Circle

Summary

- 1. Equation of a Circle in Various Form: (a) Standard form : $x^2 + y^2 = r^2$. (b) General form: $x^2 + y^2 + 2gx + 2fy + c = 0$ (c) Diameter form : $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$.
- 2. Intercepts made by Circle $x^2 + y^2 + 2gx + 2fy + c = 0$ on the Axes: (a) $2\sqrt{g^2 - c}$ on x-axis (b) $2\sqrt{f^2 - c}$ on y-axis
- 3. Parametric Equations of a Circle: $x = h + r \cos \theta$; $y = k + r \sin \theta$
- 4. Position of a point with respect to a circle: The point (x_1,y_1) is inside, on or outside the circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$. according as $S_1 \equiv x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c \le or \ge 0$.
- 5. Line and a Circle: line is y = mx + c and circle is x² + y² = a²
 (i) c² < a²(1 + m²) ⇔ the line is a secant of the circle.
 (ii) c² = a² (1 + m²) ⇔ the line touches the circle. (It is tangent to the circle)
 (iii) c² > a² (1 + m²) ⇔ the line does not meet the circle i.e. passes out side the circle.
- 6. Tangent :

(a) Slope form: $y = mx \pm a\sqrt{1+m^2}$ and points of contact are $\left(\mp \frac{a^2m}{c}, \pm \frac{a^2}{c}\right)$

(b) Point form: Equation of tangent is T = 0

(c) Parametric form: Tangent to circle $x^2 + y^2 = a^2$ at $(a \cos \alpha, a \sin \alpha)$ is $x \cos \alpha + y \sin \alpha = a$.

- 7. Pair of Tangents from a Point: $SS_1 = T^2$.
- 8. Power of a Point: Power of a point is S_1
- 9. Length of a Tangent: Length of tangent is $\sqrt{S_1}$
- 10. Director Circle: Director circle of the circle $x^2 + y^2 = a^2$ is $x^2 + y^2 = 2a^2$
- **11.** Chord of Contact: Equation of chord of contact is T = 0

Length of chord of contact = $\frac{2LR}{\sqrt{R^2 + L^2}}$, where R = radius; L = length of tangent.

Area of the triangle formed by the pair of the tangents & its chord of contact = $\frac{RL^3}{R^2 + L^2}$

(d) Tangent of the angle between the pair of tangents from $(x_1, y_1) = \left(\frac{2RL}{L^2 - R^2}\right)$

(e) Equation of the circle circumscribing the triangle PT_1T_2 is :

 $(x-x_1)(x+g)+(y-y_1)(y+f)=0$

- 12. Equation of the Chord with a given Middle Point: $T = S_1$
- 13. Equation of the chord joining two points of circle :

$$x\cos\frac{\alpha+\beta}{2}+y\sin\frac{\alpha+\beta}{2}=a\cos\frac{\alpha-\beta}{2}.$$

14. Common Tangents to two Circles:

- (i) Four common tangents if the two circles are disjoint i.e. $r_1 + r_2 < c_1 c_2$.
- (ii) 3 common tangents if two circles touch each other externally i.e. $r_1 + r_2 = c_1 c_2$.
- (iii) 2 common tangents if two circles intersect each other

 $r_1 + r_2 - c_1 c_2$

i.e.

$$|r_1 - r_2| = c_1 \ c_2 < r_1 + r_2$$

(iv) 1 common tangent if the circles touch each other internally i.e. $|r_1 - r_2| = c_1 c_2$

(v) No common tangent if one circles is in the interior of the other i.e. $c_1 c_2 < |r_1 - r_2|$

- **15.** Condition of orthogonality of Two Circles: $2g_1g_2 + 2f_1f_2 = c_1 + c_2$
- **16.** Radical Axis: $S_1 S_2 = 0$ i.e. $2(g_1 g_2)x + 2(f_1 f_2)y + (c_1 + c_2) = 0$.
- **17. Family of Circles:** $S_1 + KS_2 = 0, S + KL = 0$

1. If one of the diameter's of the circle $x^2 + y^2 - 2x - 6y + 6 = 0$ is a chord to the circle with centre (2, 1), then the radius of the circle is

