

CHEMICAL BONDING

S.No.	CONTENTS	Page
1.	Introduction	43
2.	Kossel-Lewis	44
3.	Covalent bond	46
4.	VBT	48
5.	Hybridisation	52
6.	VSEPR theory	60
7.	Bond parameters	60
8.	Dipole moment	65
9.	МОТ	68
10.	Co-ordinate bond	73
11.	Formal charge	73
12.	Resonance	74
13.	Metallic bond	76
14.	Vander waals force	76
15.	Hydrogen bonding	77
16.	Ionic bond	81
17.	Exercise-I (Conceptual Question)	93
18.	Exercise-II (Previous Years Questions)	100
19.	Exercise-III (Analytical Questions)	107
20.	Exercise-IV (Assertion & Reason)	111

NEET SYLLABUS

Е

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, valence bond theory, resonance, geometry of molecules, VSEPR theory, concept of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only). Hydrogen bond.

OBJECTIVES

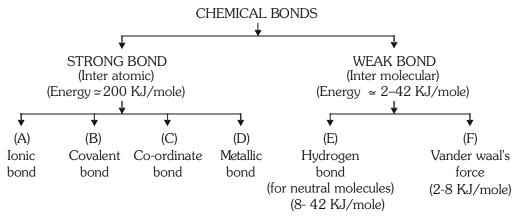
After studying this unit, you will be able to :

- understand Kössel-Lewis approach to chemical bonding;
- explain the octet rule and its limitations, draw Lewis structures of simple molecules;
- explain the formation of different types of bonds;
- describe the VSEPR theory and predict the geometry of simple molecules;
- explain the valence bond approach for the formation of covalent bonds;
- predict the directional properties of covalent bonds;
- explain the different types of hybridisation involving s, p and d orbitals and draw shapes of simple covalent molecules;
- describe the molecular orbital theory of homonuclear diatomic molecules;
- explain the concept of hydrogen bond.

The meeting of two personalities is like the contact of two chemical substances; if there is any reaction, both are transformed.

Carl Jung

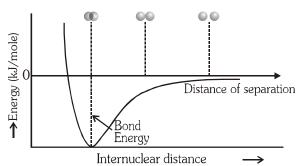
CHEMICAL BONDING


2.0 INTRODUCTION

- It is well known fact that except inert gases, no other element exists as independent atom under ordinary conditions.
- Most of the elements exist as molecules which are cluster of atoms. How do atoms combine to form molecules and why do atoms form bonds? Such doubts will be discussed in this chapter.
- A molecule will only be formed if it is more stable and has a lower energy, than the individual atoms.

Chemical Bond

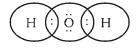
- A force that acts between two or more atoms to hold them together as a stable molecule.
- It is union of two or more atoms involving redistribution of e⁻ among them.
- This process accompanied by decrease in energy.
- Decrease in potential energy (P.E.) α Strength of the bond.
- Therefore molecules are more stable than atoms.


Classification of Bonds

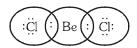
Cause of Chemical Combination

(A) Tendency to acquire minimum energy

- (a) When two atoms approaches to each other. Nucleus of one atom attracts the electron of another atom.
- (b) Two nuclei and electrons of both the atoms repells each other.
- (c) If net result is attraction, the total energy of the system (molecule) decreases and a chemical bond forms.
- (d) So Attraction α 1/energy α Stability.
- (e) Bond formation is an exothermic process



(B) Tendency to acquire noble gas configuration :


- (a) Atom combines to acquire noble gas configuration.
- (b) Only outermost electrons i.e. ns, np and (n-1)d shells electrons participate in bond formation.
- (c) Inert gas elements do not participate in bond formation, as they have stable electronic configuration hence will have minimum energy. (Stable configuration $1s^2$ or ns^2np^6)

2.1 KOSSEL - LEWIS APPROACH TO CHEMICAL BONDING

- Every atom has a tendency to complete its octet in outermostshell
- H has the tendency to complete its duplet.
- To acquire inert gas configuration atoms loose or gain electron or share electron.
- The tendency of atoms to achieve eight electrons in their outer most shell is known as Lewis octet rule.

Obeys octet rule

Doesn't obey octet rule

Exception of Octet Rule

(a) Incomplete octet molecules :- or (electron defficient molecules)

Compound in which octet is not complete in outer most orbit of central atom. Example - Halides of IIIA groups, BF_3 , $AlCl_3$, BCl_3 , hydride of III A/13th group etc.

$$: \overset{.}{\underset{Cl}{\square}} : \overset{.}{\underset{Cl}{\square}} : \overset{.}{\underset{Cl}{\square}} : \qquad \begin{cases} \ln BCl_{3} \\ Boron \text{ has only 6 electrons} \end{cases} \end{cases}$$

Other examples – BeCl₂ (4e⁻), HgCl₂ (4e⁻), Ga(CH₃)₃ (6e⁻)

(b) Expansion of octet or (electron efficient molecules)

Compound in which central atom has more than $8e^{-}$ in outermost orbits. **Example -** In PCl₅, SF₆ and IF₇ the central atom P, S and I contain 10, 12 and 14 electrons respectively.

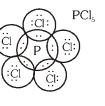
(c) Pseudo inert gas configuration :-

Cations which contain 18 electrons in outermost orbit

Ex. Ga⁺³, Cu⁺, Ag⁺, Zn⁺², Cd⁺², Sn⁺⁴, Pb⁺⁴ etc.

Electronic configuration of Ga - $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^1$

Electronic configuration of Ga⁺³ - 1s²,2s²,2p⁶, $3s^{2}3p^{6}3d^{10}$ 18e⁻


(d) Cations having electron between 9 to 17 in their outer most shell
 Ex. Mn⁺², Fe⁺², Fe⁺³, Ti⁺² etc.

Electronic configuration of Fe - 1s²,2s²2p⁶,3s²3p⁶3d⁶,4s²

 $\label{eq:electronic configuration of Fe^{+3}-1s^2, 2s^22p^6, \quad \underbrace{3s^23p^6\,3d^5}_{(less\,than\,18e^-)}$

(e) Odd electron molecules :-

Central atom have an unpaired electron or odd no (7 e^- , 11 e^- etc) of electrons in their outer most shell. e.g. NO, NO₂, ClO₂ etc.

Z:\NODE02\B0AFB0\TARGET\CHEM\ENG\MODULE-2\2-CHEMICALBONDING\01THEORY.P65

ALLEN

ALLEN VALENCY

It is defined as the combining capacity of the elements. The word valency is derived from an Italian word "Valentia" which means combining capacity.

Old concept : Given by : Frankland

Valency with respect to Hydrogen : Valency of H = 1

It is defined as the number of hydrogen attached with a particular element.

	IA	IIA	IIIA	IVA	VA	VIA	VIIA
	NaH	MgH_2	AlH_3	SiH ₄	PH_3	H_2S	HCl
Valency	1	2	3	4	3	2	1

Note: Valency w.r.t. H across the period increases upto 4 and then again decreases to 1.

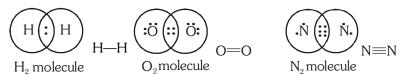
Valency with respect to oxygen : Valency of O' = 2

It is defined as twice the number of oxygen atoms attached with a particular atom.

	IA	IIA	IIIA	IVA	VA	VIA	VIIA
	Na ₂ O	MgO	Al_2O_3	SiO_2	P_2O_5	SO_3	Cl_2O_7
Valency	1	2	3	4	5	6	7

Note: Valency with respect to oxygen increases from 1 to 7 across the period. Valency w.r.t. 'O' is equal to the group number.

New concept : This concept is based on the electronic configuration. According to this concept valency for IA to IVA group elements is equal to number of valence shell e^- and from VA to zero group, it is -


$$[8-$$
 (number of valence $e^{-})]$

Valency = No. of valence e^-				Valency = $(8 - no. \text{ of valence } e^{-})$				
	+		1	•	4	,		•
	IA	IIA	IIIA	IVA	VA	VIA	VIIA	0
	ns^1	ns ²	ns ² np ¹	ns²np²	ns ²	np ³ ns ² np ⁴	ns²np5	ns²np²
Valence	1	2	3	4	5	6	7	8
shell e⁻								
Valency	1	2	3	4	3	2	1	0
					(8 -	- 5) = 3		(8-8)=0

Note : All the elements of a group have same valencies because they have same number of valence shell electrons.

2.2 COVALENT BOND

• A covalent bond is formed by the mutual sharing of electrons between two atoms of electro negative elements to complete their octet. (Except H which completes its duplet)

- The shared pair of electrons should have opposite spins, and are localised between two atoms concerned.
- Sharing of electrons may occurs in three ways –

No. of electrons shared between two atoms	Electron pair	Bond.
2	1	Single bond (—)
4	2	Double bond $(=)$
6	3	Triple bond (\equiv)

Examples – H = H = H { Three single bonds (not triple bond)

 $N \equiv N$ Triple bond. (not three single bonds) O = O Double bond (Not two single bonds) H = O = H (Two single bonds.)

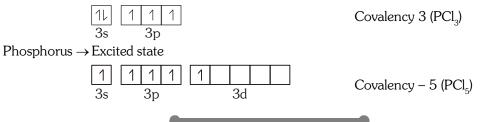
Orbital Concept of Covalent Bond

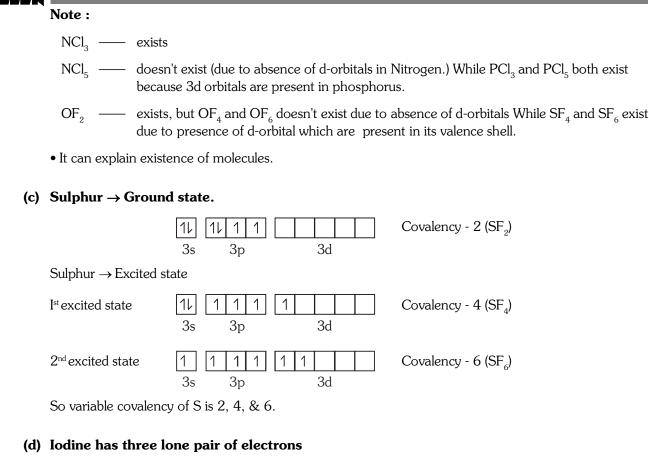
- One orbital can accommodate maximum 2 electrons with opposite spins like 1
- Half filled orbital or unpaired electron orbital share one electron from another atom, to complete its orbital.
- Tendency to complete orbital or to pair the electron is an essential condition of covalent bond. Completion of octet is not the essential condition of covalent bond.
- **Covalency** : It is the number of covalent bonds which an atom makes in a molecule.
- If the outermost orbit has empty orbitals then covalent bonds are formed in excited state.

2.3 VARIABLE VALENCY IN COVALENT BONDS

- Variable valencies are shown by those elements which have empty orbitals in outermost shell.
- Lone pair electrons get excited in the subshell of the same shell to form the maximum number of unpaired electrons. Maximum covalency is shown in excited state.
- The energy required for excitation of electrons is called promotion energy.
- Promotion rule Excitation of electrons in the same orbit.

Example –


(a) Nitrogen \rightarrow Ground state



Covalency 3 (NCl₃)

For Nitrogen \rightarrow Excited states are not possible due to absence of vacant orbital thats why (NCl₅) does not exist

(b) Phosphorus \rightarrow Ground state

(Ground state)1l1l1l1l5s5p5d

So it shows three excited states – Maximum number of unpaired electrons = 7 Variable Valencies are 1, 3, 5 and 7

2.4 CHARACTERISTIC OF COVALENT COMPOUND

(a) Physical state :- Covalent compounds are found in all the three states - Gas, Solid & Liquid.

Separate molecules — In gaseous state

Associate molecules — In liquid & solid state

(Due to strong vander waal's force and hydrogen bonding among the molecules.)

As the molecular weight increases physical state changes -

eg. F_2 and Cl_2 Br_2 I_2 , At_2 gas liquid solid

Top to bottom in a group. Vander waal's force increases between the molecules.

(b) Covalent solid :- Those solids in which atoms are linked together by covalent bonds, forms infinite three dimensional giant structure.

eg. Diamond, Graphite, AlN, SiC, SiO₂ etc.

Molecular solid :- Discrete (separate) molecules are formed by covalent bonds and then the molecules associates due to intermolecular force of attraction. (van der Waal force)

eg. Solid I_2 , dry ice (Solid CO_2) etc.

Pre-Medical : Chemistry

(c) Conductivity :- Mostly covalent compounds are bad conductor of electricity. But few polar covalent compounds due to self ionisation can conduct electricity. eg. H₂O, liq. NH₃ etc.

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

 $2NH_2 \rightleftharpoons NH_2^+ + NH_2^-$

Free ions are formed which can conduct electricity.

Exceptions :- Graphite, HCl in water.

(d) **Solubility : -** Non polar compounds are soluble in non polar solvents. Non polar compounds forms vander waal bond with non polar solvent molecules.

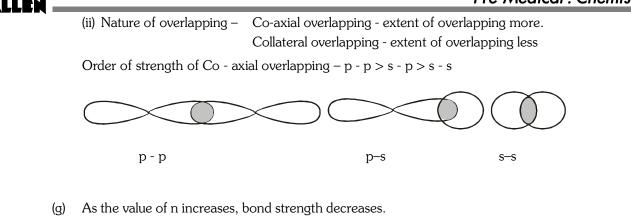
Non polar solvents are C_6H_6 , CCl_4 etc.

(e) Isomerism :- Covalent bond is rigid and directional, so it shows isomerism.

eg. Organic compounds.

(f) **Reaction :-** Reaction between covalent compounds are slow. Because it involves breaking of old bonds and formation of new bonds.

BEGINNER'S BOX-1


- **1.** Which condition favours the bond formation:
 - (1) Maximum attraction and maximum potential energy
 - (2) Minimum attraction and minimum potential energy
 - (3) Minimum potential energy and maximum attraction
 - (4) None of the above
- 2. Which one of the following element will never obey octet rule:

	(1) Na	(2) F	(3) S	(4) H			
3.	Which is not an exception	on to octet rule ?					
	(1) BF ₃	(2) SiCl ₄	(3) Bel_2	(4) ClO ₂			
4.	An oxide of chlorine which is an odd electron molecule is :						
	(1) ClO ₂	(2) $Cl_{2}O_{4}$	$(3) \operatorname{Cl}_{2}O_{7}$	(4) Cl _o O			

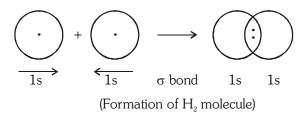
2.5 VALENCE BOND THEORY (VBT) :

- (A) It was presented by Heitler & London to explain how a covalent bond is formed. It was extended by Pauling & Slater.
- (B) The main points of theory are
 - (a) To form a covalent bond overlapping occurs between half filled valence shell orbitals of the two atoms.
 - (b) Resulting bond acquires a pair of electrons with opposite spins to get stability.
 - (c) Orbitals come closer to each other from the direction in which there is maximum overlapping
 - (d) So covalent bond has directional character.
 - (e) Strength of covalent bond ∞ extent of overlapping.
 - (f) Extent of overlapping depends on two factors.
 - (i) Nature of orbitals p, d and f are directional orbitals \rightarrow more overlapping s-orbital \rightarrow non directional – less overlapping

49

1 - 1 > 1 - 2 > 2 - 2 > 2 - 3 > 3 - 3

1s - 2p > 2s - 2p > 3s - 3p

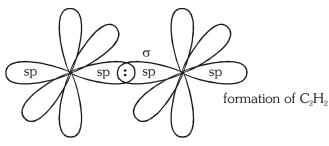

- (h) If n is same 2p 2p > 2s 2p > 2s 2s
- (i) Electron which is already paired in valency shell can enter into bond formation, if they can be unpaired first and shifted to vacant orbitals of slightly higher energy of the same energy shell.
- (j) This point can explain the trivalency of boron, tetravalency of carbon, pentavalency of phosphorus etc.
- (k) Two types of bonds are formed on account of overlapping.
 (A) Sigma (σ) bond
 (B) Pi (π) bond

Sigma (o) Bond

- (a) Bond formed between two atoms by the overlapping of half filled orbitals along their axis (end to end overlap) is called sigma bond.
- (b) σ bond is directional.
- (c) σ bond do not take part in resonance.
- (d) Free rotation is possible about a single σ bond.
- (e) Maximum overlapping is possible between electron clouds and hence it is strong bond.
- (f) There can be only one σ bond between two atoms.

Sigma bonds are formed by four types of overlapping

(i) s - s overlapping – Two half filled s-orbitals overlap along the internuclear axis. Ex. H₂ molecule.



(ii) s - p overlapping (Formation of HF) – When half fill s-orbital of one atom overlap with half filled porbital of other atom.

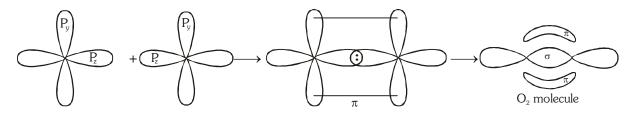
Pre-Medical : Chemistry

(iii) Bond between two hybrid orbitals $-sp^3 - sp^3$, $sp^2 - sp^2$, $sp^3 - sp^2$, $sp^3 - sp$ etc.

sp-sp hybrid orbital

Note : overlapping of hybrid orbitals form σ bond.

(iv) p - p overlapping – (Coaxial) – It involves the coaxial overlapping between half filled p-orbitals of two different or same atoms.



Ex. Formation of Cl_2 , F_2 , Br_2

Pi(π)-Bond

- (a) The bond formed by sidewise (lateral) overlapping are known as π bonds.
- (b) Lateral overlapping is only partial, so formed are weaker and hence more reactive than σ bonds (Repulsion between nucleus is more as orbitals have to come much close to each other for π bonds formation)

Example – Formation of O_2 molecule –

Note : Only two porbitals of oxygen atom have unpaired e⁻ in each orbital for bonding.

Electron configuration of oxygen is $-1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$

- (c) Free rotation about a π bond is not possible.
- (d) π bond is weaker than σ bond (Bond energy difference is 63.5 KJ or 15 K cal/mole)
- (e) π bonds are less directional, so do not determine the shape of a molecule.
- (f) π bond takes part in resonance.
- (g) π bond formed by pure or unhybrid orbitals.

Comparison between σ and π bond

σ bond	π bond
1. Formed by axial overlapping	1. Formed by side by side overlapping
2. Involves s-s, s-p, p-p (axial) & hybrid orbitals	2. Involve p-p, p-d & d-d orbital
3. Extent of overlapping is more so stronger	3. Extent of overlapping is less so weaker
4. Free rotation around σ bond is possible	4. Free rotation around π bond is not possible
5. Hybridized or unhybridized orbital forms σ bond	5. Hybridized orbital never forms π bond
6. Independent existence of σ -bond.	6. No independent existence.

AL	len				Pre-Medical : Chemistry
		BEGINN	ER'S	BOX-2	
1.	According to the valence b potential energy of the syste		covalent	bond is formed be	etween two reacting atoms, the
	(1) negative (2	2) positive	(3) m	inimum	(4) maximum
2.	The strongest covalent bond	d is formed by the ov	erlap of–	(If considering for s	same shell)
	(1) <i>s</i> and <i>p</i> orbitals		(2) s	and <i>s</i> orbitals	
	(3) <i>p</i> and <i>d</i> orbitals		(4) p	and p collateral ort	pitals
3.	In a triple bond there is sha	ring of :-			
	(1) 3–electrons (2	2) 4-electrons	(3) S	everal electrons	(4) 6-electrons
4.	Which of the following conf	iguration shows seco	nd excita	tion state of Iodine:	-
	(1) 11 11 1		(2)		1
	(3) 11 1 1 1 1		(4)	1 1 1 1 1	1 1
5.	Variable covalency is exhibit	ted by:-			
	(1) P and S (2	2) N and O	(3) N	and P	(4) F and Cl
6.	Which of the following bonds	will have directional cha	aracter		
	(1) Ionic bond		(2) M	letallic bond	
	(3) Covalent bond		(4) B	oth covalent & met	allic
7.	Number of σ and π bonds	present in			
	$CH_3 - CH = CH - C \equiv$	ECH are -			
	(1) 10σ , 3π (2)	2) 10 σ,2π	(3) 9	σ, 2π	(4) 8σ, 3π
8.	Which of the following state	ements regarding cov	alent bor	nd is not true ?	
	(1) The electrons are shared	l between atoms			
	(2) The bond is non-directio	nal			
	(3) The strength of the bond	d depends upon the e	xtent of	overlapping	
	(4) The bond formed may o	r may not be polar			
9.	Predict the nature of bond				
	Orbitals	Internuclea	ar axis	Bond	
	s + s	any axis			
	s + px	x-axis			
	s + py	y-axis			
	s + px	z-axis x-axis			
	рх + рх ру + ру	y-axis			
	pz + pz	z-axis			
	px + px	y or z-axis			

ру + ру

pz + pz

x or z axis

x or y axis

.....

.....

2.6 HYBRIDISATION

Consider an example of Be compound :-

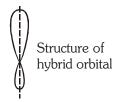
If it is formed without hybridisation then $\ Cl \frac{p-s}{2}Be\frac{p-p}{2}Cl$

both the Be–Cl bonds should have different parameters and p-p bond strength > s-p bond strength. But practically bond strength and distance of both the Be–Cl bonds are same.

This problem may overcome if hybridisation of s and p-orbital occurs.

Hybridisation

- (1) It is introduced by pauling, to explain equivalent nature of covalent bonds in a molecule.
- (2) **Definition** : Mixing of different shape and approximate equal energy atomic orbitals, and redistribution of energy to form new orbitals, of same shape & same energy. These new orbitals are called hybrid orbitals and the phenomenon is called hybridisation.


Now after considering s–p hybridisation in $\mathrm{BeCl}_{\mathrm{2}}$

 $Cl \frac{p - sp}{Be} Be \frac{sp - p}{Cl}$

(Bond strength of both the bonds will be equal)

Characteristic of Hybridisation

(1) Hybridisation is a mixing of orbitals and not electrons. Therefore in hybridisation full filled, half filled and empty orbitals may take part.

