvic acid58. CH_3 -CH=CH-COOH OHPyruvic acid59. C_8H_5 -CH=COOH OHMendelic acid60. NH_2 -CH2 OHGlycine Amino acetic acidAmino acetic acid61. NH_2 COOH CH=CH-COOH OHCarbamic acid Cinnamic acid63. C_6H_5 CH=CHCOOH CH2 CH3Cinnamic acid Cinnamic acidCH3 C AL C AL CH3Alapira CH3 CH4
Image: I
54. $CH_2=CH-COOH$ Acrylic acid55. $CH_3-C-COOH$ Lactic acidPresent in curd56. $HO-C-OH (H_2CO_3)$ Carbonic acid57. $CH_3-CO-COOH$ Pyruvic acid58. $CH_3-CH=CH-COOH$ Crotonic acid59. $C_8H_5-CH=COOH$ Mendelic acid60. NH_2-CH_2-COOH GlycineAmino acetic acid61. NH_2COH Carbamic acid63. $C_8H_5CH=CHCOOH$ Cinnamic acid64. NH_2 C H Alaping
Image: Solution of the sector of the sect
55. $CH_3 - C - COOH$ OHLactic acidPresent in curd56. $HO - C - OH (H_2CO_3)$ OCarbonic acid57. $CH_3 - CO - COOH$ OPyruvic acid58. $CH_3 - CH = CH - COOH$ OHCrotonic acid59. $C_6H_5 - CH - COOH$ OHMendelic acid60. $NH_2 - CH_2 - COOH$ OHGlycineAmino acetic acid61. $NH_2 - CH_2 - COOH$ OHCarbamic acidAmino formic acid62. $COOH - (CH_2)_4 - COOH$ C HCinnamic acid63. $C_6H_5 - CH = CHCOOH$ Cinnamic acidCH3CH3CH3CH3CH3CH3CH3COOHCINNEN COOH
56. HOC-OH (H ₂ CO ₃) Carbonic acid 57. CH ₃ -CO-COOH Pyruvic acid 58. CH ₃ -CH=CH-COOH Crotonic acid 59. C ₆ H ₅ -CHCOOH Mendelic acid 60. NH ₂ -CH ₂ -COOH Glycine Amino acetic acid 61. NH ₂ COOH Carbamic acid Amino formic acid 62. COOH-(CH ₂) ₄ -COOH Adipic acid 63. C ₆ H ₅ CH=CHCOOH Cinnamic acid
56. $HOC-OH(H_2CO_3)$ OCarbonic acid57. $CH_3-CO-COOH$ OPyruvic acid58. $CH_3-CH=CH-COOH$ OHCrotonic acid59. $C_6H_5-CH-COOH$ OHMendelic acid60. NH_2-CH_2-COOH OHGlycineAmino acetic acid61. NH_2COOH C COH-(CH_2)_4-COOH C Adipic acidCarbamic acid63. $C_6H_5CH=CHCOOH$ C HCinnamic acid
36. $HO = C = OH (H_2OG_3)$ Carbonic acid 57. $CH_3 - CO - COOH$ Pyruvic acid 58. $CH_3 - CH = CH - COOH$ Crotonic acid 59. $C_6H_5 - CH = COOH$ Mendelic acid 60. $NH_2 - CH_2 - COOH$ GlycineAmino acetic acid 61. NH_2COOH Carbamic acidAmino formic acid 62. $COOH - (CH_2)_4 - COOH$ Adipic acid 63. $C_6H_5 - CH = CHCOOH$ Cinnamic acid CH _3C_8H_5 CH = CHCOOHCinnamic acid
57. CH ₃ -CO-COOH Pyruvic acid 58. CH ₃ -CH=CH-COOH Crotonic acid 59. C ₆ H ₅ -CH-COOH Mendelic acid 60. NH ₂ -CH ₂ -COOH Glycine Amino acetic acid 61. NH ₂ COOH Carbamic acid Amino formic acid 62. COOH-(CH ₂) ₄ -COOH Adipic acid 63. C ₆ H ₅ CH=CHCOOH Cinnamic acid
57. $CH_3-CO-COOH$ Pyruvic acid58. $CH_3-CH=CH-COOH$ Crotonic acid59. $C_8H_5-CH=COOH$ Mendelic acid60. NH_2-CH_2-COOH GlycineAmino acetic acid61. NH_2COOH Carbamic acidAmino formic acid62. $COOH-(CH_2)_4-COOH$ Adipic acid63. $C_8H_5CH=CHCOOH$ Cinnamic acidCH ₃ CH ₃
58. $CH_3-CH=CH=COOH$ Crotonic acid 59. $C_6H_5-CH=COOH$ Mendelic acid 60. NH_2-CH_2-COOH Glycine Amino acetic acid 61. NH_2COOH Carbamic acid Amino formic acid 62. $COOH-(CH_2)_4$ -COOH Adipic acid 63. $C_6H_5CH=CHCOOH$ Cinnamic acid CH_3 CH_3 Alapina Alapina
59. C ₆ H ₅ -CH-COOH Mendenc acid 60. NH ₂ -CH ₂ -COOH Glycine Amino acetic acid 61. NH ₂ COOH Carbamic acid Amino formic acid 62. COOH-(CH ₂) ₄ -COOH Adipic acid 63. C ₆ H ₅ CH=CHCOOH Cinnamic acid CH ₃ CH ₃
OH 60. NH ₂ -CH ₂ -COOH Glycine Amino acetic acid 61. NH ₂ COOH Carbamic acid Amino formic acid 62. COOH-(CH ₂) ₄ -COOH Adipic acid 63. C ₆ H ₅ CH=CHCOOH Cinnamic acid CH ₃ I Alapina
60. NH_2-CH_2-COOH GlycineAmino acetic acid61. NH_2COOH Carbamic acidAmino formic acid62. $COOH-(CH_2)_4-COOH$ Adipic acid63. $C_6H_5CH=CHCOOH$ Cinnamic acidCH ₃ Image: Colspan="4">Alapina
61. NH_2COOH Carbamic acid Amino formic acid 62. $COOH-(CH_2)_4$ -COOH Adipic acid 63. $C_6H_5CH=CHCOOH$ Cinnamic acid CH_3 64. NH C H Alaping
62. $COOH-(CH_2)_4$ -COOH Adipic acid 63. $C_6H_5CH=CHCOOH$ Cinnamic acid CH_3 I CH Alaping
$\begin{array}{c c} 63. C_6H_5CH=CHCOOH & Cinnamic acid \\ CH_3 \\ \hline \\ 64. NH C H & Alapina \\ \hline \\ \\ 64. NH C H & Alapina \\ \hline \\ \\ 64. NH C H & Alapina \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
CH ₃ I I
64 NH C H Alanina
04. Wi ₂ Alamine
ĊООН
65. CH ₂ COOH Glycolic acid
OH
66. COOH Oxalic acid
L COOH
COOH
67. CH ₂ COOH Malonic acid
68 CH _COOH Succipic acid
CH ₂ —COOH
69. HO—CH—COOH Tartaric acid
но-сн-соон
0
70. $H = C = C = OH$ Maleic acid Cis form/z-form

