

MCQs with One Correct Answer

- When same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide solution the ratio of volumes of hydrogen evolved is
 - (a) 1:1
- (b) 1:2
- (c) 2:1
- (d) 9:4
- 2. 2 g of aluminium is treated separately with excess of dilute H₂SO₄ and excess of NaOH. The ratio of the volumes of hydrogen evolved is
 - (a) 2:3
- (b) 1:1
- (c) 2:1
- (d) 1:2
- 3. Consider the following statements:
 - 1. Atomic hydrogen is obtained by passing hydrogen through an electric arc.
 - Hydrogen gas will not reduce heated aluminium oxide.
 - Finely divided palladium adsorbs large volume of hydrogen gas
 - 4. Pure nascent hydrogen is best obtained by reacting Na with C₂H₅OH

Which of the above statements is/are correct?

- (a) only 1
- (b) only 2
- (c) 1, 2 and 3
- (d) 2, 3 and 4

- 4. Which hydride is an ionic hydride?
 - (a) H₂S
- (b) TiH_{1.73}
- (c) NH₃
- (d) NaH
- 5. The reagent commonly used to determine hardness of water titrimetrically is
 - (a) oxalic acid
 - (b) sodium thiosulphate
 - (c) sodium citrate
 - (d) disodium salt of EDTA
- **6.** Pure water can be obtained from sea water by
 - (a) centrifugation
 - (b) plasmolysis
 - (c) reverse osmosis
 - (d) sedimentation
- 7. Chemical A is used for water softening to remove temporary hardness. A reacts with sodium carbonate to generate caustic soda. When CO₂ is bubbled through a solution of A, it turns cloudy. What is the chemical formula of A.
 - (a) CaCO₃
 - (b) CaO
 - (c) Ca(OH),
 - (d) Ca(HCO₃)₂

- 8. Which of the following statements do not define the characteristic property of water "Water is a universal solvent"
 - (a) It can dissolve maximum number of compounds
 - (b) It has very low dielectric constant
 - (c) It has high liquid range
 - (d) None of these
- 9. The amount of H₂O₂ present in 1 litre of 1.5 N H_2O_2 solution, is
 - (a) 25.5 g
- (b) 3.0 g
- (c) 8.0 g
- (d) 2.5 g
- 10. The volume strength of $1.5 \text{ N H}_2\text{O}_2$ solution is
 - (a) 8.4
- (b) 8.0
- (c) 4.8
- 3.0
- 11. In lab H₂O₂ is prepared by
 - (a) $\operatorname{cold} H_2 \operatorname{SO}_4 + \operatorname{BaO}_2$
 - (b) HCl+BaO,
 - (c) conc. $H_2SO_4 + Na_2O_2$
 - (d) $H_2 + O_2$
- 12. The strength in volumes of a solution containing $30.36 \text{ g/L of H}_2\text{O}_2$ is
 - (a) 10 V
- (b) 5V
- (c) 20 V
- (d) None of these
- 13. 20 Volume H₂O₂ solution has a strength of about
 - (a) 30%
- 6%
- (c) 3%
- (d) 10%
- 14. H_2O_2 is a
 - (a) weak acid
- (b) weak base
- (c) neutral
- (d) None of these
- 15. $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$; $E^\circ = -0.68$ V. This equation represents which of the following behaviour of H₂O₂?
 - (a) Reducing
- Oxidising (b)
- (c) Acidic
- (d) Catalytic
- **16.** Heavy water reacts respectively with CO₂, SO₃, P_2O_5 and N_2O_5 to give the compounds
 - (a) D₂CO₃, D₂SO₄, D₃PO₂, DNO₂
 - (b) D₂CO₃, D₂SO₄, D₃PO₄, DNO₂
 - (c) D₂CO₃, D₂SO₃, D₃PO₄, DNO₂
 - (d) D₂CO₃, D₂SO₄, D₃PO₄, DNO₃

