CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. Assertion: Acidic nature

Reason: F is better electron withdrawing group than Cl

- (1) Assertion & Reason, both are correct and Reason is correct explanation of Assertion
- (2) Assertion and Reason, both are correct but Reason is not correct explanation of Assertion
- (3) Assertion is correct, Reason is incorrect
- (4) Assertion is incorrect, Reason is correct

Answer (2)

- 2. Which of the following the best method for preparation of BeF_2
 - (1) Be + $F_2 \rightarrow BeF_2$
 - (2) $BeH_2 + F_2 \rightarrow BeF_2$
 - (3) BeH₂ + NaF \rightarrow
 - (4) By (NH₄)₂BeF₄ (thermal decomposition)

Answer (4)

Sol. Best method for preparation of BeF2 is by thermal decomposition of (NH₄)₂ BeF₄

 $(NH_4)_2BeF_4 \longrightarrow NH_4F + BeF_2$

Ref. NCERT (s-block)

- The correct increasing order of the magnitude of standard enthalpies of formation for group-1 halides is
 - (1) Nal < NaF < NaBr < NaCl
 - (2) Nal < NaBr < NaCl < NaF
 - (3) NaF < NaCl < NaBr < Nal
 - (4) NaCl < NaBr < NaF < Nal

Answer (2)

Sol. Halide ΔH_{f}° (kJ mol⁻¹)

NaF	_	569
NaCl	_	400
NaBr	_	360
Nal	_	288

4. Consider the following reaction and identify the reactant (A)

- (1) Aniline
- (2) Phenol
- (3) Salicylic acid
- (4) Acetanilide

Answer (1)

Sol. The reactant (A) is likely to be aniline because option will undergo monobromination on reaction with Br_2 dissolved in CS_2 .

5. Assertion A : Bond angle of SO₂ is less than H₂O

Reason R : Both form V-shaped structure.

- (1) Assertion & Reason, both are correct and Reason is correct explanation of Assertion
- (2) Assertion and Reason, both are correct but Reason is not correct explanation of Assertion
- (3) Assertion is correct, Reason is incorrect
- (4) Assertion is incorrect, Reason is correct

Answer (3)

H 104.5°

- 6. Ba+2 cannot be precipitated as
 - (1) BaCO3
 - (2) Ba(OH)2
 - (3) BaCrO₄
 - (4) BaSO₄

Answer (2)

Sol. Ba(OH)2 is soluble in water

BaCO₃ & BaSO₄ are white ppt

BaCrO₄ - Yellow ppt

- 7. Which of the following is oxidised by oxygen in acidic medium?
 - (1) Cl⁻, Br⁻
 - (2) Br⁻, I⁻
 - (3) Br-
 - (4) ⊢

Answer (2)

Sol. Reduction potential

$$E^{o}_{l_{2}/l^{-}} = 0.54 \text{ V}$$

$$E^{o}_{Br_{o}/Br^{-}} = 1.09 V$$

$$E_{O_2/H_2O}^{\circ} = 1.23 V$$

$$E^{o}_{CI_{2}/CI^{-}} = 1.36 V$$

R. P. is in order $CI_2 > Br_2 > I_2$

- O.P. is revers in order
- So, I⁻ and Br⁻ ion will get oxidised

- 8. A naturally occurring amino acid that contains only one basic functional group.
 - (1) Arginine
 - (2) Lysine
 - (3) Histidine
 - (4) Isoleucine

Answer (4)

- Sol. Isoleucine has single nitrogenous base group.
- 9. Match the polymers given in column-I with their characteristics given in column-II

	Column-I		Column-II
(A)	Nylon 66	(P)	Thermosetting
(B)	Nylon 6	(Q)	Polyester
(C)	Phenol formaldehyde resin	(R)	Homopolymer
(D)	Dacron	(S)	Polyamide

- (1) (A)-(P); (B)-(Q); (C)-(S); (D)-(R)
- (2) (A)-(Q); (B)-(P); (C)-(R); (D)-(S)
- (3) (A)-(P,Q); (B)-(R, S); (C)-(Q); (D)-(P)
- (4) (A)-(S); (B)-(R, S); (C)-(P); (D)-(Q)

Answer (4)

- **Sol.** (A) Nylon 66 is a copolymer obtained by condensation polymerisation of hexamethylene diamine and adipic acid. It is a polyamide.
 - (B) Nylon 6 is a homopolymer of caprolactam. It is a polyamide.
 - (C) Phenol formaldehyde resin is obtained by condensation polymerisation of phenol and formaldehyde. It is a thermosetting polymer.
 - (D) Dacron is a copolymer obtained by condensation polymerisation of terephthalic acid and ethylene glycol. It is a polyester.
- 10. Identify the major product formed in the following reaction.