(2004)

- (a) $\sqrt{3}$
- (b) $\sqrt{2}$
- (c) 3
- (d) 2

2. The centre of circle inscribed in square formed by the lines $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$, is

(2003)

(a) (4, 7) (b) (7, 4)

(c) (9, 4)

(d)(4,9)

3. Let AB be a chord of the circle $x^2 + y^2 = r^2$ subtending a right angle at the centre. Then, the locus of the centroid of the ΔPAB as P moves on the circle, is

(2001)

- (a) a parabola
- (b) a circle
- (c) an ellipse
- (d) a pair of straight lines

4. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then, the equation of this circle is

(1989) (a) $x^2 + y^2 + 2x - 2y = 62$ (b) $x^2 + y^2 + 2x - 2y = 47$ (c) $x^2 + y^2 - 2x + 2y = 47$ (d) $x^2 + y^2 - 2x + 2y = 62$ 5. AB is a diameter of a circle and C is any point on the circumference of the circle. Then

(1983)

- (a) the area of $\triangle ABC$ is maximum when it is isosceles
- (b) the area of $\triangle ABC$ is minimum when it is isosceles
- (c) the perimeter of $\triangle ABC$ is minimum when it is isosceles
- (d) None of the above

6. The centre of the circle passing through the point (0, 1) and touching the curve $y = x^2$ at (2, 4) is

	(1983)
(a)	$\left(-\frac{16}{5},\frac{27}{10}\right)$
(b)	$\left(-\frac{16}{7},\frac{53}{10}\right)$
(c)	$\left(-\frac{16}{5},\frac{53}{10}\right)$

(d) None of the above

(2016)

7. If one of the diameters of the circle, given by the equation, $x^2 + y^2 - 4x + 6y - 12 = 0$, is a chord of a circle S, whose centre is at (-3, 2), then the radius of S is

- (a) $5\sqrt{2}$
- (b) $5\sqrt{3}$

(c) 5

(d) 10

8. The number of common tangents to the circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 6x + 18y + 26 = 0$ is (2015)

- (a) 1
- (b) 2

(c) 3

(d) 4

9. Let C be the circle with centre at (1, 1) and radius 1. If T is the circle centred at (0, y) passing through origin and touching the circle C externally, then the radius of T is equal to

(2014)
(a)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

10. If the circle $x^2 + y^2 + 2x + 2ky + 6 = 0$ and $x^2 + y^2 + 2ky + k = 0$ intersect orthogonally, then k is

- (2000) (a) 2 or -3/2 (b) -2 or -3/2
- (c) 2 or 3/2
- (d) -2 or 3/2

11. The ΔPQR is inscribed in the circle x² + y² = 25. If Q and R have coordinates (3, 4) and (-4, 3) respectively, then ∠QPR is equal to (1998)

- (a) 0
- (b) π
- (c) $\frac{\pi}{4}$
- (d) $\frac{\pi}{4}$

12. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y = 24$ is (1998)

- (a) 0
- (b) 1
- (c) 3
- (d) 4

13. The angle between a pair of tangents drawn from a point P to the circle

$$x^{2} + y^{2} + 4x - 6y + 9\sin^{2}\alpha + 13\cos^{2}\alpha = 0$$

is 2α . The equation of the locus of the point P is

(1996) (a) $x^{2} + y^{2} + 4x - 6y + 4 = 0$ (b) $x^{2} + y^{2} + 4x - 6y - 9 = 0$ (c) $x^{2} + y^{2} + 4x - 6y - 4 = 0$ (d) $x^{2} + y^{2} + 4x - 6y + 9 = 0$

14. If the two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then

(1989) (a) 2 < r < 8(b) r < 2(c) r = 2(d) r > 2

15. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = k^2$ orthogonally, then the equation of the locus of its centre is

(1988) (a) $2ax + 2by - (a^2 + b^2 + k^2) = 0$ (b) $2ax + 2by - (a^2 - b^2 + k^2) = 0$ (c) $x^2 + y^2 - 3ax - 4by + a^2 + b^2 - k^2 = 0$ (d) $x^2 + y^2 - 2ax - 3by + (a^2 - b^2 - k^2) = 0$