- 17. A, 6 volume sample of H₂O₂
 - (a) will contain 6% V/V of H₂O₂
 - (b) will contain 6% W/V of H₂O₂
 - would give 6 volumes of oxygen per unit volume of H₂O₂ sample at STP
 - (d) would give 6 volumes of oxygen per unit weight of H₂O₂ sample at STP
- **18.** In water-gas shift reaction, hydrogen gas is produced from the reaction of steam with
 - (a) methane
- (b) coke
- (c) carbon monoxide (d) carbon dioxide
- 19. Treatment with lime can remove hardness of water caused by
 - (a) CaCl,
- (b) CaSO₄
- (c) Ca(HCO₃),
- (d) CaCO,
- 20. Permanent hardness of water can be removed by
 - (a) heating
 - treating with sodium acetate (CH₃CO₂Na) (b)
 - treating with Ca(HCO₃)₂
 - (d) treatment with sodium hexametaphosphate $(Na_6P_6O_{18})$

Numeric Value Answer

- At room temperature, the ratio of ortho to para hydrogen is n:1. what is the value of n?
- If 1 L of hard water (contains CaSO₄) requires 0.286 g of washing soda (Na₂CO₃ . 10H₂O) for softening process. What is the hardness of water in ppm?
- 23. 3 Samples of H₂O₂ are labelled as 10 vol., 15 vol. and 20 vol. 100 mL. of each sample is mixed. What is the volume strength of resulting solution?
- 24. Ordinary water contains traces of heavy water. This is about 1 part in $n \times 1000$ parts. What is the integer value of n?
- 25. What is the amount of energy released (in KJ) on combustion of 1 g of H₂ gas?

ANSWER KEY																	
1	(a)	4	(d)	7	(c)	10	(a)	13	(b)	16	(d)	19	(c)	22	(100)	25	(143)
2	(b)	5	(d)	8	(b)	11	(a)	14	(a)	17	(c)	20	(d)	23	(15)		
3	(c)	6	(c)	9	(a)	12	(a)	15	(a)	18	(c)	21	(3)	24	(6)		

Hints & Solutions

Hydrogen

- (a) Zn + H₂SO₄ → ZnSO₄ + H₂
 Zn + 2NaOH → Na₂ZnO₂ + H₂
 ∴ Ratio of volumes of H₂ evolved is 1 : 1
- 2. **(b)** $2Al + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$ $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$

The ratio of volumes of hydrogen evolved is 1:1.

3. (c) Pure hydrogen is evolved by reacting absolute alcohol and Na

$$C_2H_5OH + Na \rightarrow C_2H_5ONa + \frac{1}{2}H_2$$

other statements are correct.

- 4. (d) All metal hydrides are ionic in nature.
- 5. (d) It forms calcium and magnesium complex with Ca²⁺ and Mg²⁺ ions present in hard water.
- **6. (c)** Sea water is purified by reverse osmosis.
- 7. (c) Ca(OH)₂ is used for the softening of temporary hard water.

$$Ca(OH)_2(aq) \longrightarrow CaCO_3(s) + H_2O(l)$$
Cloudiness

- 8. **(b)** Water has high dielectric constant i.e., 78.39 C²/Nm², high liquid range and can dissolve maximum number of compounds. That is why it is used as universal solvent.
- 9. (a) Molecular weight of $H_2O_2 = 34$ Equivalent weight of $H_2O_2 = 17$
 - $\therefore 1 \text{ L of } 1 \text{ N H}_2\text{O}_2 \text{ has} = 17 \text{ g of H}_2\text{O}$
 - : $1 \text{Lof } 1.5 \text{ NH}_2 \text{O}_2 \text{ has} = 1.5 \times 17 = 25.5 \text{ g of H}_2 \text{O}_2$
- 10. (a) Normality of $H_2O_2 = \frac{\text{Vol. strength}}{5.6}$

Volume of normal (1N) H_2O_2 solution = 5.6 volumes.

: Volume of strength of 1.5 N H₂O₂

 $= 1.5 \times 5.6 = 8.4$ volumes.