- (2) Number of the hybrid orbitals formed is always be equivalent to number of atomic orbital which have taken part in the process of hybridisation.
- (3) Each hybrid orbital having two lobes, one is larger and other is smaller. Bond will be formed from large lobe.
- (4) The number of hybrid orbitals on central atom of a molecule or ion = number of σ bonds + lone pair of electron.
 - (i) The Ist bond between two atoms will be sigma.
 - (ii) The other bond between same two atoms will be pi bond.
 - (iii) The electron pair of an atom which do not take part in bond formation called as lone pair of electron.
- (5) One element can represent many hybridisation state depending on experimental conditions for example, C showing sp, sp² and sp³ hybridisation in its compounds.
- (6) Hybrid orbitals are differentiated as sp, sp^2 , sp^3 etc.
- (7) The repulsion between lp lp > lp bp > bp bp
- (8) The directional properties in hybrid orbital is more than atomic orbitals. Therefore hybrid orbitals form stronger sigma bond. The directional property of different hybrid orbitals will be in following order.

 $sp < sp^2 < sp^3 < sp^3 d < sp^3 d^2 < sp^3 d^3$

DETERMINATION OF HYBRIDISATION STATE

- **Method (I) :** Number of hybrid orbital = number of σ bond + number of lone pair [surrounding the central atom]
- Method (II) : To predict hybridisation following formulae may be used :

No. of hybrid orbital =
$$\frac{1}{2}[Ve^- + SA \pm C]$$

[Ve⁻ =Total number of valence e^- in the central atom, SA = total number of monovalent atoms; C = charge]

eg. NH_4^+ $\frac{1}{2}$ [5+4-1] = 4 sp³ hybridisation.

SF_4	$\frac{1}{2}$ [6 + 4] = 5	sp ³ d hybridisation.
SO_4^{2-}	$\frac{1}{2}$ [6 + 2] = 4	sp³hybridisation.
	('O' is divalent so	add only charge on anion)
NO_3^-	$\frac{1}{2}$ [5 + 1] = 3	sp ² hybridisation.

If such type of e⁻ pairs are -

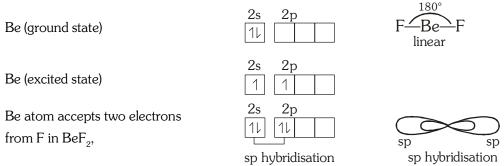
two	-	sp	hybridisation
three	_	sp^2	hybridisation
four	_	sp^3	hybridisation
five	-	sp ³ d	hybridisation
six	_	sp ³ d ²	hybridisation
seven	_	sp ³ d ³	hybridisation

S.No.	Formula	Total pair of e⁻		Hybridisation	Geometry	Ex.
		bp	lp			
1.	AB_2	2	0	sp	Linear	$\operatorname{BeCl}_2, \operatorname{CO}_2$
2.	AB_3	3	0	sp^2	Trigonal Planar	BCl ₃ , BF ₃
3.	AB_4	4	0	sp^3	Tetrahedral	CH ₄ , CCl ₄
4.	AB_5	5	0	sp³d	Trigonal bipyramidal	PCl ₅
5.	AB_6	6	0	sp ³ d ²	Octahedral	SF ₆
					(Square bipyramidal)	
6.	AB ₇	7	0	sp ³ d ³	Pentagonal bipyramidal	IF ₇

Position of lone pair & multiple bond

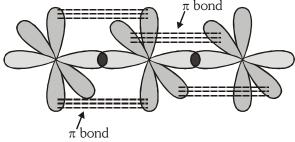
- (i) $sp/sp^2/sp^3 = Any$ where
- (ii) $sp^{3}d = equatorial$
- (iii) $sp^3d^2 = axial$ (defined first)
- (iv) sp^3d^3 Cone pair = 1 then equatorial Lone pair = 2 then axial
- (v) sp³d hybridisation

Axial bond length > equatorial bond length Axial bond length < equatorial bond length


terminal atom same

sp³d³ hybridisation

Types of Hybridisation


(A) sp hybridisation :

- (a) In this hybridisation one s- & one p- orbital of an atom are mixed to give two new hybrid orbitals which are equivalent in shape & energy known as sp hybrid orbitals.
- (b) These two sp hybrid orbitals are arrange in straight line & at bond angle 180°.
- (c) s-character 50%

CO_2 Molecule (O = C = O) :

In CO_2 molecule, C has two sp hybrid orbitals & two unhybridised p orbitals.

Molecular orbital picture of CO_2

Thus, CO_2 molecule is a linear in shape & having 180° bond angle. The bond length between C–O bond is reduced due to the presence of π bond. $CH \equiv CH [H-C_A \equiv C_B - H]$

In CH \equiv CH molecules, each C atom contains two sp hybrid orbitals & two unhybridised p orbitals

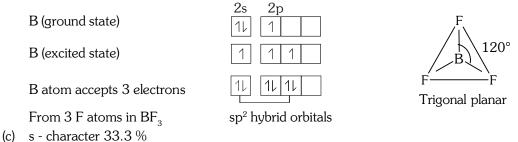
C(ground state)	2s 2p 11 1 1
C(excited state)	1 1 1 1
C atom accepts four electrons	

from H & C, In C_2H_2

- sp hybrid orbital of each C overlaps to give sigma bond between C C.
- The remaining one sp hybrid orbital of each C atom overlaps with s orbital of H, forming sigma bond between C H.
- The two unhybridised p orbitals of each C atom (p_v and p_x) overlap laterally to form two pi(π) bonds.

sp hybridsation

- Therefore in $H-C_A \equiv C_B-H$
 - sigma bond between $C_A C_B$ is formed sp sp overlapping sigma bond between $C_A - H$ is formed sp - s overlapping sigma bond between $C_B - H$ is formed sp - s overlapping pi bond between $C_A - C_B$ is formed : $p_y - p_y$, $p_x - p_x$ overlapping
 - Each C atom forms two sigma bonds but in C_2H_2 , total sigma bonds are 3
- Each C atom forms two π bonds. Total π bonds in C₂H₂ are two
- Total number of bonds in acetylene are : $3\sigma + 2\pi$ bond = 5 bonds.


P65

Pre-Medical : Chemistry

ALLEN

(B) sp² Hybridisation :

- (a) In this hybridisation one s & two p orbitals are mixed to give three new sp² hybrid orbitals which are in same shape & equivalent energies.
- (b) These three sp^2 hybrid orbitals are at angle of 120° & giving trigonal planar shape.

- SnX_2 having two σ bonds & one l.p. electron therefore hybridisation is sp^2
- The bond angle in SnX_2 will be less than 120° (due to presence of one l.pe $^{\circ}$).
- The shape of SnX₂ molecule is bent.

(C) sp³ Hybridisation :

- (I) In this hybridisation one s orbital and three p orbitals of an atom of a molecule or ion, are mixed to give four new hybrid orbitals called as sp³ hybrid orbitals.
- (II) The angle between hybrid orbitals will be 109° 28' (6)

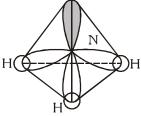
C (ground state)	2s 2p 11 1 1
C (excited state)	1 1 1 1
C atom in CH_4	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	SP Hybridisalori

C atom share four electrons with four hydrogen atoms

(III) The shape obtained from these hybrid orbitals would be tetrahedron.

Three following examples represent this condition.

(a) Four sigma bonds with zero lone pair electron :


- (I) The following examples represent this condition. CH_4 , CF_4 , CCl_4 , CBr_4 , Cl_4 , NH_4^+ , BF_4^- , BeF_4^{-2}
- (II) In above compounds, bond angle is 109° 28' & tetrahedron shape.

(b) Three sigma bonds & one lone pair of electron :

- (I) This condition is shown by following compounds & ions. NH_3 , NF_3 , PF_3 , NCl_3 , PCl_3 , $:CH_3^-$, H_3O^+ , ClO_3^-
- (II) sp³ hybridisation, pyramidal shape & bond angle will be less than 109° 28'.
 Due to the presence of one lone pair electron on nitrogen it repels bond pair electron more therefore bond angle reduced from 109° 28' to 107°. The repulsion between lp - bp > bp - bp.

Molecular orbial picture of NH₃

(c) Two sigma bonds & two lone pair of electrons :

- (I) This condition is shown by following compounds and ions. H_2O , OCl_2 , OBr_2 , OF_2 , Ol_2 etc.
- (II) In all above examples, the central atom showing sp^3 hybridisation,

angular shape and bond angle will be either less then $109^{\circ}\,28'$ or

more than 109° 28'.

In H_2O the hybridisation on O atom is sp^3 , but due to presence of

two lone pair electrons they repell each other

(D) sp³d Hybridisation :

- (I) In this hybridisation one s orbital, three p orbitals and one d orbital are mixed to give five new hybrid orbitals which are equivalent in shape and energy called as sp³d hybrid orbitals.
- (II) Out of these five hybrid orbitals, three hybrid orbitals are at 120° angle and two hybrid orbitals are perpendicular to the plane of three hybrid orbitals that is trigonal planar, the shape of molecule becomes trigonal bipyramidal.

For example, PF_5 showing sp³d hybridisation

P (ground state)	3s 3p 3d 1L 1 1 1
P* (excited state)	3s 3p 3d 1 1 1 1
P atom share with five e of 5F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(III) In this hybridisation d_{z^2} orbital is hybridised with s and p orbitals.

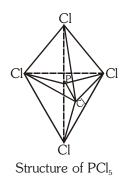
In this way five $sp^{3}d$ hybrid orbitals form five sigma bond with five F atoms and give a molecule of PF_{5} , shape of this molecule is trigonal bipyramidal.

Two axial P–Cl bonds are longer than three equatorial P–Cl bonds due to repulsion between 3 equatorial bp of e^- and 2 axial b.p. of e^-

In above hybridisation, there are four conditions.

(a) Five sigma bonds and zero lone pair electron :

The following examples represent this conditions.


PCl₅, PBr₅, AsF₅, AsCl₅, SbCl₅, SbF₅ etc.

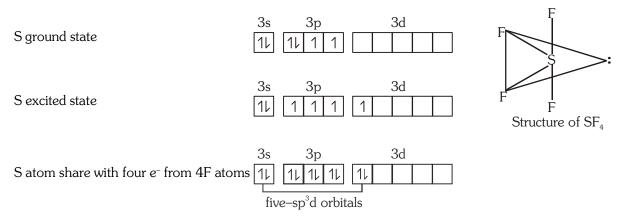
The shape of all the above molecules is trigonal bipyramidal.

(b) Four sigma bonds and one lone pair of electron :

The following examples represent this condition.

 $\mathsf{SF}_4, \, \mathsf{SeF}_4, \, \mathsf{TeF}_4, \, \mathsf{PoF}_4, \, \mathsf{PF}_4^{-}, \, \mathsf{SbF}_4^{-}, \, \mathsf{Scl}_4, \, \mathsf{SeCl}_4, \, \mathsf{TeCl}_4 \, \mathsf{etc.}$

Z:\NODE02\B0AI-B0\TARGET\CHEM\ENG\MODULE-2\2-CHEMICAL BONDING\01THEORY.P65


Ε

Molecular orbial picture of H₂O

The shape of all above examples will be irregular tetrahedron or See-saw

Example SF₄

Allen

(c) Three sigma bonds & two lone pair of electrons :

The following examples represent this condition.

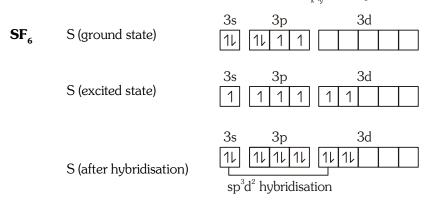
CIF₃, BrF₃, IF₃, BrCl₃, ICl₃ etc.

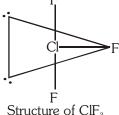
The shape of all above compounds is 'T' shape.

(d) Two sigma bonds & three lone pair of electrons :

The following examples represent this condition.

$$ICl_2^-$$
, IBr_2^- , CIF_2^- , IF_2^- , BrF_2^- , XeF_2 , I_3^- , Br_3^-

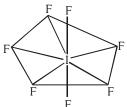

The geometry of above examples will be linear shape.


sp³d² Hybridisation : **(E)**

- (I) In this hybridisation, one s-orbital, three p-orbitals & two d-orbitals (dz^2, dx^2-y^2) are mixed to give six new hybrid orbitals known as sp³d² hybrid orbitals.
- The geometry of molecule obtained from above six hybrid orbitals will be symmetrical octahedral or (II) square bipyramidal.
- (III) The angle between all hybrid orbitals will be 90°.

 $\mathsf{SF}_6,\,\mathsf{AlF}_6^{-3},\,\mathsf{PF}_6^{-},\,\mathsf{ICl}_5,\,\mathsf{XeF}_4,\,\mathsf{XeOF}_4,\,\mathsf{ICl}_4^{-},$ Example :

(IV) Two 'd' orbital participates in the hybridisation are $d_{2^2,2}$ and d_{2^2} .



Octahedral or square bipyramidal.

(F) sp³d³ Hybridisation :

- $\label{eq:linear} \mbox{(I)} \quad \mbox{In this hybridisation, one s-orbital, three p-orbitals & three d-orbitals are mixed to give seven new hybrid orbitals known as <math display="inline">sp^3d^3$ hybrid orbitals.
- (II) These seven sp^3d^3 orbitals are configurated in pentagonal bipyramidal shape.
- (III) Five bond angles are of 72° and 10 bond angles of 90° .
- (IV) The following examples showing sp^3d^3 hybridisation $-IF_7$ & XeF₆.

(Pentagonal biypyramidal) EXAMPLES ON sp³d HYBRIDISATION

Example	σ bond	l.p.e.	Hybridisation	Bond angle	Shape
PCl ₅	5	-	sp³d	120°, 180° & 90°	Trigonal bipyramidal
SF ₄	4	1	sp³d	< 180°,< 90°,< 120°	Irregular tetrahedron
ClF ₃	3	2	sp³d	87.6°	T-shape
IF ₃	3	2	sp³d	87.6°	T-shape
ICl ₃	3	2	sp³d	87.6°	T-shape
$\operatorname{Br}_{3}^{-}$	2	3	sp³d	180°	Linear
ICl ₂ ⁻	2	3	sp³d	180°	Linear
XeF ₂	2	3	sp³d	180°	Linear
PCl_4^+	4	-	sp^3		Tetrahedron
NH ₄ ⁺	4	-	sp^3		Tetrahedron
NF ₃	3	1	sp^3		Pyramidal
H ₃ O⁺	3	1	sp^3		Pyramidal
SO ₃ ²⁻	3	1	sp ³		Pyramidal
XeO ₃	3	1	sp^3		Pyramidal
H ₂ O	2	2	sp^3		Angular (V)
NH ₂ ⁻	2	2	sp^3		Angular (V)
OF ₂	2	2	sp^3		Angular (V)
Cl ₂ O	2	2	sp^3		Angular (V)
Diamond	4	-	sp^3		Tetrahedron
SiO ₂	4	-	sp^3		Tetrahedron
SiC	4	-	sp^3		Tetrahedron
NO ₃ -	3	-	sp^2	120°	Trigonal planar
SO ₂	2	1	sp^2	<120°	Angular (V)
HCO ₃ ⁻	3	-	sp^2	120°	Trigonal planar
SnCl ₂	2	1	sp^2	<120°	Angular (V)
NO ₂ ⁺	2	-	sp	180°	Linear
N ₃ ⁻	2	-	sp	180°	Linear

Z:\NODE02\B0AHB0\TARGET\CHEM\ENG\MODULE-2\2-CHEMICALBONDING\01THEORY.P65

Е

Pre-Medical	: Chemistry
--------------------	-------------

			ER'S BOX-3			
1.	Which of the following is incorrect about hybridization?					
		pridization is not applied to				
	• • •	e mixing of at least two non	-			
	(3) The number of hybridization pr		re than the number of pure	e atomic orbitals that participate in		
	(4) Hybridization requi	res an input of energy.				
2.	The hybridization state	e of the central atom in Hg	Cl ₂ is-			
	(1) <i>sp</i>	(2) sp^2	(3) sp^{3}	(4) dsp^2		
3.	The hybridization state	e of the central atom in All	₃ is-			
	(1) dsp^2	(2) sp^{3}	(3) sp^2	(4) <i>sp</i>		
4.	In C_3O_2 , the hybridiza	tion state of C is–				
	(1) sp^2	(2) <i>sp</i>	(3) sp^{3}	(4) dsp^2		
5.		nean the hybridization of—				
	(1) electrons	(2) atomic orbitals	(3) atoms	(4) protons		
6.	The d- orbitals involve	d in sp ³ d hybridisation is:-				
	(1) $d_{x^2-y^2}$	(2) d _{z²}	(3) d _{xy}	(4) d _{xz}		
7.	A sp ³ hybrid orbital co	ntains:-				
	(1) $\frac{3}{4}$ s- character	(2) $\frac{1}{4}$ p - character	(3) $\frac{3}{4}$ p - character	(4) $\frac{1}{2}$ s - character		
8.	In the protonation of I	NH ₃ molecule, following sta	atement is true:-			
	(1) A covalent bond is	formed	(2) Hydrogen bond is f	ormed		
	(3) Hybridisation state	of N is changed	(4) Shape of NH ₃ mole	ecule is changed		
9.	The shape of sulphate	ion is :-				
	(1) Hexagonal		(2) Square planar			
	(3) Trigonal bipyramid	al	(4) Tetrahedral			
10.	In which following com	npound, central atom has fo	ur bond pair and one lone	pair:-		
	(1) NH ₄ ⁺	(2) ICl ₄	(3) SF ₄	(4) XeF_4		
11.	In which molecule s - j	p overlapping occurs ?				
	(1) CH ₄	(2) NH ₃	(3) H ₂ O	(4) None of these		
	ridisation in solid sta	0	2	- *		

• Compounds which change their structure in solid state/liquid state.

$2PCl_5(s)$	\longrightarrow	$PCl_4^+ + PCl_6^-$
PBr ₅ (s)	\longrightarrow	$PBr_4^+ + Br$
PF ₅ (s)	\rightarrow	$PF_4^+ + PF_6^-$ (Pseudo Berry Rotation)
$2\mathrm{IF}_5\left(\ell ight)$	\longrightarrow	$IF_{4}^{+} + IF_{6}^{-}$
$N_{2}O_{5}(s)$	\longrightarrow	$NO_{2}^{+} + NO_{3}^{-}$
$N_2O_4(s)$	\longrightarrow	$NO^+ + NO_3^-$
$XeF_6(s)$	\longrightarrow	$XeF_{5}^{+} + F^{-}$
$Cl_2O_6(s)$	\longrightarrow	$\text{ClO}_2^+ + \text{ClO}_4^-$
$I_2Cl_6(\ell)$	\longrightarrow	$\operatorname{ICl}_{2}^{+} + \operatorname{ICl}_{4}^{-}$
3I ₂ (s)	\longrightarrow	$I_{3}^{+} + I_{3}^{-}$
(at low tem	perature)	
		-

Hybridisation in radicals :

Radical	hybridisation
CH ₃	
CF ₃	
ClO ₃	
NO_2	

Existence and Nonexistence :

eg.

Identify existing / non existing compounds / ions

(a) PCl_6^-	(b) NH ₅	(c) PH_5	(d) (CCl ₆) ²⁻	(e) (SiF ₆) ²⁻	(f) (SiCl ₆) ²⁻	(g) ClBr ₇
(h) SH ₆	(i) XeH ₄	(j) XeOF ₄	(k) FCl ₃	(I) CIF ₃	(m) BH_4^-	(n) (PI ₆)⁻

2.7 VALENCE SHELL ELECTRON PAIR REPULSION THEORY (VSEPRT)

(a) If the central atom possess only bonded pairs of electrons along with identical atoms then shape of the compound is symmetrical and according to Sidgwick & Powl.

BF_3 —	120°		triangular
CH_4 —	109° 28'	—	tetrahedral
CO_2 –	180°	_	linear

(b) If the central atom possess bonded pair of electrons as well as lone pair of electron, then shape of the molecule will be unsymmetrical ie. the original bond angle will disturbed due to repulsion between lone pair of electrons.

Similarly on having different type of side atoms, molecule becomes unsymmetrical due to unequal force of repulsion between e^- . Order of repulsion is - $[\ell p - \ell p > \ell p - bp > bp - bp]$

$$\begin{bmatrix} Bond angle \propto \frac{1}{Number of lone pair of electrons} \end{bmatrix}$$

(c) By increasing one lone pair of electron, bond angle is decreased approx by 2.5° .

eg.:-	CH_4	NH_3	H_2O	\longrightarrow sp ³
	109°	107°	105°	hybridisation

2.8 BOND PARAMETERS

Bond Length

The average distance between the nucleus of two atoms is known as bond length, normally it is represented in Å. eg. A \longrightarrow B

It depends mainly on electronegativities of constituent atoms.

Case -I. Electronegativity difference is zero then -

Bond length = $r_A + r_B$ or $d_{A-B} = r_A + r_B$

where $r_A = \text{covalent radius of } A$

 $r_{\rm B}$ = covalent radius of B

- $x_A =$ electronegativity of A
- x_{B} = electronegativity of B

If
$$r_A = r_B$$
 then Bond length = $2r_A$ or $2r_B$

Example : - Cl - Cl

Case - II Electronegativity difference is not equal to zero then -

Bond length is given by Shomaker & Stevenson formula is - Bond length = $r_A + r_B - 0.09 (x_A - x_B)$ Å $(x_A - x_B) =$ Difference in electronegativities

Factors Affecting Bond Length

- (a) Δ electronegativity :- Bond length $\alpha \frac{1}{\Delta FN}$ {While B.E. $\propto \Delta EN$) H - F < H - Cl < H - Br < H - I
- (b) Bond order or number of bonds :- Bond length $\alpha \frac{1}{\text{Number of bonds or bond order}}$

Bond energy \propto Number of bond

ex.	С—С,	C = C,		$C \equiv C$	
Bond length Bond energy	1.54 Å 80	1.34 Å 140		1.20 Å 180-200 K.Cal.	$\xleftarrow{\text{increasing}}{\xrightarrow{\text{increasing}}}$
	C—O 1.43 Å	C = 0 1.20 Å		C ≒ O 1.13 Å	
		C=N-	C≡I	N	
	1.47 Å	1.28 Å	1.15	Å	

- (c) **Resonance :-** Due to resonance bond length affected
 - Ex.1. Benzene

But bond length is between single and double bond is = 1.39 Å

Bond length of C—O in CO_2 is 1.15 Å Resonance occurs in CO_2 is as follows -Ex.2. $0 = C = 0 \leftrightarrow 0^{-} - C \equiv 0^{+} \leftrightarrow 0^{+} \equiv C - 0^{-}$

Bond length = 1.15 Å (Between double & triple bond)

(d) Hybridization : - Bond length $\alpha \frac{1}{s \text{ character}}$

Example :-	Compound	Hybridisation	Bond length
I	Ethane	sp^3 — sp^3	1.54 Å
s-character increases	C=	sp^3 — sp^2	1.51 Å
cter inc	j →cc ≡c	sp ³ — sp	1.47 Å
thara	$C=C-C=C$ $C=C-C\equiv C$ $C\equiv C-C\equiv C$	sp ² — sp ² sp ² — sp	1.46 Å
S ^{-S}	$C = C - C \equiv C$	sp^2 — sp	1.42 Å
v	C≡C—C≡C	sp—sp	1.37 Å

Bond Angle

The minimum angle between any two adjacent bonds is known as bond angle.