16. Let ABCD be a quadrilateral with area 18, with side AB parallel to the side CD and AB = 2 CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then its radius is

(2007)

(a) 3 (b) 2

(0) -

(c) $\frac{3}{2}$

(d) 1

17. If the tangent at the point P on the circle x² + y² + 6x + 6y = 2 meets the straight line 5x - 2y + 6 = 0 at a point Q on the Y-axis, then the length of PQ is (2002)
(a) 4
(b) 2√5

- (c) $\frac{1}{2}$
- (d) $3\sqrt{5}$

18. Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

(2001)
(a)
$$\sqrt{PQ \cdot RS}$$

(b) $\frac{PQ + RS}{2}$
(c) $\frac{2PQ \cdot RS}{PQ + RS}$
(d) $\sqrt{\frac{PQ^2 + RS^2}{2}}$

19. The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point

(2013) (a) (-5, 2) (b) (2, -5) (c) (5, -2) (d) (-2, 5) 20. The circle passing through the point (-1, 0) and touching the Y-axis at (0, 2) also passes through the point

(2011)
(a)
$$\left(-\frac{3}{2},0\right)$$

(b) $\left(-\frac{5}{2},2\right)$
(c) $\left(-\frac{3}{2},2\right)$
(d) $(-4,0)$

21. The locus of the centre of circle which touches $(y - 1)^2 + x^2 = 1$ externally and also touches X-axis, is

(2005) (a) $\{x^2 = 4y, y \ge 0\} \cup \{(0, y), y < 0\}$ (b) $x^2 = y$ (c) $y = 4x^2$ (d) $y^2 = 4x \cup (0, y), y \in R$

22. If two distinct chords, drawn from the point (p, q) on the circle $x^2 + y^2 = px + qy$ (where, pq $\neq 0$) are bisected by the X-axis, then

(1999) (a) $p^2 = q^2$ (b) $p^2 = 8q^2$ (c) $p^2 < 8q^2$ (d) $p^2 > 8q^2$

23. The locus of the centre of a circle, which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches the Y-axis, is given by the equation

(1993) (a) $x^2 - 6x - 10y + 14 = 0$ (b) $x^2 - 10x - 6y + 14 = 0$ (c) $y^2 - 6x - 10y + 14 = 0$ (d) $y^2 - 10x - 6y + 14 = 0$ 24. The centre of a circle passing through the points (0, 0), (1, 0) and touching the circle $x^2 + y^2 = 9$ is

(1992) (a) (3/2, 1/2)(b) (1/2, 3/2)(c) (1/2, 1/2)(d) $(1/2, -2^{1/2})$

25. The equation of the circle passing through (1, 1) and the points of intersection of x² + y² + 13x - 3y = 0 and 2x² + 2y² + 4x - 7y - 25 = 0 is
(1983)

(a) 4x² + 4y² - 30x - 10y = 25
(b) 4x² + 4y² + 30x - 13y - 25 = 0
(c) 4x² + 4y² - 17x - 10y + 25 = 0
(d) None of the above

26. Two circles $x^2 + y^2 = 6$ and $x^2 + y^2 - 6x + 8 = 0$ are given. Then the equation of the circle through their points of intersection and the point (1, 1) is

(1980) (a) $x^2 + y^2 - 6x + 4 = 0$ (b) $x^2 + y^2 - 3x + 1 = 0$ (c) $x^2 + y^2 - 4y + 2 = 0$ (d) None of the above

27. The centres of those circles which touch the circle, $x^2 + y^2 - 8x - 8y - 4 = 0$, externally and also touch the X-axis, lie on

(2016)

(a) a circle

(b) an ellipse which is not a circle

(c) a hyperbola

(d) a parabola

28. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is

(2012)(a) 20 (x² + y²) - 36x + 45y = 0 (b) 20 (x² + y²) + 36x - 45y = 0 (c) 36 (x² + y²) - 20y + 45y = 0 (d) 36 (x² + y²) + 20x - 45y = 0