- 11. (a) $H_2SO_4 + BaO_2 \rightarrow BaSO_4 + H_2O_2$
- 12. (a) Equivalent weight = $\frac{\text{Molar mass}}{\text{Valence factor}}$

$$=\frac{1\times2+16\times2}{2}$$

Eq. wt. of $H_2O_2 = 17$

$$N = \frac{30.36}{17} = 1.78 \text{ N}$$

Volume strength = $5.6 \times \text{normality}$

$$= 5.6 \times 1.78 = 10 \text{ V}$$

- 13. (b) \therefore 22.4LO₂ at S.T.P. is obtained from = 68 g H_2O_2
 - :. 1LO₂ at S.T.P. is obtained from = $\frac{68}{22.4}$ g H₂O₂
 - :. 20L O2 at S.T.P. is obtained from

$$=\frac{68}{22.4} \times 20 \text{ g H}_2\text{O}_2 = 60.71 \text{ g of H}_2\text{O}_2$$

Therefore, strength of H_2O_2 in 20 volume H_2O_2 = 60.71g/L

- \therefore 1000 mLO₂ at S.T.P. is obtained from = 60.71 g H₂O₂
- \therefore 100 mL O₂ at S.T.P. is obtained from

$$=\frac{60.71}{1000} \times 100 = 6.071\% \text{ H}_2\text{O}_2$$

- 14. (a) $H_2O_2 \rightarrow H_2O + [O]$ weak acid
- (a) As H₂O₂ is loosing electrons so it is acting as reducing agent.

16. (d) The D₂O reacts with given compounds as follows:

$$\begin{array}{c} D_2O + CO_2 \rightarrow D_2CO_3 \\ D_2O + SO_3 \rightarrow D_2SO_4 \\ 3D_2O + P_2O_5 \rightarrow 3D_3PO_4 \\ D_2O + N_2O_5 \rightarrow 2DNO_3 \end{array}$$

- (c) 6 volume H₂O₂ would give 6 volumes of O₂ per unit volume of H₂O₂
- 18. (c) In water gas shift reaction carbon monoxide reacts with steam at high temperature to produce carbondioxide and hydrogen.
- (c) Lime can remove temporary hardness of water which is caused due to bicarbonate salt of Ca and Mg.
- 20. (d) When sodium hexametaphosphate is added to hard water it combines with Ca²⁺, Mg²⁺ ions present in hard water and forms a complex. These complexes with soap readily produce lather.

$$Na_{2}[Na_{4}(PO_{3})_{6}] + 2Ca^{2+} \rightarrow Na_{2}[Ca_{2}(PO_{3})_{6}] + 4Na^{+}$$
 $Na_{2}[Na_{4}(PO_{3})_{6}] + 2Mg^{2+} \rightarrow Na_{2}[Mg_{2}(PO_{3})_{6}] + 4Na^{+}$

- **21. (3)** The ratio of ortho to para hydrogen can never be more than 3:1.
- 22. (100) Molecular mass of Na_2CO_3 . $10H_2O = 286$ Molecular mass of $CaCO_3 = 100$ $CaSO_4 + Na_2CO_3$. $10H_2O \rightarrow$ $CaCO_3 + Na_2SO_4 + 10H_2O$

$$0.286 \text{ g Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O} = \frac{0 \cdot 286}{286} = 10^{-3} \text{moles}$$

Moles of $CaCO_3 = 10^{-3}$ moles Mass of $CaCO_3 = 10^{-3} \times 100 = 10^{-1}$ g 1n 1000 g of hard water = 10^{-1} g of $CaCO_3$

$$10^6 \text{g of hard water} \equiv \frac{10^{-1}}{1000} \times 10^6$$

 $\equiv 100$ g. of CaCO₃ ppm hardness = 100

23. (15) Volume strength = $5.6 \times N$

Thus
$$N_1 = \frac{10}{5.6}, N_2 = \frac{15}{5.6}, N_3 = \frac{20}{5.6}$$

After mixing total volume = 300 mL $N_1V_1 + N_2V_2 + N_3V_3 = NV$

$$\frac{10}{5.6} \times 0.1 + \frac{15}{5.6} \times 0.1 + \frac{20}{5.6} \times 0.1 = 0.3 \times N$$

$$N = \frac{10 + 15 + 20}{5.6} \times \frac{0.1}{0.3} = \frac{15}{5.6}$$

Volume strength =
$$5.6 \times \frac{15}{5.6} = 15$$

- 24. (6) 6000 parts of ordinary water (H₂O) contains 1 part of heavy water (D₂O).
- **25.** (143) 1 g of H₂ gas, release 143 kJ of energy.