It is represented in degree (°), min (') and second ('')

Factors affecting the bond angle -

Step I : Hybridisation or % 's' character : Bond angle \propto % s character

 $BeCl_2 > BCl_3 > CCl_4$ 120° 109.28' 180°

Pre-Medical : Chemistry

Step II : Lone pair

When hybridisation is same, lone pair are different.

Bor	Bond angle $\propto \frac{1}{\text{No. of lone pair}}$				
Example :-	CH ₄	NH ₃	н ₂ О:		
Hybridisation	sp^3	sp^3	sp^3		
Bond angle	109 >	107 >	105		
	No l.p.	one l.p.	two l.p.		

• In the different molecules if central atom have same number of lone pair of electron then bond angle will depend on electronegativities of A & B.

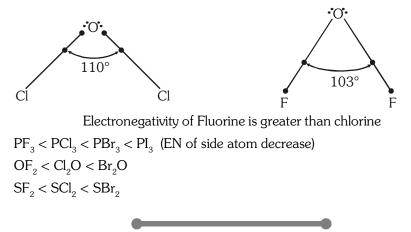
Step III : Central Atom

Bond angle \propto Electronegativity of central atom

In AB, type of molecules if side atoms are same and EN of central atom increases the bond angle increases.

- Electronegativity of 'O' > Electronegativity of 'S'
- Bond angle of $-NH_3 > PH_3 > AsH_3$

Example :-	•• NH ₃	•• PH ₃	•• AsH ₃	
Bond angle	107°	93°	91°	、
				\rightarrow


- Electronegativity decreasing.

- Bond angle will decrease

Step IV : Side atom

Bond angle	<u> </u>	or sizo	of side	atom
Donu angle	electronegativity	· ~ 512e	or side	atom
	of bonded atom			

In AB_{x} type molecules, if central atoms are same and the EN of side atoms increases then bond angle decreases.

Z: \NODE02\B0A+B0\TARGET\CHEM\ENG\WODULE-2\2-CHEMCALBONDING\01THEORY.P65

Bond angle depends on size of side atom, On increasing size of side atom bond angle increases.

When hybridisation is same, lone pair are same, Central atom is same, bonded atoms are different.

sp^3	OF_2	103 - 105°	Electronegativity
sp ³	Cl_2O	109 - 111°	of bonded atom is
sp ³	Br_2O	116 - 118°	decreasing

Bond Energy (BE)

Bond energy may be defined as -

- (a) Bond formation energy :- Energy released when any bond is formed is known as bond formation energy or bond energy.
- (b) Bond dissociation energy :- Energy required to dissociate any bond is known as Bond dissociation energy. Calculation of released energy is more difficult than the dissociation energy therefore dissociation energy of bond is calculated and is assumed as bond energy or bond formation energy.
- Case-I In diatomic molecule :

Bond energy = bond dissociation energy

Example: $N_2 > O_2 > H_2 > F_2$

Case-II For polyatomic molecule :-Bond energy <u>~</u> Bond dissociation energy (D)

Factors Affecting The Bond Energy

(a) Δ Electronegativity	(b) Bond order	(c) Atomic size	(d) Bond polarity
(e) Resonance	(f) Hybridisation	(g) Lone pair electron	
(a) Δ Electronegativity	t y :- Bond energy ∝ ∆EN	eg. HF > HCl > HF	Br > HI
(b) Bond order :- Bon	d energy ∝ Bond order.		
eg. C—C	< C=C <	C≡C	
79 K. Cal,	143.3 K. Cal.,	199.0 K. Cal.	
	. 1		
(c) Atomic size :- Bor	nd energy $\propto \frac{1}{\text{Atomic size}}$	eg. C \equiv C < C \equiv	≡N < N≡N
Exception :- In cas	e of halogen group, order	of bond energy is –	
Cl —	-Cl > Br - Br > F -	-F > I - I	
Because of higher e weakens the bond e	-	ze of F atoms, repulsion be	tween electrons of two F atoms,
Other exampleS – S	5>0-0		
C – C > Si – Si > Ge – C		Ge	
(d) Bond Polarity :-	Bond energy ∝ Bond p	olarity	
eg.	H - F > H - Cl > H -	Br > H—I	

- (e) **Resonance :-** Bond energy increases due to resonance.
 - In benzene bond energy of C—C increases due to π electrons of C = C. eg.
- (f) Hybridisation :-Bond energy ∞ s-character in hybrid orbitals.

1

(g) Lone pair of electrons :- Bond energy $\propto \frac{1}{\text{lone pair of electrons}}$

$$-\overset{|}{\underset{|}{C}} \overset{|}{\underset{|}{C}} \sim \overset{\times}{\underset{|}{N}} \overset{\times}{\underset{|}{N$$

Size of F and O atoms are small so their bond energy should be high (small atomic radius) but it is actually less, due to lone pair of electrons present on F and O atoms, which repells each other in F—F and —O—O-type of bonds.

Important Note (Summary) :

- Bond strength ∞ overlapping (if orbitals are given) (i)
- Bond strength $\propto \frac{1}{\text{size of orbitals}}$ (ii)
- 1s 2p > 1s 3p > 1s 4pe.g. (iii) If orbitals are of same shell Bond strength ∞ extent of overlapping ∞ directional properties
- 2p 2p > 2s 2p > 2s 2s > 2p 2p (Side ways) π -bond strength (iv)
 - $2p\pi 2p\pi > 2p\pi 3d\pi > 2p\pi 3p\pi > 3p\pi 3p\pi$
- (v) O = O exist but S = S does not exist at room temperature.
- N = N exist but P=P does not exist at room temperature. (vi)
- O=C=O exist but O=Si=O does not exist. (vii)

BEGINNER'S BOX-4

1.	Which of the following molecules has the longest nitrogen-nitrogen bond?			
	(1) $N_{2}H_{4}$		(2) N ₂	
	(3) $N_2 F_2$		(4) All have equal bond le	engths
2.	Which of the following r	nolecules has the highest v	alue of carbon-carbon bon	d energy ?
	(1) $C_2 H_4$	(2) $C_{3}H_{8}$	(3) $C_2 H_2$	(4) $C_2 H_6$
3.	Which of the following h	has the shortest bond lengt	h?	
	(1) Br ₂	(2) F ₂	(3) Cl ₂	(4) I ₂
4.	In ethene, the carbon-ca	rbon bond distance is–	_	-
	(1) 154 pm	(2) 120 pm	(3) 134 pm	(4) 142 pm
5.	Carbon-halogen bond is	strongest in the following		
	(1) CH ₃ Cl	(2) CH ₃ Br	(3) CH ₃ F	(4) CH ₃ I
6.	The correct order of bor	nd length is		
	(1) $C - C < C = C < C$	$C \equiv C$	$(2) C \equiv C < C = C < C$	С—С
	$(3) C = C < C \equiv C < C$	C - C	(4) $C = C < C - C < C$	$C \equiv C$
7.	The F–F bond is weak	because :		
	(1) The repulsion betwe	en the nonbonding pairs	of electrons of two fluorin	e atoms is large
	(2) The ionization energy	gy of the fluorine atom is	very low	
	(3) The length of the F-	F bond much larger than	the bond lengths in other	halogen molecules
	(4) The F-F bond distance	ce is small and hence the ir	nternuclear repulsion betwe	een the two F atoms is very low
8.	The correct order of dec	reasing bond energy is:-	-	-
	(1) O–O > S – S > Se –		(2) $C - C > Si - Si > Ge$	– Ge
	(3) $F - F > O - O > N -$	Ν	(4) $F - F > Cl - Cl > Br - Cl > Br$	– Br
64		•		L L L L L L L L L L L L L L L L L L L

ALI	LEN			Pre-Medical : Chemistry	
9.		nd length does not affected by:-			
10		ron affinity (2) Bond order	(3) Hybridisation	(4) Resonance	
10.		e structure three carbon atoms are e sigma bonds and three pi bonds		s and one ni bond	
		sigma bonds and two pi bonds	(4) Three pi bonds of	-	
2.9	DIPO	LE MOMENT			
	POLA	ARITY OF BOND (IONIC NATI	URE IN COVALENT BOND)		
	(a)	Polarity of any polar covalent b			
	(b)	For measurement of extent of p	polarity, Pauling introduced the	concept of dipole moment (μ).	
		The product of positive or nega moment.	tive charge (q) and the distance	(d) between two poles is called dipole	
		Here - $\vec{\mu} = q \times d$ (magnitude c	of charge ×distance),		
	(c)	Dipole moment is a vector quar	ntity i.e. it has both magnitude a	as well as direction.	
	(d)	Direction of dipole moment is -ve element and from central at	. , .	pinting from electro +ve to electro	
			0		
		lone pair elec or			
		central ator			
	(e)	Unit of dipole moment is Debye			
		1 Debye = 1×10^{-18} e.s	.u. cm = 3.33×10^{-30} coulom	b metre	
	(f)	In the diatomic molecule $\mudependent dependent depende$	ends upon difference of EN i.e.	$\mu \alpha \Delta EN$	
		order of μ , H–F > H–Cl > H–E	Br > H-I		
		$\mu = 0$ for H–H, F–F,	, Cl–Cl, Br–Br, O–O		
	(g)	For polyatomic molecules μ depends on the vector sum of dipole moments of all the covalent bonds.			
	(h)	For PCl ₅ and SF ₆ , etc. $\mu = 0$ due to their symmetrical geometry (According to charge).			
	(i)	Benzene, naphthalene, dipheny	yl have $\mu = 0$ due to planar stru	cture.	
	(j)	If the vector sum is zero, than compound is non-polar compound or symmetrical compound (and it is not essential that individual μ of every bond should be zero).			
		Example - BX_3 , CCl_4 , $SiCl_4$, C	CH_4 , $CO_2 CS_2$, PCl_5 , SiH_4 etc.		
		In these examples the bond B–F non-polar.	F, C-Cl , C-H, C-O, P-Cl etc. a	re polar even though compounds are	
		 NH ₃	 PH ₃	 NF ₃	
		1411 ₃	и из И	μι ₃ -F	
		μ ₃ χ11			
		μ_4	← <u></u> P′ <u></u> H	$ \mathbb{N}_{X}^{\widehat{+}} \xrightarrow{F}$	
		$\underset{\mu=1.47D}{\longleftarrow} \overset{\mu_1}{\mu_1}H$	$\underbrace{\longleftarrow}_{\text{EN of P} \underline{\sim} H}^{H}$	\leftarrow μ = 0.24D F	
		Total $\mu = \mu_1 + \mu_2 + \mu_3 + \mu_4 = 1$.47 D		
	(k)	Dipole moment of H_2O is 1.85 μ of $H_2O > \mu$ of H_2S because el			
	(<i>l</i>)	Angular structure of molecule h	ave greater dipole moment.		
	. •	-		65	

Ex.	Write the order of the dipole moment of following compounds ?						
	CH ₃ Cl, CH ₂ Cl ₂ , CHCl ₃ , CCl ₄						
Sol.	Right order is \longrightarrow	CCl ₄ <	CHCl ₃ <	$CH_2Cl_2 <$	$CH_{3}Cl$		
		$\mu = 0$	1.02	1.55	1.93		

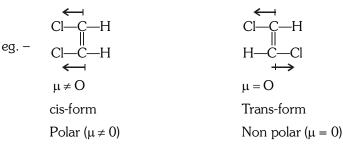
Applications of Dipole Moment

(a) To determine polarity and geometry of molecule :-

If $\mu=0$ compound is non polar and symmetrical

eg. CO_2 , BF_3 , CCl_4 , CH_4 , BeF_2 etc.

If $\mu \neq 0$ compound will be polar and unsymmetrical.

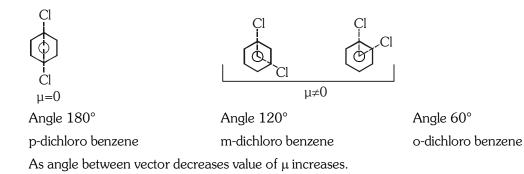

H₂O, SO₂ NH₃, Cl₂O, CH₃Cl, CHCl₃ etc.

(b) To calculate % ionic character : -

% Ionic character = $\frac{\text{Experimental value of } \mu}{\text{Theoritical Value of } \mu} \times 100$

(c) To distinguish cis form or trans form :-

(I) Dipole moment of cis isomers is normally higher than trans isomers.


(II) If two groups have opposite inductive effect then trans-isomer will have greater dipole moment.

(d) To locate position of substituents in aromatic compounds.

$$\mu \ \alpha \frac{1}{\text{Bond angle}}$$

(I) If same substituents are present in the symmetrical position μ of benzene ring compounds will be zero.

(II)

Illustrations –

Illustration 1. Calculate the μ of HCl ? If bond distance is 1.34 A°, charge = 4.8×10^{-10} esu and calculate % ionic character if experimental value of $\mu = 1.08$ D ?

Solution $\mu = q \times d = 4.8 \times 10^{-10} \times 1.34 \times 10^{-8}$

 $\mu = 6.4 \times 10^{-18}$ esu cm.

% Ionic character = $\frac{1.08 \times 10^{-18}}{6.4 \times 10^{-18}} \times 100 = 16.79$ %

GOLDEN KEY POINTS

• Some important orders of dipole moments :

$$\begin{split} H_2O > HF > NH_3 > NF_3 (\textit{value based}) & H_2O > H_2S \\ CH_3Cl > CH_3F > CH_3Br > CH_3I & BF_3 < NF_3 < NH_3 \\ NO_2^- > NO_2 > NO_2^+ & H_2O < H_2O_2 \end{split}$$

BEGINNER'S BOX-5

1. Which of the following contains polar and nonpolar bonds?

	(1) H ₂ O ₂	(2) CH ₄	(3) HCN	(4) NH ₄ Cl	
2.	Carbon tetrachloride has no ne	t dipole moment because	se of-		
	(1) Similar electron affinity of C	(2) its regular tetrahedr	al geometry		
	(3) its planar geometry		(4) similar sizes of C ar	nd Cl atoms	
3.	Which of the following molecul	es is nonpolar?			
	(i) PbCl ₄	(ii) BF ₃	(iii) SnCl ₂	(iv) CS ₂	
	(1) (i), (ii), (iii)	(2) (i), (ii), (iii), (iv)	(3) (i), (ii), (iv)	(4) (ii), (iii), (iv)	
4.	Which of the following has the	highest dipole moment ?			
	(1) <i>o</i> -Dichlorobenzene (2) <i>m</i> -	Dichlorobenzene (3) p-D	Dichlorobenzene (4) All	have equal values	
5.	Both CO_2 and H_2O contain pol	ar covalent bonds but CC	O_2 is nonpolar while H_2O	is polar because–	
	(1) H atom is smaller than C ato	om			
	(2) CO_2 is a linear molecule while H_2O is an angular molecule				
	(3) O – H bond is more polar th	aan C – H bond			
	(4) CO_2 contains multiple bonds	s while $\mathrm{H_2O}$ has only sing	le bonds		

Pre-Medical : Chemistry

2.10 MOLECULAR ORBITAL THEORY (MOT)

MOT put forward by Hund & Mulliken, which can be applied to explain the properties, which the old VBT (Valence bond theory) was unable to explain. eg. Paramagnetic nature of O_2 molecule, as per VBT (:O = O:) it should be diamagnetic.

Definition : The atomic orbital lose their identity during molecule formation (overlapping) and form new orbitals termed as molecular orbitals.

Characteristic of Molecular Orbitals

- (a) Molecular orbital formed by overlapping of atomic orbital of same energy.
- (b) Number of molecular orbital formed = number of atomic orbitals involved in overlapping.
- (c) Half of the molecular orbital have lower energy are called Bonding molecular orbital.
- (d) Half are of higher energy termed as Antibonding molecular orbital.
- (e) Electronic configuration in various molecular orbital are governed by same three rules.
 (1) Aufbau's rule
 (2) Hund's rule
 (3) Pauli's exclusion principle.
- (f) Wave function for bonding molecular orbital is $\psi_{b} = \psi_{A} + \psi_{B}$
- (g) Wave function for antibonding molecular orbital is $\psi_{a} = \psi_{A} \psi_{B}$
 - ψ_A = wave function of atom A
 - $\psi_{\rm B}$ = wave function of atom B

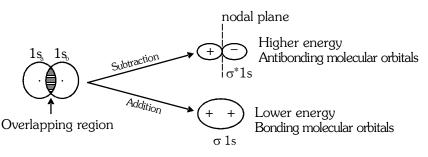
Comparison of Bonding molecular orbital & Antibonding molecular orbital:

Bonding molecular orbital(BMO)	Antibonding molecular orbital (ABMO)
1. Bonding MO is the result of the linear combination	1. ABMO is result of linear combination of AO
of AO when their wave function are added	when their wave function are substracted
$\Psi_{\rm b} = \Psi_{\rm A} + \Psi_{\rm B}$	$\Psi_{a} = \Psi_{A} - \Psi_{B}$
2. Generally it does not have nodal plane.	It always have a nodal plane between two nuclei of bonded atom.
3. Electron density increases between two nuclei	3. Electron density decreases in between two
resulting attraction between two atoms.	nuclei, leads to repulsion between two atoms.
4. Energy of BMO is less, hence stable.	4. Energy of ABMO is high.
5. Electron placed in a BMO stablises a molecule.	5. Electron placed in the ABMO destablises the molecule.

Notation of molecular orbitals

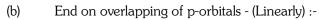
As atomic orbitals are known by letters s, p, d and f depending on their shapes. Similarly for molecular orbital

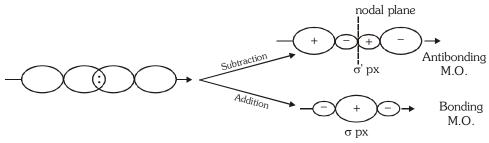
For bonding molecular orbital $-\sigma, \pi$ etc.


For antibonding molecular orbital- $\sigma*, \pi*$ etc.

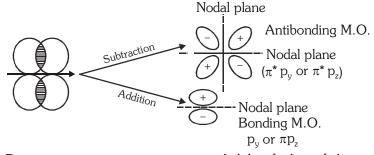
are used for different shapes of electron cloud.

Shapes of Molecular Orbitals (L.C.A.O. Method)


(A) (σ molecular orbital) :- It is formed by two ways -

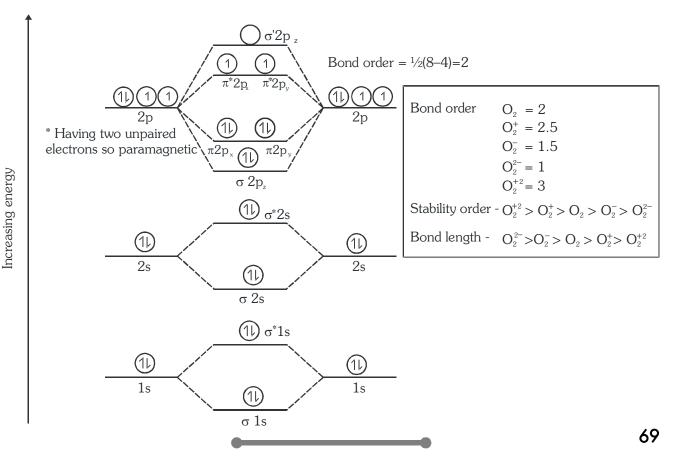

(a) Combination of s-orbitals –

 σ^* 1s have one nodal plane


ALLEN

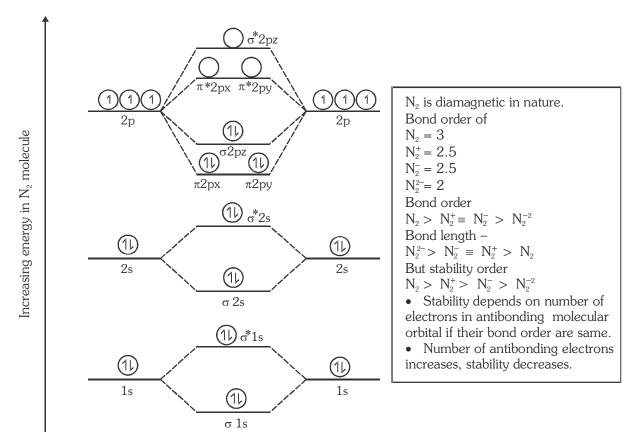
- $\sigma^* p_x$ have one nodal plane
- (B) π (pi) molecular orbitals :-

ALLEN


Positive sign, represent maximum probability finding of electrons. $\pi * p_v$ or $\pi * p_z$ have two nodal plane

ENERGY LEVEL DIAGRAM OF MOLECULAR ORBITAL

(A) Energy level diagram for O_2, F_2 , Ne_2 (Beyond N_2)


On the basis of Aufbau's rule - increasing order of energies of various molecular orbitals is -

 $\sigma~1s~<~\sigma*~1s~<~\sigma~2s~<\sigma*~2s~<~\sigma~2p_{_z}~<~\pi~2p_{_x}~\equiv~\pi~2p_{_y}~<\pi*~2p_{_x}~\equiv\pi*~2p_{_y}<~\sigma*~2p_{_z}$ For $\textbf{O_2}$ molecule

Z: NODE02\B04+B0\TARSET\CHEM\ENG\WODUE-22.CHBMCALBONDING\01THEORY.P65

(B) Energy level diagram for B_2 , C_2 and N_2 molecules (upto N_2) $\sigma 1s < \sigma * 1s < \sigma 2s < \sigma * 2s < \pi 2p_x \equiv \pi 2p_y < \sigma 2p_z < \pi * 2p_x \equiv \pi * 2p_y < \sigma * 2p_z$ For N_2 molecule

Electronic configuration of molecules and their related properties :-

For writing electronic configuration of diatomic molecules following two rules to be followed-

- (a) Count the number of electrons present in two atoms and then fill in the appropriate energy level diagram according to Aufbau rule.
- (b) The pairing in π 2px and π 2py or π * 2px and π * 2py will take place only when each molecular orbital of identical energy has one electron.