29. Tangents drawn from the point P (1, 8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the ΔPAB is

(2009) (a) $x^2 + y^2 + 4x - 6y + 19 = 0$ (b) $x^2 + y^2 - 4x - 10y + 19 = 0$ (c) $x^2 + y^2 - 2x + 6y - 29 = 0$ (d) $x^2 + y^2 - 6x - 4y + 19 = 0$

30. The locus of the mid-point of a chord of the circle $x^2 + y^2 = 4$ which subtends a right angle at the origin, is (a) x + y = 2(b) $x^2 + y^2 = 1$ (c) $x^2 + y^2 = 2$ (d) x + y = 1

31. Equation of chord of minimum length passing through (1, 2) of circle $x^2 + y^2 - 4x - 2y - 4 = 0$ is ax + by + c = 0 then a + b + c =(a) 8 (b) -8 (c) ± 8 (d) None of these

32. Two circle of radii 8 & 6 intersect at right angle, then the length of common chord is :-

- (a) $\frac{48}{\sqrt{5}}$
- (b) $\frac{\sqrt{5}}{\sqrt{5}}$

(c)
$$\frac{24}{5}$$

(d) $\frac{48}{5}$

33. Consider the circles $x^2 + y^2 = 9$ and $x^2 + y^2 - 10x + 9 = 0$, then find the length of the common chord of circle is

(a)
$$\frac{6}{5}$$

(b) $\frac{12}{5}$
(c) $\frac{24}{5}$
(d) 6

34. If length of the common chord of the circles $x^2 + y^2 + 2x + 3y + I = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is λ , then the value of [λ]. (where [.] denotes greatest integer function) (a) 1 (b) 2 (c) 3

(d) 4

35. The equation of circle which touches the line x + 3y - 2 = 0 and 3x + 9y - 2 = 0, also the point of contact on first line is (-1, 1), is

(a)
$$x^{2} + y^{2} - \frac{32x}{15} + \frac{8y}{5} + \frac{26}{15} = 0$$

(b) $x^{2} + y^{2} + \frac{32x}{15} - \frac{8y}{5} + \frac{26}{15} = 0$
(c) $x^{2} + y^{2} + \frac{32x}{15} - \frac{8y}{5} + \frac{26}{15} = 0$
(d) None of these

36. P is a variable point on a circle with centre at C. CA and CB are perpendiculars from C to x and y-axis respectively. If the locus of the centroid of ΔPAB is a circle with centre (3, 6) and radius equal to 1, then the centre and radius of circle, whose centre is C, is.

(a) $\left(\frac{9}{2},9\right)$ &3 (b) $\left(9,\frac{9}{2}\right)$ &2 (c) $\left(\frac{9}{2},\frac{9}{2}\right)$ &3 (d) (9,9),3

(c) (2, -3)(d) (-2, -3)

37. If A(2 + 3 cos
$$\alpha$$
, -3 + 3 sin α , $B\left(2 + 3\cos\left(\alpha + \frac{2\pi}{3}\right), -3 + 3\sin\left(\alpha + \frac{2\pi}{3}\right)\right)$ and
 $C\left(2 + 3\cos\left(\alpha + \frac{4\pi}{3}\right), -3 + 3\sin\left(\alpha + \frac{4\pi}{3}\right)\right)$ be the angular points of a \triangle ABC then incentre of that triangle is
(a) (3, 2)
(b) (0, 0)

38. The set of values of a for which the point (a - 1, a + 1) lies outside the circle $x^2 + y^2 = 8$ and inside the circle $x^2 + y^2 - 12x + 12y - 62 = 0$ is (a) $(\sqrt{3}, 3\sqrt{2}) \cup (-\infty, 0)$ (b) $(-3\sqrt{2}, -\sqrt{3}) \cup (\sqrt{3}, 3\sqrt{2})$ (c) $(-3\sqrt{2}, -\sqrt{3}) \cup (0, \infty)$ (d) None of these