Sol.

11. Match reagent in Column-I with product in Column-II.

	Column-I Reagent		Column-II Product
	2- Bromopropane		
А	Alc.KOH	1	Nitrile
В	alc.KCN	2	Alkene
С	AgNO ₂	3	Ester
D	CH₃COOAg	4	Nitro

- (1) A-2; B-1; C-3; D-4
- (2) A-2; B-1; C-4; D-3
- (3) A-2; B-3; C-1; D-4
- (4) A-1; B-2; C-4; D-3

Answer (2)

12. S-I: Tropolone has 8π electron in total.

Ο

- S-II: π-electrons of C are involved in aromaticity of tropolone.
- (1) Both S-I and S-II are true
- (2) S-I is true, S-II is false
- (3) S-I is false, S-II is true
- (4) Both S-I and S-II are false

Answer (2)

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. Consider the reaction

$$Cr_2O_7^{-2} + xH^{\oplus} + Fe^{+2} \longrightarrow yFe^{+3} + 2Cr^{+3} + zH_2O$$

Sum of x, y, z = ?

Answer (27)

Sol.
$$14H^{\oplus} + Cr_2O_7^{-2} + 6Fe^{+2} \longrightarrow 6Fe^{+3} + 2Cr^{+3} + 7H_2O$$

$$x = 14, y = 6, z = 7$$

 $x + y + z = 27$

22. If the formula of Borax is

$$Na_2B_yO_x(OH)_y$$
. zH₂O, find the value of x + y + z?

Answer (17)

Sol. Formula is Na₂B₄O₅(OH)₄.8H₂O

- ∴ x = 5
- y = 4
- z = 8
- x + y + z = 17
- Given length of body diagonal of unit cell is 4 Å. Find the radius of Na atom forming bcc lattice (in Å).

Answer (1)

Sol.

 $r = \frac{\sqrt{3} a}{4}$ $r = \frac{4}{4} = 1 Å$

 $4r = \sqrt{3}a$

24. Find the orbital angular momentum of 3s orbital.

Answer (0)

Sol. Orbital angular momentum is given by $\sqrt{I(I+1)}$, I is the azimuthal quantum number.

For 's' orbital I = 0

- \therefore Orbital angular momentum = 0
- 25. Number of stereoisomers of [Cr(OX)₂ClBr]-

Answer (03.00)

Sol. cis-2

Trans-1

- Find out PH of resultant solution obtained when 20 mL of 0.1 M NaOH is mixed with 50 mL of 0.1 M CH₃COOH
 - $pK_a \text{ of } CH_3COOH = 4.74$

log2 = 0.30; log3 = 0.47

Answer (04.57)

Sol. $\begin{array}{c} CH_{3}COOH + NaOH \longrightarrow CH_{3}COONa + H_{2}O \\ 2 & 5 & - & - \\ \downarrow & \downarrow & \downarrow \\ 0 & 3 & 2 \end{array}$ $pH = pK_{a} + \log \frac{2}{3} \end{array}$

= 4.74 + 0.30 - 0.47

= 4.57

 23% NaCl and 19.5% MgCl₂ is present in salt water by weight. The degree of dissociation of both the salts is 100%. Find the normal boiling point of salt water (in °C). (K_b = 0.52 K kg mol⁻¹) (Nearest integer)

Answer (113)

Sol. $\Delta T_b = iK_bm$

$$= \left(\frac{23 \times 2 \times 1000}{(58.5) \times 57.5} + \frac{3 \times 19.5 \times 1000}{95 \times 57.5}\right) \times 0.52$$
$$= \frac{(7.86 + 6.16) \times 0.52}{57.5} \times 100 \approx 12.66$$

- \therefore Boiling point $\simeq 113^{\circ}C$
- 28. Consider a reaction

 $A(g) \rightarrow 2B(g) + C(g)$ Initial pressure (P_i) = 800 mm Hg.

At 10 minutes, total pressure is 1600 mm Hg, then

find the total pressure at 30 minutes. (in mm Hg)

Answer (2200)

Sol.

29.

30.

A(g) → 2B(g) + C(g)
800 ______
800-p 2p p
At 10 minutes, P_{total} = 800 + 2p = 1600
p = 400 mm Hg.
∴ 10 minutes means 1 half life
At t = 30 minutes,
$$p = \frac{7 \times 800}{8} = 700$$
 minutes
∴ P_{total} = (800 - 700) + 2 × 700 + 700
= 800 + 1400
= 2200 mm Hg.