GOLDEN KEY POINTS

• **Bond order :-** $\frac{1}{2}[N_b - N_a]$ N_b = Total number of bonding electron

N_a = Total number of antibonding electron

Application of bond order :

(i) **Bond length :-** (distance between two nuclei) Bond length $\propto \frac{1}{\text{Bond order}}$ If N > N Molecule exists

$$N_{b} > N_{a}$$
 Molecule exists $N_{b} < N_{a}$

 $\left| \begin{array}{c} N_{b} < N_{a} \\ N_{b} = N_{a} \end{array} \right|$ Molecule do not exists

- (ii) Stability of molecule :- stability \propto Bond order of molecule
- (iii) **Dissociation energy :-** Bond dissociation energy \propto Bond order.

(iv) Magnetic property :-

- (a) When electron in MO are paired diamagnetic
- (b) When electron in MO are unpaired paramagnetic

ALLEN

Bonding in molecules

(a) Hydrogen molecule

Having two H atoms with one electron each (1s')

M.O. configuration of
$$H_2 = (\sigma \ 1s)^2 (\sigma \ast \ 1s)^6$$

Bond order = $\frac{1}{2} [N_{\rm b} - N_{\rm a}]$

$$= \frac{1}{2} [2 - 0] = 1$$
 ie. single bond.

Having paired electron so diamagnetic.

Stability \rightarrow quite stable (having single bond)

(b) H_{2}^{+} ion —

Configuration of $H_2^+ = (\sigma is)^1 (\sigma * is)^0$

One electron in bonding molecular orbital.

So paramagnetic

Bond order = $\frac{1}{2}[1-0] = \frac{1}{2}$

Less stable. (Incomparision to H_2)

(c) H_2^- anion -

M.O. configuration - (σ 1s)² (σ * 1s)¹

Paramagnetic

Bond order = $\frac{1}{2} [2 - 1] = \frac{1}{2}$

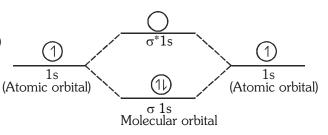
Stability is less than H_2^+ because H_2^-

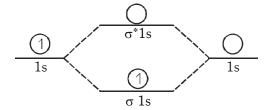
contain an ABMO electron

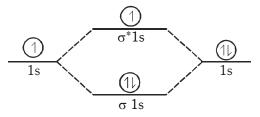
Stability order $H_2 > H_2^+ > H_2^-$ Bond order 1.0 0.5 0.5

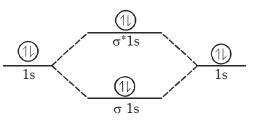
(d) Helium molecule (He_2)

M.O. configuration - (σ 1s)² (σ * 1s)²


Diamagnetic


Bond order = $\frac{1}{2} [2 - 2] = 0$ (zero)


Bond order zero indicates no linkage


between He atoms. Hence He_2 molecule

does not exists.

Comparison between VBT and MOT

1.	According to VBT electron moves around	1.	According to MOT electron moves under
	only one nucleus		influence of two or more nuclei
2.	Orbitals are monocentric	2.	Orbitals are polycentric
3.	According to VBT $\mathrm{O_2}$ is diamagnetic	3.	According to MOT $\mathrm{O_2}$ is paramagnetic

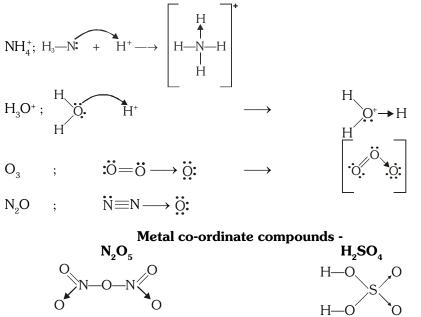
		BEGI	NNER'S BOX-6			
1.	Which of the follow	wing is incorrect regardin	g the MO theory ?			
	(1) The number of	molecular orbitals forme	d is always equal to the n	number of atomic orbitals combined.		
	(2) The more stabl orbital.	e the bonding molecular	orbital, the less stable the	e corresponding antibonding molecular		
		ecule, the number of ele plecular orbitals.	ectrons in bonding mole	cular orbitals is always equal to that in		
		orbital, each molecular o with the Pauli exclusion p		up to two electrons with opposite spins		
2.	If the z-axis is the	molecular axis, then π MG	Os are formed by the ove	erlap of-		
	(i) p_{z} and p_{z}	(ii) $p_{_{y}}$ and $p_{_{y}}$	(iii) s_{z} and p_{z}	(iv) p_x and p_x		
	(1) (ii), (iv)	(2) (ii), (iii)	(3) (i), (ii)	(4) (i), (iii)		
3.	If the z-axis is taken nonbonding comb		then which of the follow	ving combinations of atomic orbitals is a		
	(1) s and p_{y}	(2) p_x and d_{yz}	(3) p_x and p_y	(4) all of these		
4.	Which of the follow	wing is the correct order	of stability ?			
	(1) $H_2 > H_2^+ > He_2$	> $He_2^+(2) H_2 > He_2^+ > H_2^+$	$> He_2(3) H_2 > H_2^+ > He_2^+$	$H_2^+ > He_2(4) H_2 > He_2 > He_2^+ > He_2^+$		
5.	Bond order in C_2^+	is:-				
	(1) $\frac{1}{2}$	(2) $\frac{2}{3}$	(3) $\frac{3}{2}$	(4) 1		
6.	In which of the foll	owing set, the value of bo	nd order will be 2.5:-			
	(1) O_2^+ , NO, NO ⁺² , CN		(2) CN, NO ⁺² , CN ⁻ , F_2			
	(3) O ₂ ⁺ , NO ⁺² , O ₂ ⁺²	, CN-	$(4) \ O_2^{-2} \ , \ O_2^{-} \ , \ O_2^+ \ , \ O_2^+$	O ₂		
7.	Of the following sp	pecies which has the high	est bond order and short	test bond length :		
	NO, NO ⁺ , NO ²⁺ , 1	NO-				
	(1) NO only	(1) NO only				
	(2) Bond order of 1	(2) Bond order of NO is highest and bond length of NO ²⁺ is shortest				
	(3) NO ⁺ only	5	5			
	· · ·					
	(4) NO ²⁺ only					
8.	The diamagnetic n	nolecule is				
	(1) Super oxide ior	1	(2) Oxygen molec	(2) Oxygen molecule		
	(3) Carbon molecule			(4) Unipositive ion of nitrogen molecule		
0	On the basis of m	loculor orbital theory wh	iah malagulas daga nata	wish		
9.		blecular orbital theory wh				
	(1) H ₂	(2) He ₂	(3) HeH	(4) Li ₂		
10.	Maximum bond er	nergy will be shown by th	e species			
	(1) O ₂ ⁺	(2) O ₂	(3) O ₂ ⁻	(4) O_2^{-2}		
72						
• -						

- Allen

Y

2.11 CO-ORDINATE BOND

- (1) It is a covalent bond in which the shared e-pair come from one atom is called coordinate bond.
- (2) Necessary conditions for the formation of coordinate bond are -
 - (a) Octet of donor atom should be complete and should have atleast one lone pair of electron.
 (b) Acceptor atom should have deficiency of at least one pair of electron.


$$eg.:- \quad \underbrace{X}_{X^{*}} \longrightarrow \overset{X^{*}}{\underset{X^{*}}{\overset{X^{*}}{\longrightarrow}}} \quad \text{or} \qquad \qquad X \longrightarrow$$

- (3) Atom which provide electron pair for sharing is called donor.
- (4) Other atom which accepts electron pair is called acceptor. That is why it is called donor-acceptor or dative bond.

$$H \xrightarrow[H]{H} H \xrightarrow[H]{H} F \xrightarrow[H]{H} B \xrightarrow[H]{H} F \longrightarrow [NH_3 \rightarrow BF_3]$$

 BF_3 is electron defficient compound.

Example :

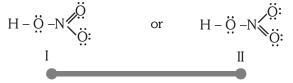
Compounds in which Ionic, covalent and co-ordinate bonds are present, are as follows - NH₄Cl, CuSO₄, K₄[Fe(CN)₆], Na₃PO₄, KNO₃, etc.

2.12 FORMAL CHARGE

The difference between the valence electrons in an isolated atom and the number of valence electrons assigned to that atom in a given Lewis structure is called that atom's formal charge. The formal charge, abbreviated FC, on an atom in a Lewis structure is given by the following relationship:

Formal charge on a atom in a Lewis structure

= (total number of valence electrons in the isolated atom) - (Total number of nonbonding electrons)


 $-\frac{1}{2}$ (total number of bonding electrons)...(i)

or

FC = (Valence electrons) – (Nonbonding electrons) – $\frac{1}{2}$ (bonding electrons) = (Valence electrons or group number) – [(Number of unshared e⁻s) + (Number of bonds)]

To find the formal charge, we count the bonding electrons as though they are equally shared between the two bonded atoms.

Q. Calculate the formal charges on the various atoms of nitric acid (HNO_3) molecule which has been described by the following Lewis structures:

Pre-Medical : Chemistry

The H atom : It has one valence electron, zero lone pair (or zero nonbonding electrons), and forms one bond (two bonding electrons).

Substituting in Eq. (i), we write $FC = (1) - (0) - \frac{1}{2}(2) = 0$.

The O atom bonded to H: It has six valence electrons, two lone pairs (or four nonbonding electrons), and from two bonds (or four bonding electrons).

Hence, we write
$$FC = (6) - (4) - \frac{1}{2}(4) = 0$$

The N atom: It has five valence electrons, zero lone pair (or zero nonbonding electrons), and forms four bonds (or has eight bonding electrons).

$$FC = (5) - (0) - \frac{1}{2}(8) = +1$$

The end O atom in N = O: It has six valence electrons in the free state *but* in the Lewis structure (I or II), it has two lone pairs (or four nonbonding electrons) and forms two bonds (or has four bonding electrons).

Thus, we can write

$$FC = (6) - (4) - \frac{1}{2}(4) = 0$$

The end O atom in N – O : It has six valence electrons in the free state but in the Lewis structure (I or II), it has three lone pairs or six nonbonding electrons and forms one bond (or has two bonding electrons).

$$FC = (6) - (6) - \frac{1}{2}(2) = -1$$

We can now write the Lewis structures (I and II) for nitric acid molecule including the formal charges as

$$H - \bigcup_{I} - N \xrightarrow{+} \bigcup_{O_{i} = 0}^{O_{i}} \text{ or } H - \bigcup_{I} - N \xrightarrow{O_{i} = 0}^{H} \bigcup_{O_{i} = 0}^{H} \bigcup_$$

2.13 RESONANCE

- (a) It has been found that the observed properties of certain compounds cannot be satisfactorily explained by writing a single lewis structure. The molecule is then supposed to have many structures, each of which can explain most of the properties of the molecule but none can explain all the properties of the molecules. The actual structure is in between of all these contributing structures and is called resonance hybrid and the different individual structures are called resonating structures or canonical forms. This phenomenon is called resonance.
- (b) Let us discuss resonance in ozone, according to its resonance structure it should have one single bond (O-O = 1.48Å) but experiments show that both the bonds are same which can be proved by its resonance hybrid as shown below.

Resonance hybrid

Note : To calculate bond order in the polyatomic molecule or ion use following formula :

Bond order =
$$\frac{\text{Total number of bonds in a molecule}}{\text{Re sonating Structures}}$$

Ex. $O = C + O^{-}$ $C = O$ Bond order = $\frac{4}{3} = 1.33$
 $O = P + O^{-}$ $P = O$ Bond order = $\frac{5}{4} = 1.25$
 $O = C + O^{-}$ $C = O$ Bond order = $\frac{7}{4} = 1.75$

ALI	.EN K3			Pre-Medical : C	Chemistry	
		BEGINN	IER'S BOX-7			
1.	Which of the following ions has resonating structures ?					
	(1) SO ₄ ²⁻	(2) PO ₄ ³⁻	(3) SO ₃ ²⁻	(4) All of these		
2.	How many resonating structures can be drawn for NO ₂ ?					
	(1) Six	(2) Four	(3) Five	(4) Two		
3.	Which of the following is true for nitrate anion					
	(1) Formal charge on N is zero		(2) Bond order of NO bond is $\frac{4}{3}$			
	(3) Average formal charge on oxygen is $\frac{-1}{3}$		(4) There are 2 π -bonds in the ion			
4.	Which of the following contains Co-ordinate and covalent bonds:-					
	(a) $N_2H_5^+$	(b) H ₃ O+	(c) HCl	(d) H ₂ O		
	Correct answer is :- (1) a & d	(2) a & b	(3) c & d	(4) Only a		
5.		ent for the reaction –	(J) t & u	(4) Only a		
	$NH_3 + H^+ \rightarrow NH_4^+ :=$					
	(1) Hybridisation state is changed (2) Bond angle increases					
	(3) NH_3 act as a Lewis acid		_	(4) Regular geometry is changed		
6.	The number of coordinate bonds presents in SO_3 molecule are					
	(1) 1	(2) 2	(3) 3	(4) 4		
7.	One of the resonating structure of SO_4^{-2} is					
			ö			
		e				
	Which set of formal charge on oxygen and bond order is correct					
	(1) 0.5 and 1.5	(2) 1.5 and 3	(3) 2 and 3	(4) 1.5 and 1.5		
8.	Resonance is not sh	nown by -				
	(1) C ₆ H ₆	(2) CO ₂	(3) CO ₃ ²⁻	(4) SiO ₂		
9.	Bond length of C –	O is minimum in –				
	(1) CO	(2) CO ₂	(3) CO ₃ ⁻²	(4) HCOO-		
Subj	ective Type Questio	ns				
10.	Discuss resonance and formal charge in N_3^- and N_2O ?					
11.	Give the average formal charge and average bond order of XO bond in the following oxy compounds?					
	(a) SO ₄ ²⁻	(b) SO ₃ ²⁻	(c) NO_2^-	(d) ClO_2^-	(e) ClO ₃ -	
	(f) ClO ₄ ⁻	(g) HCO ₃ ⁻	(h) CO ₃ ⁻²	(i) HSO ₃ ⁻	(j) PO ₄ ³⁻	

2.14 METALLIC BOND

- (1) The constituent particles of metallic solids are metal atoms which are held together by metallic bond.
- (2) In order to explain the nature of metallic bond Lorentz proposed a simple theory known as electron gas model or electron sea model.
- (3) A metal atom is supposed to consist of two parts, valence electrons and the remaining part (the nucleus and the inner shells) called kernel.
- (4) The kernels of metal atoms occupy the lattice sites while the space between the kernel is occupied by valence electrons.
- (5) Due to small ionisation energy the valence electrons or metal atoms are not held by the nucleus firmly. Therefore, the electrons leave the field of influence of one kernel and come under the influence of another kernel. Thus the electrons are not localised but are mobile.
- (6) The simultaneous attraction between the kernels and the mobile electrons which hold the kernel together is known as metallic bond.

WEAKER FORCES

2.15 Vander Waal's Forces

- (a) These are weak; non directional, non valence force of attraction among neutral species.
- (b) These are electrical in nature, due to induced polarity caused by temporary displacement of electrons towards one end of the inert atoms, becoming a temporary dipole.
- (c) This temporary dipole in one molecule can induce opposite dipoles in surrounding

molecule due to displacement of electrons, one end becomes -ve and other +ve. These partially charged ends, induce surrounding molecules accordingly.

(d) Strength of vander waal force depends on ease of distortion of electron cloud.

van der Waal's force ∞ size of atom or molecule ∞ atomic wt. or molecular weight.

(e) Therefore m.p. and b.p. of noble gas elements (inert gas atom) and halogens increases down the group.

Types of van der Waal's Forces

- (a) Keesom force or dipole dipole force one dipole molecule orient the other dipole molecule, to bring opposite ends close to each other for attraction. This is called orientation effect. Example HCl, H_2O , NH_3 etc.
- (b) Debye force or dipole induce dipole force :- Forces which results from the interaction of a permanent dipole and induced dipole are called Debye force.
- eg. When non-polar substance like benzene come in contact with polar molecules like NH₃, induced dipole moment in benzene appears (Induction effect).
- (c) London dispersion force or Instantaneous dipole instantaneous induce dipole attraction :-

Due to vibration or moment to atom electron cloud and nuclei shifts temporarily towards opposite ends, leads to attraction between them, eg. In atoms of noble gases and halogens.

2.16 HYDROGEN BONDING

Definition

(a) It is an electrostatic attractive force between covalently bonded hydrogen atom of one molecule and an electronegative atom.

X=F,O,N & sp carbon Y=F,O,N & Cl

- (b) It is not formed in ionic compounds.
- (c) H-bond forms in polar covalent compounds, (not in non-polar).
- (d) It is very weak bond but stronger than vander waal's force.
- (e) It is also known as dipole-dipole attraction.

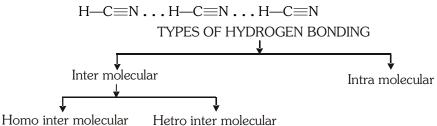
 $H^{{\scriptscriptstyle \delta}{\scriptscriptstyle +}} {-\!\!\!-} F^{{\scriptscriptstyle \delta}{\scriptscriptstyle -}} {-\!\!\!-} H^{{\scriptscriptstyle \delta}{\scriptscriptstyle +}} {-\!\!\!-} F^{{\scriptscriptstyle \delta}{\scriptscriptstyle -}} {-\!\!\!-} M^{{\scriptscriptstyle \delta}{\scriptscriptstyle +}} {-\!\!\!-} F^{{\scriptscriptstyle \delta}{\scriptscriptstyle -}}$

Main condition for H-bonding

(a) H— should be covalently bonded with high electro -ve element like F, O, N.

F

(b) Atomic size of electro -ve element should be small.

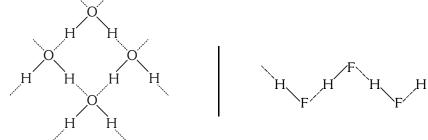

Order of atomic size is -

N > O Order of electronegativity is -

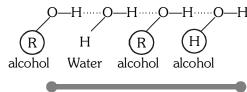
onogativity io					
F	>	0	>	Ν	
(4.0)	(3.5)	(3.0)	

(c) Strength of H–bond \propto Electronegativity of Z (element) $\alpha \frac{1}{\text{atomic size of Z}}$

(d) Hydrogen bonding occurs in HCN, due to $(-C \equiv N)$ triple bond (sp hybridisation), electronegativities of carbon and nitrogen increases.

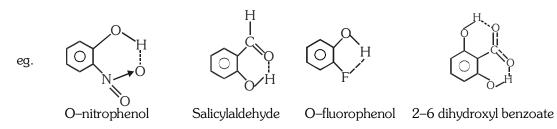


Intermolecular H-Bond


H-bond formation between two or more molecules of either the same or different compounds known as **Inter molecular H-bonding.**

These are of two types :-

(i) Homo intermolecular :- H-bond between molecules of same compound.


(ii) **Hetro intermolecular :-** H–bond between molecules of different compounds **Eg.** between alcohol and water

Intramolecular H-bond

It takes place within the molecule.

- (a) H–bonded with electronegative element of a functional group, form H–bond with another electronegative element present on nearest position on the same molecule.
- (b) This type of H-bond is mostly occurred in organic compounds (Aromatic)
- (c) It results in ring formation (Chelation).

Effect of H-bond on Physical Properties

(A) Solubility

(a) Inter molecular H-bonding

(I) Few organic compounds (Non-polar) are soluble in water (Polar solvent) due to H-bonding.
 Ex. - Alcohol in water

Other examples - Glucose, Fructose etc. dissolve in water.

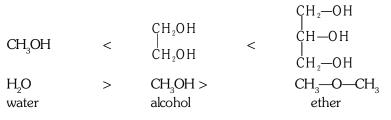
(II) Ketone, ether, alkane etc. are insoluble (no H–bond). Dimethyl ether is soluble in water while diethyl ether is partially soluble, due to bulky ethyl groups H–bonding interrupts.

(III) Solubility order-
$$CH_3OCH_3 < CH_3OH$$

$$\begin{array}{c} 0 - H \cdots 0 = C - H \\ 0 - H \cdots 0 = C - H \\ 0 - H \cdots 0 - H \end{array}$$

p-hydroxy benzaldehyde.

It can form H-bond with water molecule so it can dissolve.


(b) Intra molecular H-bonding

- (I) It decreases solubility as it form chelate by H–bonding, so H– is not free for other molecule.
- (II) It can not form H-bond with water molecule so it can not dissolve.

(B) Viscosity

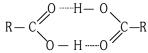
(IV)

H-bond associates molecules together so viscosity increases.

(C) Surface Tension

ALLEN

Surface tension of a liquid ∞ extent of H-bonding.

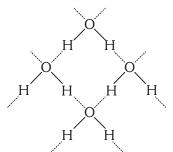

(D) Melting point and boiling point

- (I) Due to intermolecular H–bond M.P. & B.P. of compounds increases. $H_2O > CH_3OH > CH_3-O-CH_3$
- (III) But sudden increase in boiling point of NH_3 , H_2O and HF is due to H-bonding.
- (IV) $H_2O > HF > NH_3$ (BP comparison due to combined effect of strength and number of H bond)

Intramolecular H–bonding gives rise to ring formation, so the force of attraction among these molecules are vander waal force. So M.P. and B.P. are low.

(E) Molecular weight

Molecular wt. of CH_3COOH is double of its molecular formula, due to dimer formation occur by H–bonding.

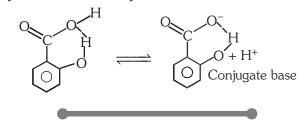

(F) Physical states

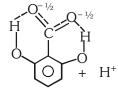
 H_2O is liquid while H_2S is gas.

Water and Ice :- Both have H-bonding even then density of ice is less than water.

Volume of ice is more because of open cage like crystal structure, form by association of water molecules with the help of H-bond.

 $\rm H_{2}O$ becomes solid due to four hydrogen bond among water molecule are formed in tetrahedral manner.