39. The range of parameter 'a' for which the variable line y = 2x + a lies between the circles $x^2 + y^2 - 2x - 2y + 1 = 0$ and $x^2 + y^2 - 16x - 2y + 61 = 0$ without intersecting either circle is (a) $(-\infty, -15 - 2\sqrt{5})$ (b) $(-15 + 2\sqrt{5}, -\sqrt{5} - 1)$ (c) $(-15 + 2\sqrt{5}, \infty)$ (d) (-15, -1) 40. The point on the circle $x^2 + y^2 = a^2$ in first quadrant, so that tangent drawn at this point make a triangle of area a^2 with the coordinate axes, is

(a)
$$\left(\frac{3a}{\sqrt{2}}, \frac{3a}{\sqrt{2}}\right)$$

(b) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$
(c) $\left(\frac{a}{2}, \frac{a}{2}\right)$

(d) None of these

41. The locus of the point from where tangents are drawn to the circle $x^2 + y^2 = 16$ and the product of the slopes of these tangents is 2, is

(a) $x^2 - 2y^2 = 16$ (b) $2x^2 - y^2 = 16$ (c) $x^2 - y^2 = 16$ (d) $2x^2 + y^2 = 16$

42. From a point on the line 4x - 3y = 6 tangents are drawn to the circle $x^2 + y^2 - 6x - 4y + 4 = 0$ which make an angle of $\tan^{-1}\frac{24}{7}$ between them, then the coordinates of all such points are (a) (-2, 0), (6, -6) (b) (2, 0), (6, 6) (c) (0, -2) and (6, 6) (d) None of these

43. If the line 4x - 3y = -12 is tangent at point (-3, 0) and the line 3x + 4y = 16 is tangent at the point (4, 1) to a circle, then equation of the circle is (a) $(x - 1)^2 + (y - 3)^2 = 25$ (b) $(x - 1)^2 + (y - 3)^2 = 25$ (c) $(x + 1)^2 + (y - 3)^2 = 25$ (d) $(x - 1)^2 + (y - 2)^2 = 25$ 44. If the chord of contact of tangents drawn from a point on the circle $x^2 + y^2 = a^2$ to the circle $x^2 + y^2 = b^2$ touches the circle $x^2 + y^2 = c^2$, then (a) 2b = a + c(b) $\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$ (c) $b^2 = ac$ (d) None of these 45. If the two circles of radii 12 and 9 intersect each other at two distinct point orthogonally, then the distance between their centres is (a) 15

(b) 16

(c) 18

(d) 13

46. If the polar of a point (α, β) with respect to any one of the circle $x^2 + y^2 - 2kx + 3 = 0$, where k is a variable, always passes through a fixed point, whatever be the value of k, then the fixed point is

(a) $\left(-\alpha, \frac{1}{\beta}(\alpha^2 - 3)\right)$ (b) $\left(\alpha - 3, \frac{\beta - 3}{\alpha - 3}\right)$ (c) $\left(-\alpha, \frac{1}{\beta}\right)$ (d) $\left(\alpha^2 + 3, \beta^2 - 3\right)$

47. The radius of inscribed circle in the quadrilateral formed by tangents drawn from (3, -1) to circle $x^2 + y^2 - 2x - 2y - 2 = 0$ and radius formed by point of contact of these tangents is (a) 1

(b) 2

- (c) 3
- (d) 3/2

48. If the locus of the mid-points of the chords of the circle $x^2 + y^2 = 4$ such that the segment intercepted by the chord on the curve $x^2 = a(x + y)$ subtends a right angle at origin is $x^2 + y^2 = 2(x + y)$, then the value of 'a' is

(a) 5

(b) –2

(c) 2

49. If circles
$$x^2 + y^2 + 2ax + c^2 = 0$$
 and $x^2 + y^2 + 2by + c^2 = 0$, touch each other then
(a) $\frac{1}{a^2} + \frac{1}{b^2} = c^2$
(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$
(c) $a^2 + b^2 = c^2$
(d) None of these

50. If $C_1 : x^2 + y^2 = r_1^2$ and $C_2 : (x - \alpha)^2 + (y - \beta)^2 = r^2$ be two circles with C_2 lying inside C, and touches C_1 . Circle C lying inside C, touches C, internally and C_2 externally, then the locus of centre C is,