71.	О Н—С— ^Ш НО—С—С—Н О	Fumaric acid	Trans form/E-form
	Group I:	ACID DERIVATIVES	
72.	CICCI 0 0	Oxalyl chloride	
73.	NH ₂ COONH ₄	Ammonium Carbamate	
74.	$\begin{array}{c} CH_3 - \!$	Aceto acetic ester or Ethyl aceto acetate	-
75.	$\begin{array}{c} NH_2 & -C - C - NH_2 \\ \parallel & \parallel \\ O & O \end{array}$	Oxamide	-
76.	CICI II O	Phosgene	Poisonous gas
77.	H ₂ N—C—NH ₂ II O	Urea	-
	Group	K: N-DERIVATIVES	
78.	$CH_2=CH-C=N$	Vinyl cyanide or Acrylo nitrile	-
79.	H−C≡N	Formo nitrile	-
80.	$CH_3-C=N$	Aceto nitrile	-
81.	CH ₃ -NCO	Methyl isocyanate (MIC)	Responsible for bhopal tragedy
	Group L: A	ROMATIC COMPOUNDS	
82.		Anthracene	-
83.		Indole	-
	H		
84.		Pyridine	-
85.	□	Thiophene	-
86.		Pyrrole	-

21.263

134.	С.Н.СО.Н	Perbenzoic acid	
135.	$\begin{array}{c} CH_3\\ CO_2H\\ \bullet\\ CO_2H\\ \bullet\\ CO_2H\\ \bullet\\ CO_2H\\ CO_$	Toluic acids	
136.		Anthranilic acid	O-aminobenzoic acid
137.	CO NH SO ₂	Saccharin	O-sulphobenzoic imide (artificial sweetener)
138.	C ₆ H ₅ CH=CH ₂	Styrene	Monomer of polystyrene oil of bitter almond
139.	C ₆ H ₅ CHO	Benzaldehyde	
140.	C ₆ H ₅ COCOC ₆ H ₅	Benzil	
141.	$(C_6H_5)_2C(OH)CO_2H$	Benzilic acid	
	Group M: HETRO	CYCLIC COMPOUNDS	
142.	N H	Pyrrolidine	
143.	N H H	Piperidine	
144.	О СН ₃ —S—О—Н О	Mesylic acid or methyl sulphonic acid	Ms-OH
145.	H ₃ C-	Tosylic acid or p- toluene sulphonic acid	Ts-OH
146.		Morpholine	

21.265

147.	N H H	Aziridine	
148.		Tatrahydrofuran (THF)	Important solvent
149.		Hexa-methlyenetetra- mine or urotropine	Urinary antiseptic
150.	CH ₂ -CH ₂	Oxirane or ethylene Oxide or oxa cyclo propane	
151.		Oxetane	
152.		Aspirin	Pain reliver
153.		Nitro benzene	Oil of mirabane
154.	0==0	p-benzo-quinone	
155.		Salol or phenyl salicylate	Oil of wintergreen