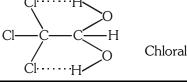



GOLDEN KEY POINTS

Effect of intramolecular H-bonding

Strength of acid

(I) The formation of intramolecular H-bonding in the conjugate base of an acid gives extra stability to conjugate base and hence acid strength increases eg. Salicylic acid is stronger than benzoic acid 2, 6 - dihydroxy benzoic acid > salicylic acid > benzoic acid.



- 2, 6-dihydroxy benzoate ion.
- (II) C_2H_5SH is more acidic than C_2H_5OH . InC_2H_5OH , H-bond forms so H⁺ is not free.
- (III) HF is weaker acid than HI, due to H-bond in H-F, H⁺ is not free

Stability of chloral hydrate

If two or more OH group on the same atom are present it will be unstable, but chloral hydrate is stable (due to H-bonding). Cl······H

Chloral hydrate

BEGINNER'S BOX-8

1.	Two ice cubes are pressed over each other until they unite to form one block. The force mainly responsible for holding them together is-				
	(1) van der Waals f	-	(2) dipole-dipole interaction		
	(3) H bonding		(4) covalent bond		
2.	· · · ·	e of <i>o</i> -nitrophenol at a	ny given temperature is pro	-	
	(1) higher than that of <i>p</i> -nitrophenol				
	(2) lower than that				
	(3) same as that of	· ·			
	(4) higher or lower	depending upon the si	ize of the vessel		
3.	The hydrogen bon	d is strongest in:-			
	(1) O – H S	(2) S – H O	(3) F – H F	(4) O – H O	
4.	H ₂ O boils at higher	r temperature than $ m H_2S$, because it is capable of fo	rming:-	
	(1) Ionic bonds		(2) Covalent bond	S	
	(3) Hydrogen bond	S	(4) Metallic bonds		
5.	Maximum number	of H–bonding is show	<i>i</i> n by		
	(1) H ₂ O	(2) H_2 Se	(3) H ₂ S	(4) HF	
6.	Which is the weak	est among the following	g types of bonds ?		
	(1) Debye force		(2) Metallic bond		
	(3) Dipole-dipole b	ond	(4) Hydrogen bon	d	
7.	The boiling point c	of p-nitrophenol is high	er than that of o-nitropher	nol because :	
	(1) NO ₂ group at p	-position behaves in a	different way from that at o	p-position	
	(2) intramolecular h	nydrogen bonding exist	ts in p-nitrophenol		
	(3) there is intermo	olecular hydrogen bond	ing in p-nitrophenol		
	(4) p-nitrophenol h	ias a higher molecular v	weight than o-nitrophenol		
8.	In which molecule	the Vander Waals force	e (dispersion force) is likely t	to be the most important in determining	
	the m.pt. and b.pt.	. :			
	(1) Br ₂	(2) CO	(3) H ₂ S	(4) HCl	
9.	Covalent-molecule	s are usually held in a c	crystal structure by		
	(1) Dipole-dipole at	traction	on (2) Electrostatic attraction		
	(3) Hydrogen bond	l	(4) Van-der waal's	attraction	
10.	In solid argon the a	atoms are held togethe	r		
	(1) by ionic bonds		(2) by hydrogen b	onds	
	(3) By vander-waal	By vander-waals forces (4) By hydrophobic bonds			
80					

ALLEN

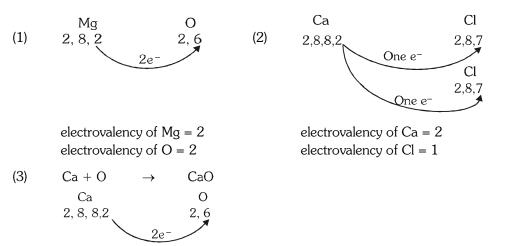
IONIC OR ELECTROVALENT BOND

The chemical bond formed between two or more atoms as a result of the complete transfer of one or more electrons from one atom to another is called Ionic or electrovalent bond.

Electro +ve atom loses electron (group IA to IIIA)

Electro -ve atom gains electron (group VA to VIIA)

Electrostatic force of attraction between cation and anion is called ionic bond or electrovalent bond. Nature of ionic bond Electronegativity difference. α


e.g. IA and VIIA group elements form maximum ionic compound.

Na + Cl
$$\rightarrow$$
 Na⁺ + Cl⁻
2, 8, 1 2, 8, 7 2, 8 2, 8, 8
 $1e^{-}$ (Ne configuration) (Ar configura

(Ar configuration) (Ne configuration)

More the distance between two elements in periodic table more will be ionic character of bond. Total number of electron lose or gained is called electrovalency.

Example -

electrovalency of Ca = 2electrovalency of O = 2

The force of attraction is equal in all direction so ionic bond is non-directional. A definite three dimensional structure is formed called crystal lattice. Energy released during the formation of one mole crystal lattice is called lattice energy.

Ionic compound do not have molecular formula. It has only empirical formula.

e.g. NaCl is empirical formula of sodium chloride

Conditions for Forming Ionic Bonds

Formation of Ionic bond depends upon these three factors -

(a) **Ionisation energy** :

Amount of energy required to remove an electron from the outermost orbit of an isolated gaseous atom to form the +ve ion or cation. (energy absorbed)

Lesser Ionisatoin energy \rightarrow Greater tendency to form cation.

e.g.
$$Na^+ > Mg^{+2} > Al^{+3}$$

 $Cs^+ > Rb^+ > K^+ > Na^+ > Li^+$

Cation formation tendency

(b) **Electron affinity :**

Amount of energy released when an electron is added to an isolated gaseous atom to form -ve ion (anion) energy released.

Higher electron affinity \rightarrow Greater tendency to form anion

$$\begin{array}{c} CI^- > F^- > Br^- > I^- \\ F^- > O^{-2} > N^{-3} \end{array} \end{array} \right\} \mbox{Anion formation tendency} \label{eq:anion}$$

Lattice energy - (Energy released) Amount of energy released when one mole of crystal lattice is (c) formed

Higher lattice energy \rightarrow Greater will be the stability or strength of ionic compound.

or Amount of energy required to break the crystal.

Overall lowering of energy : (d)

Energy must be released during bond formation.

Energy changes are involved in the following steps -

(i) $A_{(g)} \xrightarrow{IE} A_{(g)}^{+} + e^{-}$ (ii) $B_{(g)} + e^{-} \xrightarrow{B_{(g)}^{-}} + EA$ (iii) $A_{(g)}^{+} + B_{(g)}^{-} \rightarrow AB(s) + LE$

This concludes that for lower value of IE and higher value of EA there is more ease of formation of the ionic compound which is summarised as Born Haber Cycle.

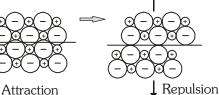
GOLDEN KEY POINTS

Factors affecting lattice energy Magnitude of charge $\rightarrow U \alpha z^+ z^-$ (Ionic charge) (1)Lattice energy α Magnitude of charge NaCl MgCl₂ AlCl₂ Na+ Mg^{+2} Al+3 - Lattice energy increases - Charge of cation increases (2) Size of Cation :- Lattice energy LiCl RbCl CsCl NaCl KCl - Size of cation increasing – Size of anion is constant

- Lattice energy decreases.

Representation of formula of compounds :

- Write the symbols of the ions side by side in such a way that positive ion is at the left and negative ion (1)is at the right as A⁺B⁻
- (2)Write their electrovalencies in figure at the top of each symbol as A^x B^y
- Now apply cris cross rule as (3)


A B, i.e. formula AyBx. $2 = CaCl_2$ Examples : Calcium chloride

Properties of Ionic Compound

Physical state -(a)

Ionic compounds are hard, crystalline and brittle due to strong electrostatic force of attraction. Brittleness \rightarrow

{ Same charged ions comes nearer. So they repell each other.}

(1) Two compounds are said to be isomorphous if they have similar no. of electrons i.e. similar configuration of their cation and anion.

(2) They have similar crystal structure.

Example –

	Na+	F-	Mg^{+2}	O ⁻²
Valency	+1,	-1	+2,	-2
electronic configuration	2, 8	2, 8	2, 8	
similarly	Ca^{+2}	2Cl-1	$2K^{+1}$	S ⁻²
	2, 8, 8	2,8,8	2,8,8	2, 8, 8
		2,8,8 2,8,8	2,8,8	2, 8, 8

(c) Boiling point and melting point -

Ionic compounds have high boiling point and melting point due to strong electrostatic force of attraction among oppositely charged ions.

(d) Conductivity –

It depends on ionic mobility. In solid state - No free ions - Bad conductor of electricity. In fused state or aqueous solution Due to free ions - Good conductor of electricity. Conductivity order Solid state < fused state < Aqueous solution

(e) Solubility -

Highly soluble in Polar solvents like water.

Less soluble in non polar solvents like benzene.

Ex. NaCl form a true solution in water but is colloid in benzene

(f) Ionic reaction -

- (a) Ionic compounds shows ionic reaction and covalent compounds shows molecular reaction.
- (b) Ionic reactions are faster than molecular reaction because of free ions.
- e.g. When NaCl is added in AgNO₃ solution, white ppt of AgCl is formed at once.

 $Ag^+ NO_3^- + Na^+Cl^- \rightleftharpoons Na^+ NO_3^- + AgCl \downarrow$

white ppt.

(g) Ionic bond non-directional and does not show sterio isomerism

2.18 Polarisation (Fajan's Rule) (Covalent Nature in Ionic Bond)

When a cation approaches an anion closely the positive charge of a cation attract the electron cloud of the anion towards itself, due to the electrostatic force of attraction between them.

At the same time cation also repel the positively charge nucleus of anion.

Due to this combined effect, cloud of anion is bulged or elongated towards the cation. This is called distortion, deformation or Polarisation of the anion by the cation and anion is called Polarised.

Polarisation Power

The ability of cation to polarised a nearby anion is called Polarisation power of cation.

Polarizability

Ability of an anion to get polarised by the cation.

Polarisation of anion causes some sharing of electron between the ions so ionic bond acquires certain covalent character.

 $[Polarisation \propto Covalent \ character]$

Magnitude of polarisation depends upon a no. of factors, suggested by Fajan and are known as Fajan's rule.

ALLEN

Fajan's Rule (Factors Affecting Polarisation)

(a) **Size of cation** : Polarisation of the anion increases as the size of cation decreases.

Polarisation $\alpha - \frac{1}{\text{size } \alpha}$	1 of cation			
eg.	In a group			
BeCl ₂				
MgCl ₂ -	Size of cation increases			
CaCl ₂ -	Covalent character decreases			
SrCl ₂ -	Ionic character increases			
$BaCl_2$				
Greatest polarising p	power of Be ²⁺ , shows its maximum covalent character			
In a period — Na ⁺	$^{-}$, Mg ⁺² , Al ⁺³ , Si ⁺⁴			
- Cation size decreases				
- Covalent character increases				
Size of anion :- If th	ne size of the anion increases for a given cation, the covaler			

(b) Size of anion :- If the size of the anion increases for a given cation, the covalent character increases. Polarisation \propto size of anion.

CaF ₂		
CaCl ₂	-	size of anion increases
CaBr ₂	-	Covalent character increases
Cal ₂	-	Ionic character decreases

(c) Charge on cation and anion :-

Polarisation \propto charge on cation or anion

(i) Polarisation (covalent character) ∞ Charge on cation

eg.	NaCl	$MgCl_2$	AlCl ₃	SiCl_4
	Na+	Mg^{++}	Al+++	Si++++

→

N⁻³

 AlF_3

→

>

- Charge on cation increases

- Covalent character increases

- Ionic character decreases (M.P. decreases)

Ex. Write the increasing order of M.P. & B.P. of following compounds.

(Charge on cation \propto polarisation power \propto covalent character $\alpha \frac{1}{M.P.}$)

(ii) Polarisation \propto Charge of anion

F- O²⁻

- Charge increases
- Covalent character increases

$$AIN > Al_2O_3$$

ALLEN

Charge on anion \propto polarisation \propto covalent nature $\alpha \frac{1}{M.P.}$

(d) Electronic configuration of cation : -

Order of Polarisation power $: 8e^- < (18+2) e^- < 18e^-$

 $Cu^{\scriptscriptstyle +}$ and $Na^{\scriptscriptstyle +}$ both the cation (Pseudo inert & inert respectively) have same charge and size but polarising power of $Cu^{\scriptscriptstyle +}$ is more than $Na^{\scriptscriptstyle +}$ because -

z_{eff} of ns²p⁶ (inert) < z_{eff} of ns²p⁶d¹⁰ (pseudo inert) Na⁺ < Cu⁺ (Ionic) (Covalent)

So CuCl has more covalent character than NaCl.

Order of covalent character

• LiF < LiCl < LiBr < LiI	• $SF_2 < SF_4 < SF_6$
• $CaCl_2 < FeCl_2 < FeCl_3$	• $Hg_2Cl_2 < HgCl_2$
• $SrCl_2 < SnCl_2 < CdCl_2$	• $ZnCl_2 < CdCl_2 < HgCl_2$

Note :

Polarisation power of a cation is usually called ionic potential or charge density.

Ionic potential ϕ (phi) = $\frac{\text{Charge on cation}}{\text{Size of cation}}$

To determine covalent and ionic character of molecule

$\phi \propto$		Covalent Character	
	œ	Ionic character	

From left (larger size) to right (smaller size) in a period ϕ increases so covalent character increases.

	Na+, Mg	++ Al+++	Si ⁺⁺⁺⁺
-	charge	increases	<pre></pre>
-	size dec	creases	φincreases
-	Covalent character increases		

From top to bottom in a group ϕ decreases so covalent, character decreases.

Li+	
Na ⁺	Size increases (charge is fix)
K+	¢ decreases
Rb+	Hence covalent character decreases
Cs^+	

		BEG	INNER'S BOX-9	
1.	The electrovalenc	y of the element is equal	l to the-	
	(1) number of elec	trons lost		
	(2) number of ele	ctrons gained		
	(3) number of elec	trons transferred		
	(4) number of ele compound	ctrons lost or gained by	the atom of the element	during the formation of ions of ionic
2.	Which of the follo	wing polar solvents has	the highest dielectric const	ant?
	(1) H ₂ O	(2) D ₂ O	(3) CH ₃ OH	(4) C ₂ H ₅ OH
3.	Which of the follo	wing cations posses neil	ther noble gas nor pseudo 1	noble gas configurations?
	(i) Bi ³⁺	(ii) Pb ²⁺	(iii) Sn ²⁺	(iv) Tl+
	(1) (ii), (iii)	(2) (i), (iv)	(3) (i), (ii), (iii)	(4) (i), (ii), (iii), (iv)
1.	Ionic bond format	ion involves :		
	(1) Elimination of	protons	(2) Sharing of elec	trons
	(3) Overlapping of	forbitals	(4) Formation of o	ctets
5.	The hydration of i	onic compounds involve	25 -	
	(1) Evolution of he	eat	(2) Weakning of at	tractive forces
	(3) Dissociation in	to ions	(4) All	
6.	The hydration end	ergy of Mg+2 is greater th	nan the hydration energy o	f
	(1) Al ⁺³	(2) Mg ⁺³	(3) Na+	(4) Be^{+2}
7.	Among the follow	ing which compounds w	vill show the highest lattice	energy ?
	(1) KF	(2) NaF	(3) CsF	(4) RbF
8.	The lattice energy	of the lithium is in the f	ollowing order :	
	(1) LiF > LiCl > L	iBr > Lil	(2) LiCl > LiF > Li	Br > LiI
	(3) LiBr > LiCl > 1	LiF > LiI	(4) LiI > LiBr > Li	Cl > LiF
9.			valent bond character follo	
	(1) LiCl $<$ BeCl ₂ $>$	2 0 1	(2) LiCl > BeCl ₂ <	
	(1) LiCl $<$ BeCl ₂ $>$ (3) LiCl $<$ BeCl ₂ $<$	0 1	(4) LiCl > $BeCl_2 <$	0
84	(0) LICI < DECI2 <	$DCI_3 < CCI_4$	(+) LICI > DECL ₂ >	

Z.\NODE02\BDA+B0\TARGET\CHEM\ENG\WODULE_2\2-CHBMCALBONDINS\01THEORY P65

- Allen

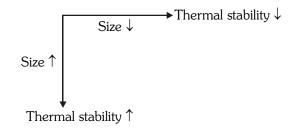
2.19 THERMAL DECOMPOSITION

Thermal stability of metal carbonates

Thermal stability of compound having poly atomic anion

$$CO_3^{-2}$$
, SO_4^{-2} , OH^- , O_2^{-2} , O_2^- etc

$$CaCO_3 \xrightarrow{\Lambda} CaO + CO_2$$


$$M^{+x} O = C \xrightarrow{O} \Delta MO + CO_2$$

(x is +ve charge)

Polarising Power (\uparrow) Thermal Stability (\downarrow)

Thermal stability $\propto \frac{1}{Pol.power} \propto \frac{size \ of \ cation}{charge \ of \ cation}$

Compounds having poly atomic anions :

For fluoride, hydride & normal oxide

 $\left[\text{Thermal stability} \propto \frac{1}{\text{size}} \right] \text{ for a group}$

[Thermal stability $\propto \Delta EN$] for a period

Thermal Stability order

For Example

 $BeSO_4 < MgSO_4 < CaSO_4 < SrSO_4 < BaSO_4$

 $LiNO_3 < NaNO_3 < KNO_3 < RbNO_3$

LiHCO₃ < NaHCO₃ < KHCO₃ < RbHCO₃ <CsHCO₃

Note :

- (i) LiHCO_3 and IIA group bicarbonate does not exist in solid state.
- (ii) Carbonate, Sulphates & hydroxide of Na, K, Rb & Cs do not decompose at high temperature only melt.
- (iii) $BeCO_3$ is kept in CO_2 atmosphere due to less thermal stability.

$$BeCO_3 \rightleftharpoons BeO + CO_2$$

Heating Effect

ALLEN

- (a) Metal carbonate $\xrightarrow{\Delta}$ metal oxide + CO₂
- (b) Metal hydroxide $\xrightarrow{\Delta}$ metal oxide + H₂O
- (c) Metal bicarbonate $\xrightarrow{\Delta}$ metal carbonate + CO₂ + H₂O
- (d) Ammonium salts having CO_3^{-2} , PO_4^{-3} , SO_4^{-2} , X-anion (non oxidising or weak oxidising) gives NH_3 gas on decomposition.

Ammonium salt having $Cr_2O_7^{-2}$, ClO_3^{-1} , NO_2^{-1} , NO_3^{-1} (strong oxidising anion) gives N_2 or N_2O gas on decomposition.

(e) Metal nitrate $\xrightarrow{\Delta}$ metal oxide + NO₂+ O₂

Except :Na, K, Rb, Cs nitrate $\xrightarrow{low temp.} MNO_2 + \frac{1}{2}O_2$ high temp. (>800°C) $M_2O + N_2 + O_2$

Note :

(i) Some less stable metal oxide like Ag₂O & HgO further decompose into metal & oxygen.

(ii) Metal salts having high percentage of oxygen like KMnO₄, K₂Cr₂O₇ & KClO₃ give O₂ gas on decomposition.

Complete following reactions :

PbCO3
$$\triangle$$
FeCO3 \triangle $ZnCO3$ \triangle MgCO3.CaCO3 \triangle $CuCO3.Cu(OH)_2$ \triangle NaCO3.10H2O X \triangle $2NaHCO3$ \triangle NH4NO2 \triangle $2NaHCO3$ \triangle NH4NO2 \triangle $NH4NO3$ \triangle NH4NO2 \triangle $NH4NO3$ \triangle Ba(N3)2 or NaN3 \triangle $Pb(NO3)_2$ \triangle $Zn(NO3)_2$ \triangle $Ca(NO3)_2$ \triangle $LiNO3$ \triangle $NaNO3$ $400^{\circ}C$ $PbCl_4$ \triangle $ReCl_3$ \triangle $AuCl_3$ \triangle $NaNO3$ $400^{\circ}C$ B $BaCl_2.2H_2O$ \triangle $CaSO_4.7H_2O$ $-200^{\circ}C$ A $-220^{\circ}C$ A $Fe_2(SO_4)_3$ \triangle $FeCl_3.6H_2O$ \triangle $Fe_2(SO_4)_3$ \triangle $FeCl_3.6H_2O$ \triangle $CaSO_4 \cdot 2H_2O$ $-200^{\circ}C$ A $-200^{\circ}C$ A $-200^{\circ}C$ A $-200^{\circ}C$ A $ZnSO_4$ $-200^{\circ}C$ A $-200^{\circ}C$ A $Fe_2(SO_4)_3$ \triangle $AiCl_3.6H_2O$ \triangle $AiCl_3.6H_2O$ A $AiCl_3.6H_2O$ A $ZKMnO_4$ \triangle $K_2Cr_2O_7$ \triangle $2KClO_3$ \triangle $K_2Cr_2O_7$ \triangle $AiCl_3$ $AiCl_3.6H_2O$ A

Z: NIODE021B0AI-B01TARGET/CHEM/ENG/MODULE-2/2-CHEMICAL BONDING/01THEORY, P65

2.20 SOLUBILITY OF IONIC COMPOUNDS

(a) Solubility of ionic compounds :

Soluble in polar solvents like water which have high dielectric constant

Factors affecting solubility of ionic compounds :

(i) Dielectric constant of the solvent increases the solubility of compound increases

 $HF \rightarrow 120 \qquad H_2O \rightarrow 81$

 $\mathrm{H_2SO_4}\ \rightarrow 102 \qquad \qquad \mathrm{D_2O}\ \rightarrow\ 79$

- (ii) If heat of hydration of ions exceeds the lattice energy (L.E.) of ionic compounds, the ionic compounds will be soluble in water.
- Lattice energy as well as hydration energy depend on the size of ions. Both lattice energy and hydration energy decrease with increase in ionic size.

Two general rule, regarding the solubility is that -

(a) If the anion and the cation are of comparable size, the cationic radius will influence the lattice energy. Since lattice energy decreases much more than the hydration energy with increasing ionic size, solubility will increase as we go down the group.

Be
$$(OH)_2 < Mg (OH)_2 < Ca(OH)_2 < Sr(OH)_2 < Ba (OH)_2$$

Solubility increases

(b) If the anion is large compared to the cation, (i.e. compound contain ions with widely different radii) the lattice energy will remain almost constant i.e. change is very small within a particular group. Since the hydration energies decrease down a group, solubility will decrease.

$$BeCO_3 > MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$$

Solubility decreases

Note :

• If common ion is small like Na⁺, Li⁺, O⁻², F⁻, OH⁻, IIA cation then lattice energy dominates.