(a)
$$\sqrt{x^2 + y^2} = \sqrt{(x - \alpha)^2 + (y - \beta)^2}$$

(b) $(x - \alpha)^2 + (y - \beta)^2 = x^2 + y^2$
(c) $\sqrt{x^2 + y^2} + \sqrt{(x - \alpha)^2 + (y - \beta)^2} = r_1 + r_2$
(d) None of these

51. If two circles pass through two points (0, a) and (0, -a) and touch the straight line y = mx + c will cut orthogonally, then

(a) $c^2 = a^2 (2 + m^2)$ (b) $c^2 = -a^2 (1 + m^2)$ (c) $c^2 = a^2 (1 + m^2)$ (d) $c^2 = a^2 (3 + 2m^2)$

52. The locus of the centre of the circles which cut the circles $x^2 + y^2 + 4x - 6y + 9 = 0$ and $x^2 + y^2 - 4x + 6y + 4 = 0$ orthogonally is (a) 8x + 12y - 5 = 0(b) 8x - 12y + 5 = 0(c) 8x + 12y + 61 = 0(d) -8x - 12y + 13 = 0

53. The locus of the point $(\sqrt{3h+2}, \sqrt{3k})$. If (h, k) lies on x + y = 1 is

(a) a pair of straight lines

(b) a circle

(c) a parabola

(d) an ellipse

(d) 3

54. The four points of intersection of the lines (2x - y + 1)(x - 2y + 3) = 0 with the axes lie on a circle whose centre is at the point

(a) $\left(-\frac{7}{4}, \frac{5}{4}\right)$ (b) $\left(\frac{3}{4}, \frac{5}{4}\right)$ (c) $\left(\frac{9}{4}, \frac{5}{4}\right)$ (d) $\left(0, \frac{5}{4}\right)$

55. α , β and γ are parametric angles of the points P, Q and R respectively, on the circle $x^2 + y^2 = 1$ and A is the point (-1, 0). If the lengths of the chord AP, AQ and AR are in G.P. then

 $\cos \frac{\alpha}{2}, \cos \frac{\beta}{2}$ and $\cos \frac{\gamma}{2}$ are in (a) A.P. (b) G.P. (c) H.P. (d) None of these

56. The radical centre of three circles, described on the three sides 3x - 2y + 10 = 0, x - y + 5 = 0 and 2x + 3y - 3 = 0 of a triangle as diameter, is

- (a) $\left(\frac{24}{13}, \frac{29}{13}\right)$ (b) $\left(-\frac{24}{13}, \frac{29}{13}\right)$ (c) $\left(\frac{6}{13}, \frac{-5}{13}\right)$
- (d) None of these

57. A circle of constant radius 4 passes through origin O, and cuts the axes at P and Q, then locus of the foot of the perpendicular from O to PQ is

(a)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{64}{(x^2 + y^2)^2}$$

(b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{64}{x^2 + y^2}$

(c)
$$x^2 + y^2 = \frac{16}{x^{-2} + y^{-2}}$$

(d) None of these

58. From the point $P(2+3\sqrt{2}\cos\theta, 3+3\sqrt{2}\sin\theta)$, $0 < \theta < 2\pi$, tangents are drawn to the circle $x^2 + y^2 - 4x - 6y + 4 = 0$, then the angle between them is, (a) $\frac{\pi}{5}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

59. A circle passes through the intersection points of $x^2 + y^2 - 8x = 0$ and $x^2 + y^2 = 9$ and the common chord of above circles is diameter of that circle then equation of circle is (a) $x^2 + y^2 - 3x - 5 = 0$ (b) $16x^2 + 16y^2 - 36x - 207 = 0$ (c) $32x^2 + 32y^2 - 72x - 207 = 0$ (d) None of these

60. If $A\left(a,\frac{1}{a}\right)$, $B\left(b,\frac{1}{b}\right)$, $C\left(c,\frac{1}{c}\right)$ and $D\left(d,\frac{1}{d}\right)$ are 4 distinct points on a unit circle then abcd equals. (a) 2 (b) 4 (c) 1 (d) 8