• If common ion is large like Cs⁺, Rb⁺, Br⁻, I⁻, polyatomic anion like CO_3^{-2} , SO_4^{-2} then hydration energy dominates.

Some important solubility orders:

Examples

- $BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$ (SO₄⁻² larger)
- $\bullet \ CsF > CsCl > CsBr > CsI \ \ [Cs^+ \ (larger)]$
- BeS > MgS > CaS > SrS > BaS (S⁻² larger)

*Important facts about solubility

- (i) All metal chlorides are soluble except Ag, Pb, Hg
- (ii) All metal sulphides are insoluble except : IA and ammonium
- (iii) Highly insoluble sulphides are of Hg^{2+} , Pb^{2+} , Cu^{2+} , Cd^{2+} , Bi^{3+}
- (iv) All hydroxides are insoluble except IA, lower IIA (Ca⁺², Sr⁺², Ba⁺²) and ammonium
- (v) Most insoluble hydroxides are of Al^{3+} , Fe^{3+} , Cr^{3+}
- (vi) All metal nitrate, Acetate, perchlorate are souble in water
- (vii) Generally metal sulphates are soluble in water except Ag, Hg, Pb, Ca, Sr, Ba
- (viii) All alkali metal salts are soluble in water except . LiF, Li_2CO_3 , Li_3PO_4 , $Li_2C_2O_4$

2.21 MELTING POINT

Melting point of ionic compounds

The two factors which mainly influence the melting point of ionic compound are

(i) Lattice enthalpy (ii) Polarisation

$$M.P. \propto LE \text{ when}$$

$$Anion = F^{-}, O^{-2}, N^{-3}, C^{-4}, H^{-1}$$

Melting point of ionic compound > covalent compound

Except Giant molecules

Diamond, Carborundum (SiC) Norbide (B_4C), Silica (SiO₂) Borazone (BN)_x

Order of Hardness : Diamond > Norbide > $SiC > Al_2O_3$

Some important melting point orders :

Examples

$$\begin{split} & \text{BeCl}_2 < \text{MgCl}_2 < \text{CaCl}_2 < \text{SrCl}_2 < \text{BaCl}_2 \\ & \text{NaF} < \text{MgF}_2 < \text{AlF}_3 \\ & \text{NaCl} > \text{MgCl}_2 > \text{AlCl}_3 \\ & \text{LiCl} < \text{NaCl} > \text{KCl} > \text{RbCl} > \text{CsCl} \end{split}$$

Melting Point and Boiling Point of non-metallic molecules

(i) $CH_3 - O - CH_3 < C_2H_5OH$ (boiling point) (ii) $CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$ (boiling point) (iii) $I-Cl > Br_2$ (boiling point) (iv) $H_2 < O_2 < H_2O$ (boiling point) (v) $CH_3 - OH < H_2O$ (surface tension) (vi) $HCl < HNO_3 < H_2SO_4 < H_3PO_4$ (melting point) (vii) $H_2O < D_2O$ (boiling point) (viii) O-nitro phenol < p-nitro phenol (boiling point) (ix) $H_2O >> H_2S < H_2Se < H_2Te$ (melting point) (x) $NH_3 >> PH_3 < AsH_3 < SbH_3$ (melting point) (xi) HCl < HBr < HI < HF (boiling point) (xii) HCl < HBr < HI < HF (boiling point)

Melting point & boiling point of elements

- (i) Li > Na > K > Rb > Cs (melting point)
- (ii) Be > Ca > Sr > Ba > Mg (melting point)

(iii) **3d series**

Melting point ∞ number of unpaired electrons

 \therefore In 3d series (MP) maximum = Cr (chromium)

In 4d series (MP) maximum = Mo

In 5d series (MP) maximum = W

- (iv) 3d < 4d < 5d (melting point)
- (v) Zn > Cd > Hg (Melting point)

He < Ne < Ar < Kr < Xe (boiling point)

 $F_{\scriptscriptstyle 2} < Cl_{\scriptscriptstyle 2} < Br_{\scriptscriptstyle 2} < I_{\scriptscriptstyle 2}$ (boiling point)

 $N_2 < P_4 < As_4$ (boiling point)

 $O_2 < S_8 < Se_8 < Te_8$ (boiling point)

 $H_2 > He$ (melting point)

Note : Maximum melting point in Boron family \rightarrow Boron

Minimum melting point in Boron family \rightarrow Gallium

Maximum melting point in all elements \rightarrow Carbon

Minimum melting point in all elements \rightarrow Helium

Maximum melting point in Metals \rightarrow Tungsten

Minimum melting point in Metals \rightarrow Mercury

COLOUR OF COMPOUNDS

More the covalent character, more will be the colour intensity.

Colour intensity $\propto \phi$ (Covalent character)

AgFAgClAgBrAgIExample :(Colourless)(White)(Light yellow)(Dark yellow)

BEGINNER'S BOX-10

Arrange in order of thermal stability :

 $\begin{array}{ll} & \operatorname{BeCO}_3\,,\operatorname{MgCO}_3\,,\operatorname{CaCO}_3\,,\operatorname{SrCO}_3\,,\operatorname{BaCO}_3\\ & \operatorname{KO}_2\,,\operatorname{RbO}_2\,,\operatorname{CsO}_2\\ & \operatorname{NH}_3\,,\operatorname{PH}_3\,,\operatorname{AsH}_3\,,\operatorname{SbH}_3\,,\operatorname{BiH}_3\\ & \operatorname{H}_2\mathrm{O}\,,\operatorname{H}_2\mathrm{S}\,,\operatorname{H}_2\mathrm{Se}\,,\operatorname{H}_2\mathrm{Te}\\ & \operatorname{BeO}\,,\operatorname{MgO}\,,\operatorname{CaO}\,,\operatorname{SrO}\,,\operatorname{BaO}\\ & \operatorname{NH}_3\,,\operatorname{H}_2\mathrm{O}\,,\operatorname{HF}\\ & \operatorname{NaF}\,,\operatorname{MgF}_2\,,\operatorname{AlF}_3\\ & \operatorname{Na}_2\mathrm{SO}_4\,,\operatorname{MgSO}_4\,,\operatorname{Al}_2(\mathrm{SO}_4)_3\\ & \operatorname{CCl}_4\,,\operatorname{SiCl}_4\,,\operatorname{GeCl}_4\,,\operatorname{SnCl}_4\,,\operatorname{PbCl}_4 \end{array}$

1.

2.	Give solubility order for :-			
	(i) alkali metal hydroxide		(ii) Sodium halio	des
	(iii) alkali metal per chlorates		(iv) alkali metal oxides	
	(v) alkaline earth metal carbonat	ies	(vi) alkali metal	carbonates
	(vii) alkali metal bicarbonates		(viii) silver halid	es
	(ix) lead (II) halides		(x) mercury (II) l	halides
3.	Give the order of melting p	oints		
	• Na_2O , MgO , Al_2O_3	• CaCl ₂ , FeCl ₂ ,	FeCl ₃	• NaF, MgO , ScN, TiC

- $SnCl_2$, $SnCl_4$
- CaCl₂, FeCl₂, FeCl₃
 KCl , CuCl, CuCl₂
- igO, ΪΝ,

- Allen

		Α	NS	WE	R K	EY						
BEGINNER'S BOX-1	Que. Ans.	1 3	2 4	3 2	4 1							
BEGINNER'S BOX-2	Que. Ans.	1 3	2 1	3 4	4 3	5 1	3		7 1	8 2		
BEGINNER'S BOX-3	Que. Ans.		2 1	3 3	4 2	5 2	6 2	7 3	8 4	9 4	10 3	11 4
BEGINNER'S BOX-4	Que. Ans.	1 1	2 3	3 2	4 3	5 3			7 1	8 2	9 1	10 3
BEGINNER'S BOX-5	Que. Ans.	1 1	2 2	3 3	4 1	5 2						
BEGINNER'S BOX-6	Que. Ans.	1 3	2 1	3 4	4 3	5 3	1		7 3	8 3	9 2	10 1
BEGINNER'S BOX-7	Que. Ans.	1 4	2 4	3 2	4 2	5 2			7 1	8 4	9 1	
BEGINNER'S BOX-8	Que. Ans.	1 3	2 1	3 3	4 3	5 1	6		7 3	8 1	9 4	10 3
BEGINNER'S BOX-9	Que. Ans.	1 4	2 1	3 4	4 4	5 4	6 3	7 2	8 1	9 3		
2												

ALL	.EN	I	Pre-Medical : Chemist
E)	XERCISE-I (Conceptual Questions)		Build Up Your Understandin
ОСТ 1.	ET RULE : Among the following element group number is not equals to valence electrons - (1) Na (2) N (3) Ne (4) None	11. 12.	Which compound of xenon is not possible (1) XeF_2 (2) XeF_4 (3) XeF_5 (4) XeF Similarity of fluorine and oxygen may not be tributed to-
2. COV	Which of the following does not act as lewis acid? (1) BF_3 (2) $SnCl_4$ (3) CCl_4 (4) SF_4 ALENT BOND		 Their atomic and ionic radii are closely similarity. The atom of both elements attain an octet electrons in their valence shell Both of them are highly electronegative of ments.
3 . 4 .	The strength of bonds by $2s - 2s$, $2p - 2p$ and $2p - 2s$ overlapping has the order :- (1) $s - s > p - p > s - p$ (2) $s - s > p - s > p - p$ (3) $p - p > s - p > s - s$ (4) $p - p > s - s > p - s$ In which of the excitation state of chlorine ClF ₃ is	13.	 (4) Both form stable pπ – pπ multiple bonds w themselves Higher is the bond order, greater is - (1) Bond dissociation energy (2) Covalent character (3) Bond length (4) Paramagnetism
4.	 (1) In ground state (2) In third excitation state (3) In first excitation state (4) In second excitation state 	НҮВ 14.	In the protonation of H ₂ O, change occurs in (1) Hybridisation state of oxygen (2) Shape of molecule (3) Hybridisation and shape both
5.	A sigma bond is formed by the overlapping of :- (1) s-s orbital alone (2) s and p orbitals alone (3) s-s, s-p or p-p orbitals along internuclear axis (4) p-p orbital along the sides	15.	(4) None In the compound $^{1}_{CH_{2}}=^{2}_{CH}-^{3}_{CH_{2}}-^{4}_{CH_{2}}-^{5}_{C}=^{6}_{CH}$, the C ² – bond is formed by the overlapping of :-
6.	Which overlapping is involved in HCl molecule :-(1) s-s overlap(2) p-p overlap(3) s-d overlap(4) s-p overlap		(1) $sp - sp^2$ (2) $sp^3 - sp^3$ (3) $sp - sp^3$ (4) $sp^2 - sp^3$
7.	 Which is not characteristic of π-bond:- (1) π - bond is formed when a sigma bond already formed (2) π - bond are formed from hybrid orbitals (3) π - bond may be formed by the overlapping of p-orbitals (4) π-bond results from lateral overlap of atomic orbitals 	16.	Among the following species identify isostructural pairs:- NF ₃ , NO ₃ ⁻ , BF ₃ , H ₃ O ⁺ , HN ₃ (1) [NF ₃ , NO ₃ ⁻] and [BF ₃ , H ₃ O ⁺] (2) [NF ₃ , HN ₃] and [NO ₃ ⁻ , BF ₃] (3) [NF ₃ , H ₃ O ⁺] and [NO ₃ ⁻ , BF ₃]
8.	 π bond is formed :- (1) By overlapping of hybridised orbitals (2) Overlapping of s - s orbitals (3) Head on overlapping of p -p orbitals (4) By p - p collateral overlapping 	17.	 (4) [NF₃, H₃O⁺] and [HN₃, BF₃] Which of the set of species have same hybridisat state but different shapes:- (1) NO⁺₂, NO₂ , NO⁻₂
9. 10.	Which of the following overlapping is strongest ? (1) $1s - 1s$ (2) $2p - 2p$ (3) $2s - 2p$ (4) $1s - 2p$ p-p overlapping will be observed in the molecules of:		(2) ClO_4^- , SF_4 , XeF_4 (3) NH_4^+ , H_3O^+ , OF_2
_ • •	(1) Hydrogen(2) Hydrogen bromide(3) Hydrogen chloride(4) Chlorine		(4) SO_4^{-2} , PO_4^{-3} , ClO_4^{-3}

18. Which of the following elements can not exhibit sp³d hybridisation state:(a) C (b) P (c) Cl (d) B

Correct an	iswer is:-		
(1) a, c	(2) a, d	(3) b, c	(4) b, d

19. Which of the following species are expected to be planar:-

(a) NH_3 (b) NH_3^{2+} (c) CH_3^+ (d) PCl_3 The correct answer is:-(1) b and c (2) c and d (3) b and d (4) a and d

20. In which following set of compound/ion has linear shape

(1) CH_4 , NH_4^+ , BH_4^- (2) CO_3^{-2} , NO_3^- , BF_3 (3) NO_2^+ , CO_2 , XeF_2 (4) $BeCl_2$, BCl_3 , CH_4

21. Which order of decreasing bond angle is correct:-

 $\begin{array}{l} (1) \ CCl_4 > BF_3 > \ NO_2^+ \\ (2) \ NH_3 > NCl_3 > NBr_3 \\ (3) \ Br_2O > Cl_2O > OF_2 \\ (4) \ PCl_3 > PBr_3 > Pl_3 \end{array}$

22. Which of the following set is not correct:- (1) SO_3 , O_3 , NH_4^+ all have coordinate bonds

(2) $\rm H_2O,\, \rm NO_2,\,\, \rm ClO_2^-,\, all$ are 'V' shape molecules

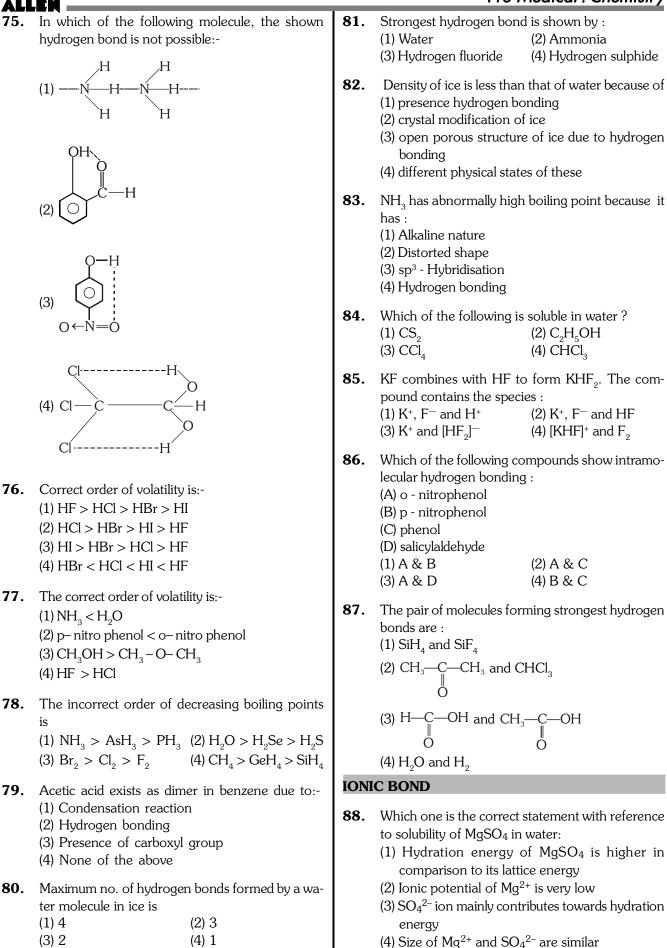
(3) I_3^- , ICl_2^- , NO_2^+ ; all are linear molecules (4) SF_4 , SiF_4 , XeF_4 are tetrahedral in shape

- 23. Shape of a molecule having 4 bond pairs and two lone pairs of electrons, will be :
 (1) Square planar
 (2) Tetra hedral
 (3) Linear
 (4) Octa hedral
- **24.** The shape of IF_4^+ will be :-
 - (1) Square planar
 (2) Tetrahedral
 (3) Pentagonal bipyramidal
 (4) Distorted tetrahedral
- **25.** Which of the following has pyramidal shape ? (1) BF_3 (2) H_3O^+ (3) NO_3^- (4) CO_3^{2-}
- 26. A σ bonded molecule MX₃ is T-shaped. The number of non-bonding pairs of electrons is (1) 0
 - (2) 2
 - (3) 1
 - (4) Can be predicted if atomic number of M is known.

- **27.** Amongst $CO_3^{2^-}$, $AsO_3^{3^-}$, XeO_3 , CIO_3^- , $BO_3^{3^-}$ and $SO_3^{2^-}$ the non-planar species are :-(1) XeO_3 , CIO_3^- , $SO_3^{2^-}$, $AsO_3^{3^-}$ (2) $AsO_3^{3^-}$, XeO_3 , CO_3^{-2} (3) $BO_3^{3^-}$, $CO_3^{2^-}$, $SO_3^{2^-}$ (4) $AsO_3^{3^-}$, $BO_3^{3^-}$, $CO_3^{2^-}$
- 28. The type of hybrid orbitals used by chlorine atom in ClO⁻, ClO₂⁻, ClO₃⁻ and ClO₄⁻ is/are :- (1) sp, sp², sp³ and sp³d (2) sp and sp³ (3) Only sp³ (4) only sp
- 29. On the basis of hybridization of one s & one p orbitals they are arrange at :(1) Two orbitals mutually at 90° angle
 (2) two orbitals mutually at 180° angle
 (3) Two orbitals mutually at 120° angle
 - (4) Two orbitals mutually at 150° angle
- **30.** Which of the following having a square planar structure is

(1) NH_4^+ (2) BF_4^- (3) XeF_4 (4) CCl_4

- 31. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle (1) Decreases
 (3) Becomes twice (4) Remains unaltered
- **32.** Which orbitals overlap to form bond in OF_2
 - (1) $sp^3 2p$ (2) sp^2-2p (3) sp - 2p (4) p - p
- 33. In compounds X, all the bond angles are exactly 109°28'. X is :
 (1) Chloromethane
 - (2) Carbon tetrachloride
 - (3) Iodoform
 - (4) Chloroform
- 34. Among the following orbitals/bonds, the angle is minimum between :
 (1) sp³ bonds
 (2) p_x and p_y orbitals
 (3) H—O—H bond in water
 - (4) sp bonds


35. The structure and hybridization of Si(CH₃)₄ is :
(1) bent, sp
(2) trigonal, sp²
(3) octahedral, sp³d
(4) tetrahedral, sp³

- **36.** The AsF_5 molecule is trigonal bipyramidal. The hybrid orbitals used by the As atoms for bonding are:
 - (1) $d_{x^2-y^2}, d_{z^2}, s, p_x, p_y$ (2) d_{xy}, s, p_x, p_y, p_z (3) $s, p_x, p_y, p_z, d_{z^2}$ (4) $d_{x^2-y^2}, s, p_x, p_y$

				Pre	-Medical : Chemistry
changes fr the hybrid (1) decreas (2) increas (3) decreas (4) all of th 38. The hybric ions I_3^- , I_4^- (1) sp ² , ds	om sp ³ , sp ² a zed orbitals. e considerable e progressivel e gradually ese ization states Cl_4^- and ICl_2^- p^2 , sp ³ p^3d^2 and sp ³ p^3d , dsp ²	y of the central atoms of the are respectively :	DIP(44. 45.	dipole moment (2) SO ₂ is non-polar (3) H ₂ O molecule is nor (4) PH ₃ is polar molecu	having polar bonds, have a polar, having polar bonds le having non polar bonds oment where as H2O has a 2 :-
(1) The san respec (2) The san respec (3) Differen respec	ne, with 2, 0 and ively ne, with 1,1 and ively t, with 0,1 and ively t, with 1,0 and	F ₄ , CF ₄ and XeF ₄ are :- nd 1 lone pairs of electrons nd 1 lone pairs of electrons d 2 lone pairs of electrons d 2 lone pairs of electrons	46 . 47 .	 (a) XeF₄ (c) SO₂ Correct answer is:- (1) a and b (3) c and d 	species are symmetrical :- (b) XeF ₆ (d) NH ⁺² (2) b and c (4) a and d molecule have zero dipole
40. Which of (1) XeF_2 , 1 (3) CO_3^{2-} ,	F_2^-	two are isostructural :- (2) NH ₃ ,BF ₃ (4) PCl ₅ , ICl ₅	48.	 (1) BF₃ (3) NF₃ The dipole moment of I (1) Less than dipole motion 	3
List I A : XeF ₄ B : XeF ₆ C : XeO ₃ D : XeOF A (1) 4 (2) 1 (3) 2	3. Dist 4. Squ B C 3 1 2 3 1 3	List II amidal hape torted octahedral hare planar D 2 4 4	49.	(2) Higher than dipole n (3) Equal to the diple mo (4) None of these	noment of NCl ₃ oment of NCl ₃ ng order of polarities of
respect to	of the follov molecular for	2 ving pair is a correct with mula of xenon compound of xenon in it :	50.	Which set of molecules (1) XeF_4 , IF_7 , SO_3 (3) $SnCl_2$, SO_2 , NO_2	(2) PCl_5 , C_6H_6 , SF_6
(1) XeF ₄ ,s (3) XeF ₂ ,s	p ³ p ³ d	(2) XeF_2 , sp (4) XeF_4 , sp ² that are iso-structural with	51.	Which of the following (1) PCl ₃ (3) CHCl ₃	has symmetrical structure : (2) CH ₂ Cl ₂ (4) CCl ₄
IBr₂ and (1) Linear (2) Bent X (3) Bent X	BrO_3^- respec XeF_2 and pyra eF_2 and pyra eF_2^- and plan	tively are : ramidal XeO ₃ midal XeO ₃ ar XeO ₃	52.	Species having zero di (1) XeF_4 (2) 1,2,4 trichloro ben (3) SF_4 (4) CH_2Cl_2	
(+) LINEdI	and let	rahedral XeO ₃	1		