61. Let x, y be the real number satisfying the equation x² + y² - 4x + 3 = 0 Let maximum value of x² + y² be M and minimum value be m then M + m equals:
(a) 8
(b) 12
(c) 10
(d) 13

62. Two thin rods AB and CD of length 2a and 2b move along OX and OY respectively where O is the origin. The equation of locus of centre of circle passing through the extrimities of the two rods is:

(a) $x^2 - y^2 = a^2 - b^2$ (b) $x^2 + y^2 = a^2 - b^2$ (c) $x^2 + y^2 = a^2 + b^2$ (d) $x^2 - y^2 = a^2 + b^2$

63. The value of c for which the set $\{(x, y) | x^2 + y^2 + 2x - 1 \le 0\}$ and $\{(x, y) | x - y + c \ge 0\}$ contains only one point in common is:

(a) $(-\infty, -1) \cup [3, \infty]$ (b) $\{-1, 3\}$ (c) $\{-3\}$ (d) $\{-1\}$

64. If a circles $x^2 + y^2 + 2g_1x + 2f_1y = 0$ and $x^2 + y^2 + 2g_2x + 2f_2y = 0$ touch each other, then (a) $f_1g_1 = f_2g_2$ (b) $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ (c) $f_1f_2 = g_1g_2$ (d) None of these

65. Two circle whose radii are equal to 4 and 8 intersect at right angles. Length of their common chord is:

(a) $\frac{16}{\sqrt{5}}$ (b) $\frac{8}{\sqrt{5}}$ (c) $4\sqrt{6}$ (d) 8

66. If from any point P on the circle $x^2 + y^2 + 1gx + 2fy + c = 0$ tangents are drawn to the circle $x^2 + y^2 + 2gx + 2fy + c \sin^2 \alpha + (g^2 + f^2) \cos^2 \alpha$ then the angle between the tangents is:

(a) α (b) 2α (c) $\frac{\alpha}{2}$ (d) $\frac{\pi}{2} - \alpha$

67. The circle $x^2 + y^2 - 2x - 3ky - 2 = 0$ passes through some fixed point. One of them may be: (a) $(1+\sqrt{3},1)$ (b) $(1+\sqrt{3},0)$ (c) $(1-\sqrt{3},-1)$ (d) $(1+\sqrt{3},2)$

68. A circle whose centre lies in first quadrant passes through (3, 0) and cut off equal chords of length 4 units along the lines x + y - 3 = 0 and x - y - 3 = 0

(a) $x^2 + y^2 - 6y + 7 = 0$ (b) $x^2 + y^2 + 6y - 7 = 0$ (c) $x^2 + y^2 - 6x - 7 = 0$ (d) $x^2 + y^2 + 6x - 7 = 0$

69. Line $(x - 3) \cos\theta + (y - 3) \sin\theta = 1$ touches a circle $(x - 3)^2 + (y - 3)^2 = 1$, then find the number of values of θ

- (a) 1
- (b) 2
- (c) 3
- (d) infinite

70. If a circle having centre at (α, β) radius r completely lies with in two lines x + y = 2 and x + y = -2, then min $(|\alpha + \beta + 2|, |\alpha + \beta - 2|)$ is

- (a) greater than $\sqrt{2}r$
- (b) less than $\sqrt{2}r$
- (c) greater than 2r
- (d) less than 2r

71. The sum of the square of the length of the chord intercepted by the line x + y = n, $n \in N$ on the circle $x^2 + y^2 - 4$ is

- (a) 11
- (b) 22
- (c) 33
- (d) none of these

72. If the tangent at the point p on the circle $x^2 + y^2 + 6x + 6y = 2$ meets the straight line 5x - 2y + 6 = 0 at a point Q on the y-axis, then the length of PQ is