ALLEN

	Medicar. Chemisiry			ALLEN
53.	What conclusion can be drawn from the f BF ₃ has no dipole moment but PF ₃ does (1) BF ₃ is not symmetrical but PF ₃ is (2) BF ₃ molecule must be linear (3) Atomic radius of P is larger than that of $\frac{1}{2}$	5	(1) 4(3) 8	g electron pair in O ₂ - is (2) 3 (4) 10 ing species will have the
54.	(4) BF ₃ molecule must be planar triangular PCl ₅ is non polar because :-	- 03	minimum bond energy (1) N ₂	(2) N ₂ ⁻
	 (1) P – Cl bond is non-polar (2) Its dipole moment is zero (3) P – Cl bond is polar 	66		(4) N_2^{-2} g ion has not bond order of
5.	(4) P & Cl have equal electronegativity Dipole moment of CO_2 is zero which implie (1) Carbon and oxygen have equal electroneg		2.5 ? (1) O ₂ ⁻ (3) N ₂ ⁺	(2) O ₂ ⁺ (4) N ₂ ⁻
	 (2) Carbon has no polar bond (3) CO₂ is a linear molecule (4) Carbon has bond moments of zero value 	67	 In a homonuclear mole set of orbitals are dege (1) σ_{2s} and σ_{1s} 	
6.	The correct order of dipole moment is : (1) $CH_4 < NF_3 < NH_3 < H_2O$ (2) $NF_3 < CH_4 < NH_3 < H_2O$		(3) π_{2p_x} and σ_{2p_z}	(2) π_{2p_x} and π_{2p_y} (4) σ_{2p_z} and $\pi^*_{2p_x}$
	(3) $NH_3 < NF_3 < CH_4 < H_2O$		ORDINATE BOND	the accenter atoms must
57.	(4) $H_2O < NH_3 < NF_3 < CH_4$ Which of the following molecule does not a permanent dipole moment : (1) H_2S (2) SO_2 (3) SO_3^{2-} (4)	-	essentially contain in its (1) With paired electror (2) With single electron	
8.	Which of the following has the highest we dipole moment :	-	(3) With no electron(4) With three electron	N O are -
101	(1) HCl (2) HF (3) HI (4) ECULAR ORBITAL THEORY		(1) Only ionic	
59.	The ion that is isoelectronic with CO and	having	(2) Covalent & coordin (3) Only covalent	nate
	same bond order is :- (1) CN^- (2) O_2^+ (3) O_2^- (4)	_	(4) Covalent & ionicDative bond is present	in
50.	Which of the following is paramagnetic:- (1) O_2^- (2) CN^- (3) CO (4)	NO ⁺	(1) SO ₃ (3) K ₂ CO ₃	(2) NH ₃ (4) BF ₃
51.	In the following which of the two are param (a) N_2 (b) CO (c) B_2 (d) Correct answer is :- (1) a and c (2) b and c	NO ₂ 71	Which of the following (1) PH_3 (3) $P_2H_5^{\oplus}$	has no coordinate bond ? (2) $P_2H_6^{+2}$ (4) PH_4^{+}
52.	(3) c and d (4) b and d The bond order of CO molecule on the	72 basis of	(1) $H_2 SO_4$	ning co-ordinate bond is : (2) O_3
	molecular orbital theory is (1) Zero (2) 2 (3) 3 (4)	1 WF	(3) SO ₃	(4) All of these
3 .	The energy of $\sigma 2s$ ortbital is greater, the			sent between two molecules
	orbital because (1) $\sigma 2s$ orbital is bigger than $\sigma 1s^*$ orbital (2) $\sigma 2s$ orbital is a bonding orbital where as	σ1s* is	is (1) Ionic bond (3) Hydrogen bond	(2) Covalent bond (4) Vander Waal
	an antibonding orbital (3) σ2s orbital has a greater value of n the orbital	an σ1s* 74	 Intermolecular hydroge (1) CH₃CH₂OH (3) C₂H₅NH₂ 	en bonds are not present in:- (2) CH ₃ COOH (4) CH ₃ OCH ₃
	(4) None		(0) C21 151 (112)	(4) CI 130CI 13

89.	Conditions for ionic bond formation is/are : (a) Small cation, large anion				nfiguration of metal M is $1s^2 2s^2$
	, ,	h electron affinity of anion			nula of its oxide will be :
	(c) Large cation, small a	÷		(1) MO	(2) M_2O
	(d) Less lattice enrgy	mon and less charge		(3) M ₂ O ₃	(4) MO ₂
	Correct answer is:		100.		owing pairs will form the mos
	(1) a, d	(2) b, c and d		stable ionic bond	
	(3) b and c	(4) a, b		(1) Na and Cl	(2) Mg and F
90.	Capacity of solvent to r compound is called:-	neutralise charge on ionic	101	(3) Li and F	(4) Na and F
	(1) Solvation energy	(2) Dielectric constant	101.		s, CaO and KI. Identify the wrong
	(3) Dipole moment	(4) Solubility			of CaO is much larger than that
91.	The force responsible compound in water is –	for dissolution of ionic		of KI (2) KI is soluble in	benzene
	(1) Dipole – dipole force			(3) CaO has highe	er melting point
	(2) Ion – dipole force	25		(4) KI has lower m	
	(3) Ion – ion force (4) Hydrogen bond		102.	Which of the follo conduction ?	owing does not show electrica
<u></u>		. 1 . 1,		(1) diamond	
92.	Born Haber cycle is ma			(2) graphite	
	(1) Lattice energy	(2) Electron affinity		(3) sodium chlorid	o (fucad)
	(3) Ionisation energy	(4) Electronegativity		(4) potassium	e (lused)
93.	An ionic compound A formed when –	$^+$ B ⁻ is most likely to be	102	. The most covalent	t halida ic.
	(1) Ionization energy of	A is low	103.	(1) AlF ₃	(2) $AlCl_3$
	(2) Electron affinity of B			(3) AlBr ₃	(2) $AICI_3$ (4) AII_3
	(3) Electron affinity of E			(3) $AIDI_3$	(4) AII_3
	(4) Both (1) and (2)	151000	104.		of electropositive element will be of the following compound:-
94.	The pair of elements w	which on combination are		(1) CsCl	(2) $MgCl_2$
	most likely to form an id			(3) AlF_3	(4) SF_6
	(1) Na and Ca	(2) K and O			
05	(3) O and Cl	(4) Al and I	105.	LiCl is soluble in o because :-	rganic solvent while NaCl is no
95.	pairs that has the mor	of each of the following		(1) Lattice energy of	of NaCl is less than that of LiCl
	•	(b) NaCl, MgCl ₂		(2) Ionisation poter	ntial of Li is more than that of Na
	(c) AgCl, AgI	(b) Haci, Higen_2		(3) Li+ has more hy	dration energy than Na+ ion
		(2) BeSO ₄ ,NaCl, AgCl		(4) LiCl is more cov	valent compound than that NaC
		l (4) $BaSO_4$, $MgCl_2$, AgI	106.	The most stable ca	arbonate is
96.	Highest malting point	rould be of		(1) Li_2CO_3	(2) $BeCO_3$
90.	Highest melting point w (1) AlCl ₃	(2) LiCl		(3) $CaCO_3$	(4) $BaCO_3$
	(3) NaCl	(4) BeCl_2		5	3
<u>-</u>		2	107.		ovalent character of alkaline earth
97.		ng substance will have		metal chloride in	
	highest b.p.t. ?	$(2) C_{c} F$		(1) $\operatorname{BeCl}_2 < \operatorname{MgCl}_2$. 2 2
	(1) He (3) NH ₃	(2) CsF (4) CHCl ₃		(2) $\operatorname{BeCl}_2 < \operatorname{CaCl}_2$	
	(c) 1 1 1 ₃	$(1) \cup 1 \cup 1_3$		(3) $\operatorname{BeCl}_2 > \operatorname{MgCl}_2$	
98.	-	t compounds electrovalent		(4) $\operatorname{SrCl}_2 > \operatorname{BeCl}_2$	$> CaCl_2 > Mg Cl_2$
	compounds generally po		108.	Which of the com	pound is least soluble in water
	(1) High m.p. and high	-		(1) AgF	(2) AgCl
	(2) Low m.p. and low b(3) Low m.p. and high b			(3) AgBr	(4) AgI
	(4) high m.p. and low b				

	Pre-Medical : Chemistry
 109. CCl₄ is more covalent than LiCl because : (1) There is more polarization of Cl in CCl₄ (2) There is more polarization of Cl in LiCl (3) CCl₄ has more weight (4) None of above 	114 . Which of the following does not give an oxide on heating – (1) MgCO ₃ (2) Li ₂ CO ₃ (3) ZnCO ₃ (4) K ₂ CO ₃
 110. The M.P. of SnCl₄ is less than that of SnCl₂, the suitable reason for the observed fact is (1) There is more charge on Sn⁺⁴ (2) The size of Sn⁺⁴ is small (3) Ionic potential of Sn⁺⁴ is high (4) The shape of SnCl₄ is tetrahedral 	115. Which decomposes on heating – (1) NaOH (3) LiOH(2) KOH (4) RbOH 116. Which of the following forms metal oxide on heating (1) Na2CO3(2) Li2CO3
 111. The correct order of decreasing polarisable ions is: (1) Cl⁻, Br⁻, I⁻, F⁻ (2) F⁻, I⁻, Br⁻, Cl⁻ (3) F⁻, Cl⁻, Br⁻, I⁻ (4) I⁻, Br⁻, Cl⁻, F⁻ 	$\begin{array}{cccc} (3) \ {\rm K_2SO_4} & (4) \ {\rm NaHCO_3} \\ \\ \textbf{117. Increasing order of stability of -} \\ {\rm I. \ {\rm K_2CO_3} & {\rm II. MgCO_3} & {\rm III \ {\rm Na_2CO_3}} \\ (1) \ {\rm I} < {\rm II} < {\rm III} & (2) \ {\rm II} < {\rm III} < {\rm I} \\ (3) \ {\rm II} < {\rm I} < {\rm III} & (4) \ {\rm I} < {\rm III} < {\rm I} \\ \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(1) $BaCO_3$ (2) $ZnCO_3$
 113. Which of the following halides has the highest melting point – (1) NaCl (2) KCl (3) NaBr (4) NaF 	119 . The decomposition temperature is maximum for:- (1) $BeCO_3$ (2) $CaCO_3$ (3) K_2CO_3 (4) Li_2CO_3

EXERCISE-I (Conceptual Questions)											ANS	WER	KEY		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	3	3	3	4	2	4	1	4	3	4	1	2	4
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	1	3	3	4	1	4	2	2	1	3	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	1	2	2	4	3	2	2	4	1	1	3	1	4	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	2	1	3	4	1	4	2	3	1	4	2	1	1
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	3	3	2	4	1	2	3	2	1	1	4	4	4	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	2	4	2	1	3	3	4	2	3	3	3	1	3	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	2	1	4	2	2	3	2	1	2	2	2	1	4	4	4
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	
Ans.	4	3	4	1	3	4	4	4	4	3	2	2	3	3	
							-								00

T & AIIMS (2006-2018) rder of C–O bond length among CO, is $y_3^{-2} < CO_2$ (2) $CO_3^{-2} < CO_2 < CO_2$ $_2 < CO_3^{-2}$ (4) $CO_2 < CO < CO_3^{-2}$ e following hydration energy is higher			
is $D_3^{-2} < CO_2$ (2) $CO_3^{-2} < CO_2 < CO_2$ $2 < CO_3^{-2}$ (4) $CO_2 < CO < CO_3^{-2}$			
$CO_3^{-2} < CO_2$ (2) $CO_3^{-2} < CO_2 < CO_2$ 2 $< CO_3^{-2}$ (4) $CO_2 < CO < CO_3^{-2}$			
$_{2} < \mathrm{CO}_{3}^{-2}$ (4) $\mathrm{CO}_{2} < \mathrm{CO} < \mathrm{CO}_{3}^{-2}$			
nergy			
(2) CaSO ₄ (4) SrSO ₄			
of the following orders correctly			
e increasing acid strengths of the given			
< HOCIO ₂ < HOCIO < HOCI			
$HOCIO < HOCIO_2 < HOCIO_3$			
(3) HOCIO < HOCI < HOCIO ₃ < HOCIO ₂ (4) HOCIO ₂ < HOCIO ₃ < HOCIO < HOCI			
AIPMT-2008			
c species are listed below in different			
sequences. Which of these presents the correct order of their increasing bond order :			
$5 < NO < O_2^-$			
$(2) \operatorname{He}_{2}^{+} < \operatorname{O}_{2}^{-} < \operatorname{NO} < \operatorname{C}_{2}^{2^{-}}$			
$< C_2^{2-} < He_2^+$			
$< O_{2}^{-} < He_{2}^{+}$			
nape of ozone molecule (O3) consists of			
ind 1 pi bonds			
nd 1 pi bonds nd 2 pi bonds			
and 2 pi bonds			
rder of increasing bond angles in the tomic species is:-			
$O_2 < NO_2^-$ (2) $NO_2^+ < NO_2^- < NO_2^-$			
$O_{2}^{+} < NO_{2}$ (4) $NO_{2}^{-} < NO_{2} < NO_{2}^{+}$			
$e_2 \sim e_2 $			
AIPMT-2009			
the following molecules/ions BF ₃			
and H_2O , the central atom is sp^2			
NO_2^- (2) NO_2^- and NH_2^-			
H_2^2 O (4) NO_2^2 and H_2O^2			

- (3) BrO_3^- and XeO_3
- (4) SF_4 and XeF_4

Z: \NCDE02\804-80\TAKGET\CHEM\BNG\MODULE-2\2-CHEMCALBONDING\02-EXERCISE.P65

ALLEN

- **15.** According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order :
 - $\begin{array}{l} \text{(1)} \ N_2^- < N_2^{-2-} < N_2 \\ \text{(3)} \ N_2^{-2-} < N_2^{--} < N_2 \\ \end{array} \qquad \begin{array}{l} \text{(2)} \ N_2^- < N_2 < N_2^{-2-} \\ \text{(4)} \ N_2 < N_2^{-2-} < N_2^{--} \\ \end{array}$
- 16. In the case of alkali metals, the covalent character decreases in the order :
 (1) MI > MBr > MCl > MF
 (2) MCl > MI > MBr > MF
 (3) MF > MCl > MBr > MI
 - (4) MF > MCl > MI > MBr
- 17. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH_3OH to a gas :
 - (1) London or dispersion force
 - (2) Hydrogen bonding
 - (3) Dipole-dipole interaction
 - (4) Covalent bonds

AIPMT-2010

18. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one

of them is correct :-

- (1) Isostructural with same hybridization for the central atom.
- (2) Isostructural with different hybridization for the central atom.
- (3) Similar in hybridization for the central atom with different structures.
- (4) Dissimilar in hybridization for the central atom with different structures.
- **19.** In which of the following molecules the central atom does not have sp³ hybridization :-

(1) SF_4	(2) BF ₄
(3) NH ₄ ⁺	(4) CH ₄

20. Which one of the following species does not exist under normal conditions :

(1) Li ₂	(2) Be ₂ ⁺
(3) Be ₂	(4) B ₂

21. In which of the following pairs of molecules/ions, the central atoms have sp^2 hybridization :

(1) BF_3 and NH_2^-	(2) NO_2^- and NH_3
(3) BF_3 and NO_2^-	(4) NH_2^- and H_2O

- **22.** Which of the following alkaline earth metal sulphates has hydration enthalpy higher than the lattice enthalpy :
 - (1) $SrSO_4$ (2) $CaSO_4$ (3) $BeSO_4$ (4) $BaSO_4$
- **23.** In which one of the following species the central atom has the type of hybridisation which is not the same as that present in the other three : (1) PCl_5 (2) SF_4

(4) $Sb\overline{C}l_{r}^{2}$

(1)
$$PCI_5$$

(3) I_3^-

- **24.** Property of the alkaline earth metals that increases with their atomic number :-
 - (1) Electronegativity
 - (2) Solubility of their hydroxides in water
 - (3) Solubility of their sulphates in water
 - (4) Ionization energy

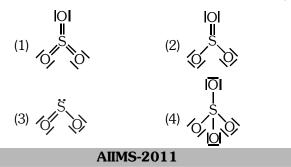
AIPMT Pre-2011

25. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear :
 (1) CH₃-CH=CH-CH₃

(2) $CH_3 - C = C - CH_3$

(3)
$$CH_2 = CH - CH_2 - C = CH$$

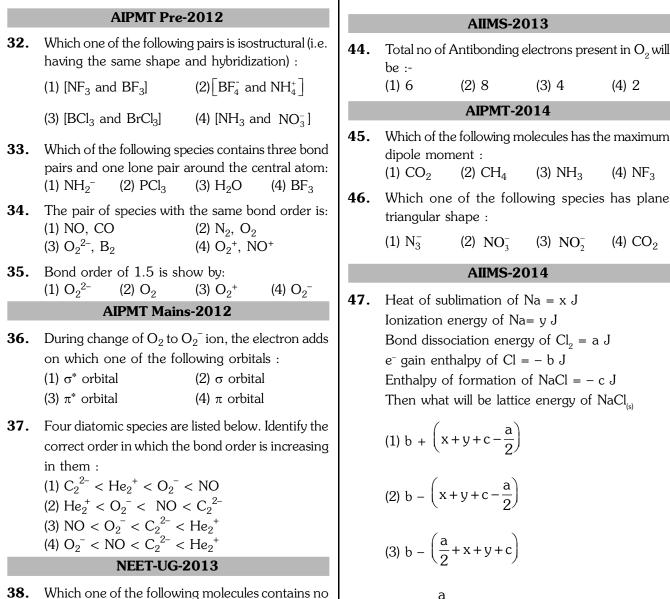
(4) $CH_{3}^{-}-CH_{2}-CH_{2}-CH_{3}$


26. Which of the following has the minimum bond length :

(1) O_2^+ (2) O_2^- (3) O_2^{2-} (4) O_2

27. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals,

 NO_2^- , NO_3^- , NH_2^- , NH_4^+ , SCN^- :


- (1) NO_2^- and NO_3^- (2) NH_4^+ and NO_3^-
- (3) SCN⁻ and NH_2^- (4) NO_2^- and NH_2^-
- **28.** Which of the following compounds has the lowest melting point :
 - (1) $CaCl_2$ (2) $CaBr_2$ (3) Cal_2 (4) CaF_2
- **29.** Which of the following structures is the most preferred and hence of lowest energy for SO_3 :

- **30.** In solid ice, oxygen atom is surrounded:
 - (1) Tetrahedrally by 4 hydrogen atoms
 - (2) Octahedrally by 2 oxygen and 4 hydrogens atoms
 - (3) Tetrahedrally 2 hydrogen and 2 oxygens atoms
 - (4) Octahedrally by 6 hydrogens atoms
- **31.** Decreasing order of bond angle is :

(1) $BeCl_2 > NO_2 > SO_2$ (2) $BeCl_2 > SO_2 > NO_2$ (3) $SO_2 > BeCl_2 > NO_2$

(4) $SO_2 > NO_2 > BeCl_2$

$$c - \frac{a}{2}x + y + c$$

(4

AIPMT-2015

48. The correct bond order in the following species is:-

- (1) $O_2^{2+} < O_2^- < O_2^+$ (2) $O_2^+ < O_2^- < O_2^{2+}$
- (3) $O_2^- < O_2^+ < O_2^{2+}$ (4) $O_2^{2+} < O_2^+ < O_2^{-}$
- **49**. Which of the following pairs of ions are isoelectronic and isostructural :

(1)
$$ClO_3^-, CO_3^{2-}$$
 (2) SO_3^{2-}, NO_3^-
(3) ClO_3^-, SO_3^{2-} (4) CO_3^{2-}, SO_3^{2-}

Which of the following options represents the **50**. correct bond order :

(1)
$$O_2^- < O_2 < O_2^+$$
 (2) $O_2^- > O_2 < O_2^+$

(3)
$$O_2^- < O_2 > O_2^+$$
 (4) $O_2^- > O_2 > O_2^+$

102

40.

41.

42.

43.