- (a) 4
- (b) $2\sqrt{5}$
- (c) 5
- (d) $3\sqrt{5}$

73. The number of points (x, y) having integral coordinates satisfying the condition $x^2 + y^2 < 25$ is

- (a) 69
- (b) 80
- (c) 81
- (d) 77

74. If $\lambda x^2 + \mu y^2 + (\lambda + \mu - 4) xy - \lambda x - \mu y - 20 = 0$ represents a circle, the radius of the circle is (a) $\sqrt{21}/2$ (b) $\sqrt{42}/2$ (c) $2\sqrt{21}$ (d) $\sqrt{22}$ 75. A point P lies inside the circles $x^2 + y^2 - 4 = 0$ and $x^2 + y^2 - 8x + 7 = 0$. The point P starts moving under the conditions that its path encloses greatest possible area and it is at a fixed distance from any arbitrarily chosen fixed point in its region. The locus of p is

(a)
$$4x^{2} + 4y^{2} - 12x + 1 = 0$$

(b) $4x^{2} + 4y^{2} + 12x - 1 = 0$
(c) $x^{2} + y^{2} - 3x - 2 = 0$
(d) $x^{2} + y^{2} - 3x + 2 = 0$

76. If (α, β) is a point on the circle whose centre is on the x-axis and which touches the line x + y = 0 at (2, -2), then the greatest value of α is

- (a) $4 \sqrt{2}$
- (b) 6
- (c) $4 + 2\sqrt{2}$
- (d) $4 + \sqrt{2}$

77. The set of values of 'c' so that the equations y = |x| + c and $x^2 + y^2 - 8 |x| - 9 = 0$ have no solution is

- (a) $(-\infty, -3) \cup (3, \infty)$
- (b)(-3,3)
- (c) $(-\infty, -5\sqrt{2}) \cup (5\sqrt{2}, \infty)$ (d) $(5\sqrt{2} - 4, \infty)$
- 78. The lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154 sq unit. The equation of this circle ($\pi = 22/7$)
- (a) $x^{2} + y^{2} + 2x 2y = 62$ (b) $x^{2} + y^{2} + 2x - 2y = 47$ (c) $x^{2} + y^{2} - 2x + 2y = 47$ (d) $x^{2} + y^{2} - 2x + 2y = 62$

79. (-6, 0), (0, 6) and (-7, 7) are the vertices of \triangle ABC. The incircle of the triangle has the equation

(a) $x^{2} + y^{2} - 9x - 9y + 36 = 0$ (b) $x^{2} + y^{2} + 9x - 9y + 36 = 0$ (c) $x^{2} + y^{2} + 9x + 9y - 36 = 0$ (d) $x^{2} + y^{2} + 18x - 18y + 36 = 0$

80. Let $0 < \alpha < \frac{\pi}{2}$ be a fixed angle. If $P = (\cos\theta, \sin\theta)$ and $Q = (\cos(\alpha - \theta), \sin(\alpha - \theta))$, then Q is obtained from P by

- (a) clockwise rotation around origin through an angle α
- (b) anti-clockwise rotation around origin through an angle $\boldsymbol{\alpha}$
- (c) reflection in the line through origin with slope tan α
- (d) reflection in the line through origin with slope tan $\alpha/2$

Answer:

1. (c) 2. (a) 3. (b) 4. (c) 5. (a) 6. (c) 7. (b) 8. (c) 9. (d) 10. (a) 11. (c) 12. (b) 13. (d) 14. (a) 15. (a) 16. (b) 17. (c) 18. (a) 19. (c) 20. (d) 21. (a) 22. (d) 23. (d) 24. (d) 25. (b) 26. (b) 27. (d) 28. (a) 29. (b) 30. (c) 31. (c) 32. (d) 33. (c) 34. (b) 35. (c) 36. (a) 37. (c) 38. (b) 39. (b) 40. (b) 41. (b) 42. (c) 43. (b) 44. (c) 45. (a) 46. (a) 47. (a) 48. (c) 49. (b) 50. (c) 51. (a) 52. (b) 53. (b) 54. (a) 55. (b) 56. (b) 57. (a) 58. (d) 59. (c) 60. (c) 61. (c) 62. (a) 63. (d) 64. (b) 65. (a) 66. (b) 67. (b) 68. (c) 69. (a) 70. (a) 71. (b) 72. (c) 73. (a) 74. (b) 75. (d) 76. (c) 77. (d) 78. (c) 79. (b) 80. (d)

"Detail solutions are mentioned in the content library"