 π bond : (1) NO₂

(2) CO₂

which of the following pairs :-

(2) BF₃

(2) CO

39. XeF_2 is isostructural with :-

(1) $BaCl_2$ (2) TeF_2

(3) Cl_2 and CCl_4

(1) XeF_4

(1) NO^+

medium :

 $(3) H_2O$

(3) ICl_{2}^{-}

(3) SF₄

 $(3) O_2^-$

Dipole induced dipole interactions are present in

(1) SiF₄ and He atoms (2) H_2O and alcohol

Which of the following is a polar molecule :

Identify the correct order of solubility in aqueous

(1) $Na_2S > ZnS > CuS$ (2) $CuS > ZnS > Na_2S$ (3) $ZnS > Na_2S > CuS$ (4) $Na_2S < CuS > ZnS$

Which of the following is paramagnetic :

(4) SO₂

(4) SbCl₃

(4) SiF₄

(4) CN[−]

(4) HCl and He atoms

Z:\NODE02\B0A+B0\TARGET\CHEM\ENG\MODULE-2\2-CHEMICAL BONDING\02-EXERCISE.P6: Ε

(4) 2

(4) NF₃

(4) CO_2

(3) 4

(3) NH_3

(3) NO_{2}^{-}

ALLEN

51. Solubility of the alkaline earth's metal sulphates in water decreases in the sequence :(1) Ca > Sr > Ba > Mg
(2) Sr > Ca > Mg > Ba

(3) Ba > Mg > Sr > Ca (4) Mg > Ca > Sr > Ba

(4) NO₂

- **52.** Maximum bond angle at nitrogen is present in which of the following :
 - (1) NO_2^- (2) NO_2^+
 - (3) NO_{2}^{-}

RE-AIPMT-2015

- **53.** On heating which of the following releases CO_2 most easily :
 - (1) $MgCO_3$ (2) $CaCO_3$ (3) K_2CO_3 (4) Na_2CO_3
- **54.** Decreasing order of stability of O_2 , O_2^- , O_2^+ and O_2^{2-} is :-
 - $\begin{array}{l} (1) \ {\rm O}_2 > {\rm O}_2^+ > {\rm O}_2^{2-} > {\rm O}_2^- \\ (2) \ {\rm O}_2^- > {\rm O}_2^{2-} > {\rm O}_2^+ > {\rm O}_2 \\ (3) \ {\rm O}_2^+ > {\rm O}_2 > {\rm O}_2^- > {\rm O}_2^{2-} \\ (4) \ {\rm O}_2^{2-} > {\rm O}_2^- > {\rm O}_2 > {\rm O}_2^+ \end{array}$
- **55.** In which of the following pairs, both the species are not isostructural :
 - (1) NH₃, PH₃
 - (2) XeF_4 , XeO_4
 - (3) SiCl_4^1 , PCl_4^+
 - (4) Diamond, silicon carbide
- **56.** The variation of the boiling points of the hydrogen halides is in the order HF > HI > HBr > HCl. What explains the higher boiling point of hydrogen fluoride ?
 - (1) The bond energy of HF molecules is greater than in other hydrogen halides
 - (2) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule
 - (3) The electronegativity of fluorine is much higher than for other elements in the group.
 - (4) There is strong hydrogen bonding between HF molecules

AIIMS-2015

- **57**. $SF_4 \& XeF_2$ shape respectively are
 - (1) Linear and distorted tetrahedral
 - (2) See-saw and linear
 - (3) T-shape and trigonal bipyramidal
 - (4) Tetrahedral and linear
- **58**. In ClF_3 lone pair are present at approx
 - (1) 180° (2) 120°
 - (3) 90° (4) 60°

- **59**. In solid phase of XeF_6 , it consists of
 - (1) $XeF_{5}^{+} + F^{-}$ (2) $XeF_{4} + F_{2}$
 - (3) $XeF_{5}^{+} + XeF_{2}^{-}$ (4) $XeF_{2} + 2F_{2}$
- 60. Correct order of bond length
 - (1) $CO \approx CO_3^{2-} > CO_2$
 - (2) $CO_2 \approx CO_3^{2-} > CO$
 - (3) $CO < CO_2 < CO_3^{2-1}$
 - (4) $CO_3^{2-} < CO_2 < CO_2$
- 61. Correct order of bond energy

 (1) I-Cl < I₂
 (2) Br F < F-F
 - (3) Br F < I I
 - (4) F–F < Cl–Cl

NEET-I 2016

- **62.** Consider the molecules CH_4 , NH_3 and H_2O . Which of the given statements is false ?
 - The H –C–H bond angle in CH₄, the H–N–H bond angle in NH₃, and the H–O–H bond angle in H₂O are all greater than 90°
 - (2) The H–O–H bond angle in H_2O is larger than the H–C–H bond angle in CH_4 .
 - (3) The H–O–H bond angle in H_2O is smaller than the H–N–H bond angle in NH_3 .
 - (4) The H–C–H bond angle in CH_4 is larger than the H–N–H bond angle in NH_3 .
- **63.** Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?
 - (1) $I_2 > Br_2 > Cl_2 > F_2$
 - (2) $Cl_2 > Br_2 > F_2 > I_2$
 - (3) $Br_2 > I_2 > F_2 > Cl_2$
 - (4) $F_2 > Cl_2 > Br_2 > I_2$
- 64. Predict the correct order among the following :-
 - (1) lone pair- lone pair > lone pair bond pair> bond pair bond pair
 - (2) lone pair lone pair > bond pair bond pair> lone pair bond pair
 - (3) bond pair bond pair > lone pair bond pair> lone pair lone pair
 - (4) lone pair bond pair > bond pair bond pair> lone pair lone pair

65. Match the compounds given in column I with the hybridisation and shape given in column II and mark the **correct** option.

Colu	mn-I	Column-II			
(a)	XeF ₆	(i)	Distorted octahedral		
(b)	XeO3	(ii)	Square planar		
(c)	XeOF ₄	(iii)	pyramidal		
(d)	XeF ₄	(iv)	Square pyramidal		
Code	:-				
(a)	(b)		(c)	(d)	
(1) (i)	(iii)		(iv)	(ii)	
(2) (i)	(ii)		(iv)	(iii)	
(3) (iv)	(iii)		(i)	(ii)	
(4) (iv)	(i)		(ii) (iii)		
	NE	E T-II 2 (016		

- **66.** The correct geometry and hybridization for XeF_4 are:
 - (1) Planar triangle, sp^3d^3
 - (2) square planar, sp^3d^2
 - (3) octahedral, sp^3d^2
 - (4) trigonal bipyramidal, $sp^{3}d$
- **67.** Among the following which one is a wrong statement?
 - (1) SeF_4 and CH_4 have same shape
 - (2) I_3^+ has bent geometry
 - (3) PH_5 and $BiCl_5$ do not exist
 - (4) $p\pi\text{-}d\pi$ bonds are present in SO_2
- 68. The hybridizations of atomic orbitals of nitrogen
 - in NO_2^+ , NO_3^- and NH_4^+ respectively are

(1) sp, sp ² and sp ³	(2) sp ² , sp and sp ³
(3) sp, sp ³ and sp ²	(4) sp^2 , sp^3 and sp

69. Which of the following fluoro-compounds is most likely to behave as a Lewis base ?

(1) CF_4 (2) SiF_4 (3) BF_3 (4) PF_3

- **70.** Which of the following pairs of ions is isoelectronic and isostructural ?
 - (1) SO_3^{2-} , NO_3^{-} (2) CIO_3^{-} , SO_3^{2-}
 - (3) CO_3^{2-} , NO_3^{-} (4) ClO_3^{-} , CO_3^{2-}

AIIMS 2016

71. Minimum lone pair on central atom will be present in :-

(1) XeO ₃	(2) XeF ₄
----------------------	----------------------

- (3) CIF₃ (4) HOCl
- **72.** Which of the following has paramagnetic character in gaseous state :-

(1) S ⁻²	(2) S ₂
(3) S ₈	(4) S ₆

73. In which of the following molecule dipole moment is more than zero but less than one ?

(1) NH ₃	(2) NF ₃
(3) BeF_2	(4) BF ₃

- 74. Select the incorrect statement :-
 - (1) hybrid orbitals are maximum repelled to each other
 - (2) only half filled atomic orbital are participate in hybridisation.
 - (3) Bond energy of hybrid orbitals are more than unhybrid atomic orbital.
 - (4) Without hybridisation, geometry of molecule is uncertain.
- 75. Which of the following has tetrahedral structure :-
 - (1) XeF_4 (2) H_3PO_4
 - (3) SF_4 (4) CIF_3
- **76.** Which of the following molecule has more than one lone pair on central atom :-
 - (1) SO_2 (2) XeF_2 (3) PCl_{ϵ} (4) IF_{τ}
- **77.** In ice crystal nearest and second nearest atoms to water molecule respectively are :-

(1) 4	& 4	(2) 4	& 6
(3) 6	& 6	(4) 6	& 4

- **78.** Which of the following statement is true regarding H-bond :-
 - (1) it is a directional bond
 - (2) bond strength is similar to O–H bond
 - (3) it is attraction between hydrogen and electronegative atom like as F, O, N
 - (4) it does not require minimum one lone pair of electron at electronegative atom

104

.TARGET\CHEM\ENG\MODULE-2\2-CHEMICAL BONDING\02-EXERCISE.P65

ALI	len								Pre-Medical : (Chemistry
		N	EET(l	J G) 2017			86.	Which of the fo	llowing is diamagnet	ic ?
79.	Ionic mobility of which of the following alkali metal			i metal		(1) NO	(2) Cl_2^+			
	ions is lowest when aqueous solution of their salts				ir salts		(3) S_2^{2-}	(4) ClO		
	are put under an electric field ? (1) K (2) Rb (3) Li (4) Na				87.	Number of lor	ne pair in SO_2 on	S & O are		
						respectively				
80.				gen compoun				(1) 0, 6	(2) 2, 4	
		-	•	in column II a	and assig	gn the		(3) 2, 5	(4) 1, 5	
		ect. code.	1			т —		NEI	ET(UG) 2018	
	Co	lumn-I		Column-I	I		88.		BeH_2 , BaH_2 , the or	der of ionic
	(a)	XX'	(i)	T-shape				character is		
	(1-)			- Dansta ann al				(1) $\text{BeH}_2 < \text{Cal}$		
	(b)	XX' ₃	(ii)	Pentagonal bipyramidal				(2) $CaH_2 < BeH$		
						-		 (3) BeH₂ < Bah (4) BaH₂ < Beh 		
	(c)	XX' ₅	(iii)	Linear			89.		$r_2 < carr_2$ ets with an element (X) to form an
	(d)	XX'7	(iv)	Square-pyra	midal		051	-	d. If the ground stat	
	. ,	/				-			(X) is $1s^2 2s^2 2p^3$,	
			(v)	Tetrahedral				formula for this	compound is	
	Cod		A N		(1)			(1) Mg ₂ X ₃ (2)	MgX ₂ (3) Mg ₂ X	(4) Mg ₃ X ₂
			(b)	(c)	(d)		90.	Consider the fol		
	(1) (i) :)	(iv)	(ii)			$CN^+, CN^-, 1$		
	(2) ((3) (iv) iii)	(iii) (ii)	(ii) (i)				hese will have the h	ighest bond
	(3) (iv)	(i)	(i) (ii)			order?	$(0) \subset \mathbb{N}^{-}$	
81.				wing pairs of		nds is		(1) NO (3) CN ⁺	(2) CN ⁻ (4) CN	
010				ostructural ?	compou		91.		e following elements	is unable to
	(1) 7	Fol- VoE-		(2) IBr ₂ ,	VoE-		, , ,	form MF_6^{3-} ion	-	
		Γel ₂ ,XeF ₂			_			(1) Ga	(2) AI	
	(3) I	F ₃ , XeF ₂		(4) BeCl	$_2, XeF_2$			(3) B	(4) In	
82.	The	species,	having	bond angles	of 120°	is :-	92.	In the structure of	of ClF_3 , the number of	of lone pairs
	(1) (CIF ₃ (2) NC	l ₃ (3) BCl ₃	(4)	PH ₃		of electrons on	central atom 'Cl' is	
83.	Whie	ch of the	follow	ing pairs of sp	ecies ha	ve the		(1) one	(2) two	
	same	e bond o	rder ?					(3) four	(4) three	
	(1) C	0 ₂ , NO ⁺		(2) CN ⁻ ,	СО				IIMS 2018	
	(2) N			(4) CO, 1	NO		93.		t is correct regarding	$N_2O_5 :-$
	(3) 1	V_2 , O_2^-		(4) CO, 1	NO			(1) It is anhydrid		
			AIIM	S 2017				(2) It is brown co(3) It is paramag	-	
04				.1			D_2^+ & NO_3^- in solid state	2		
84.			tollow	ring has longes		ength	94.		$y_2 \propto 100_3 \text{ m}$ solid statement is	
		C = O		(2) $N = 0$			•		formed in ABMO	
		C = C		(4) $C \equiv N$					l may have higher o	energy than
85.				ng has hydroger		l water		combining o	orbitals	
		BaCl ₂ .2H ₂		(2) CrCl ₃	=			(3) Combining or	bitals should have sam	e symmetry
	(3) C	CuSO ₄ .5H	I ₂ O	(4) CaCl ₂	.6H ₂ O			(4) Nodal plane i	is found in BMO	
		$\operatorname{Cuol}_4.\operatorname{Orl}_2$ (1) $\operatorname{Cuol}_2.\operatorname{Orl}_2$								

95.	Which pair not shows same shape :-			00. Wrong statement for N_3^- is :-				
	(1) I_3^{-1} , BeCl ₂	(2) BF ₃ , ClO ₃ ⁻¹		(1) Isoelectro	onic with CO	2		
	(3) SO ₂ , H ₂ O	(4) XeF_4 , BrF_4^-		(2) Structure	e is linear			
96.	In which at least one σ– present :-	bond of np ($\sigma_{_{np}}$) orbital is		(3) Both N-N azide	N bond length	s are unequal :	in hydrogen	
	(1) B ₂	(2) O ₂		(4) Oxidatio	on state for	Nitrogen is	same as in	
	(3) C ₂	(4) Li ₂		NH ₂ OH				
97.	Which is correct for dipo	le moment :-	101.	Bond order	of which of f	ollowing pair i	s different:-	
	(1) NH ₃ < NF ₃	(2) SO ₂ < SO ₃		(1) F ₂ ⁻ & O ₂	-2	(2) N ₂ ⁻ & O	2+	
	(3) $NF_3 > BF_3$	(4) $SO_2 > H_2O$		(3) $C_2 \& B_2^{-1}$	-2	(4) N ₂ & O ₂	2+	
98.	Which of the following is	a molecular solid :-	102.	102. Correct order for Bond angle is				
	(1) solid SO_2	(2) SiC		(1) SO ₂ > N	H ₃	(2) NH ₃ < H	I ₂ O	
	(3) C. (graphite)	(4) ZnS		(3) SO ₂ < H	20 2	(4) $H_2 S > N$	H ₃	
99.	The geometry and No. of lone pair on ClF_2^- and ClF_4^- are respectively :-				ne following fferent hybrid	two species disation	have same	
	(1) Square planar, 2 & L	inear, 3		(1) XeF_2 and	ICl_2^-	(2) NO $_2^+$ and	$1 SO_2$	
	(2) Square Planar, 3 & L	inear, 2		(3) BeCl_2 an	d NO $_2^+$	(4) SO_2 and	NH_2^-	
	(3) Linear, 3 & Square planar, 2			Which of the	e following ha	as maximum %	6s character	
	(4) Tetrahedral, 2 & linear, 3			in N–H bon	d ?			
				(1) N ₂ H ₂	(2) NH ₄ ⁺	(3) NH ₃	(4) N ₂ H ₄	

EXERCISE-II (Previous Year Questions)											ANS	WER	KEY		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	2	4	2	3	2	1	3	3	1	2	2	2	4	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	4	1	3	3	3	4	2	2	1	1	3	1	1
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	2	2	3	4	3	2	3	3	4	3	3	1	1	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	3	3	3	1	4	2	1	3	2	4	2	2	1	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	2	2	1	1	2	1	1	4	2,3	1	2	2	2	2
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	2	2	3	3	1	2	3	2	3	3	3	4	1	4	2
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	
Ans.	3	2	4	4	2	2	3	1	3	4	1	1	4	1	

ALLEN

AL	LEN	•	Pre-Medical : Chemistry			
E	XERCISE-III (Analytical Questions)		Check Your Understanding			
1.	The thermal stability of alkaline earth metal carbonates $MgCO_3$, $CaCO_3$, $BaCO_3$ and $SrCO_3$ decreases as : (1) $CaCO_3 > SrCO_3 > MgCO_3 > BrCO_3$ (2) $BaCO_3 > SrCO_3 > MgCO_3 > CaCO_3$ (3) $BaCO_3 > SrCO_3 > CaCO_3 > MgCO_3$ (4) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$	8.	 In silicon dioxide – (1) each silicon atom is surrounded by four oxyger atoms and each oxygen atom is bonded to two silicon atoms (2) each silicon atom is surrounded by two oxyger atoms and each oxygen atom is bonded to two silicon atoms 			
2.	Which of the following are iosoelectronic and isostructural NO_3^- , CO_3^{-2} , ClO_3^- , SO_3^- (1) NO_3^- , CO_3^{-2} (2) SO_3^- , NO_3^- (3) ClO_3^- , CO_3^{-2} (4) CO_3^{-2} , SO_3^-	9.	(3) silicon atom is bonded to two oxygen atoms(4) there are double bond between silicon and oxygen atomsThe number and type of bond between two carbon			
3.	According to molecular orbital theory which of the following statement about the magnetic character and bond order is correct regarding O_2^+ ? (1) paramagnetic and bond order $< O_2$ (2) paramagnetic and bond order $> O_2$ (3) diamagnetic and bond order $< O_2$	10.	atom in calcium carbide are : (1) One sigma, one pi (2) One sigma, two pi (3) Two sigma, one pi (4) Two sigma, two pi What is the hybridization of oxygen atom in an			
4.	(4) diamagntic and bond order $> O_2$ The bond order in NO is 2.5 while that in NO ⁺ is 3. Which of the following statements is true for	101	alcohol molecule? (1) sp^3 (2) sp (3) sp^2 (4) sp^3d			
	 is 3. Which of the following statements is true for these two species ? (1) Bond length in NO⁺ is equal to that in NO (2) Bond length in NO is greater than in NO⁺ (3) Bond length in NO⁺ is greater than in NO (4) Bond length is unpredictable 	11.	The decreasing values of bond angles from NH_3 (106°) to SbH_3 (91°) down group-15 of the periodic table is due to (1) decreasing lp – bp repulsion (2) increasing electronegativity (3) increasing bp – bp repulsion (4) increasing p-orbital character in sp ³			
5.	Number of σ and π bond in SO ₄ ⁻² are :- (1) 4, 2 (2) 4, 3 (3) 4, 4 (4) 2, 3	12.	In which of the following ionisation processes, the bond order has increased and the magnetic			
6.	The paramagnetic property of the oxygen molecule is due to the presence of unpaired electrons present in :-		behaviour has changed (1) NO \rightarrow NO ⁺ (2) O ₂ \rightarrow O ₂ ⁺ (2) N \rightarrow N ⁺			
	(1) $(\sigma 2 p_x)^1$ and $(\sigma^* 2 p_x)^1$ (2) $(\sigma 2 p_x)^1$ and $(\pi 2 p_y)^1$	13.	(3) $N_2 \rightarrow N_2^+$ (4) $C_2 \rightarrow C_2^+$ Which of the following hydrogen bonds is the			
	(3) $(\pi^* 2p_y)^1$ and $(\pi^* 2p_y)^1$ (4) $(\pi^* 2p_y)^1$ and $(\pi^2 2p_y)^1$		strongest (1) F–HF (2) O–HO (3) O–HF (4) O–HN			
7.	The boiling point of methanol is greater than that of methylthiol because :-	14.	Which of the following species exhibits the diamagnetic behaviour			
	 (1) There is intramolecular hydrogen bonding in methanol and intermolecular hydrogen bonding in methyl thiol (2) There is intermolecular hydrogen bonding in methanol and no hydrogen bonding in methylthiol (3) There is no hydrogen bonding in methanol and intermolecular hydrogen bonding in methylthiol (4) There is intramolecular hydrogen bonding in methanol and no hydrogen bonding in methylthiol 	15.	(1) O_2^+ (2) O_2 (3) NO (4) O_2^{2-} The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K ⁺ , Ca ⁺² , Mg ⁺² , Be ⁺² (1) Be ⁺² < K ⁺ < Ca ⁺² < Mg ⁺² (2) K ⁺ < Ca ⁺² < Mg ⁺² < Be ⁺² (3) Ca ⁺² < Mg ⁺² < Be ⁺² < K ⁺ (4) Mg ⁺² < Be ⁺² < K ⁺ < Ca ⁺²			
:			107			

16.		wing constitutes a group of	23.	The boiling point of ICl is nearly 40°C higher that of Pr , although the two substances have the			
	the isoelectronic specie (1) C_2^{2-}, O_2^-, CO, NO	es :		that of Br_2 although the two substances have the same relative molecular mass. This is bacasue :-			
	(2) $NO^+, C_2^{2-}, CN^-, N_2$			(1) ICl is ionic compound(2) I-Cl bond is stronger than Br - Br bond			
	(3) CN ⁻ ,N ₂ ,O ₂ ²⁻ ,C ₂ ²⁻			(3) ICl is polar covalent molecule while Br ₂ is non polar			
	(4) N ₂ ,O ⁻ ₂ ,NO ⁺ ,CO			(4) IP of Iodine is less than that of Br.			
17.	Which of the following same bond order ?	g pairs of species have the	24.	Nitrogen does not form NF ₅ because (1) Nitrogen is member of V group (2) It contains no empty d-orbital			
	(1) CN^- and NO^+	(2) CN^- and CN^+		(3) The bond energy of $N \equiv N$ is very high (4) Input point effect quicts in the melogula			
	(3) O_2^- and CN^-	(4) NO^+ and CN^+	25.	(4) Inert pair effect exists in the moleculeCO₂ is a gas, while SiO₂ is a solid but both are-			
18.	Among the following, dipole moment is :- (1) CH ₃ Cl (3) CHCl ₃	the molecule with highest (2) CH_2Cl_2 (4) CCl_4	20.	(1) Covalent containing π -bond (2) Molecules having $p\pi - d\pi$ bonding (3) Acidic (4) Discrete molecules			
19.	For a diatomic molecule	e the dipole moment is 1.2D) Å then charge fraction on	26.	Which trihalide ion is unknown due to absence of vacant d-orbital? (1) F_3^- (2) Br_3^- (3) I_3^- (4) Cl_3^-			
	(1) 12%(3) 25%	(2) 18%(4) 29%	27.	Dipole moment is shown by (1) 1, 4 - dichlorobenzene			
20.	Which one of the follo to exhibit diamagnetic (1) C ₂	wing molecules is expected c behaviour ? (2) N_2^-		(2) Cis 1, 2-dichloro ethene(3) Trans-1, 2– dichloro ethene(4) benzene			
	(3) O ₂	(4) S ₂	28.	Experiment shows that H ₂ O has a dipole moment			
21.	For which of the follo $\mu \neq 0$	wing molecule significant		where as CO_2 has not. Point out the structures which best illustrate these facts – (1) $O=C=O, H=O=H$			
	CI	CN		(2) C, H—O— H			
	(a) Cl	(b) CN		(3) $O = C = O, H H$			
	ОН	SH		$ \begin{array}{c} O & H \\ \parallel & \parallel \\ (4) \begin{array}{c} C = O \end{array}, \begin{array}{c} O & H \\ \downarrow & \downarrow \\ O - H \end{array} $			
	(c) O	(d) (D)	29.	In which of the species, bond order increases on removing one electron:-			
	OH I	I SH		(a) NO (b) CN^{-} (c) O_2 (d) CO			
	(1) Only (c) (3) Only (a)	(2) (c) and (d) (4) (a) and (b)		Correct answer is - (1) b and d (2) a and c			

(2) $Br_2 > Cl_2 > I_2$ (4) $Cl_2 > Br_2 > I_2$

Which one of the following order is correct for the

bond energies of halogen molecules :

(3) b, d and c

(1) NO > NO⁻ > NO⁺

(3) NO < NO⁺ < NO⁻

NO⁻ is :-

30.

CO Increasing order of bond length in NO, NO⁺ and (2) $NO^+ < NO < NO^-$

(4) b and c

(4) NO < NO⁺ = NO⁻

108

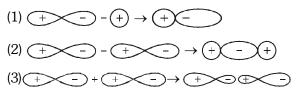
22.

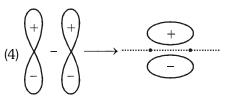
(1) $I_2 > CI_2 > Br_2$ (3) $I_2 > Br_2 > CI_2$

Е

Z:\NODE02\B0A-B0\TARGET\CHEM\ENG\MODULE-2\2-CHEMCAL BONDING\02-EXERCISE.P65

ALL	.EN	_
31.	N_2 and O_2 are converted into monoanions, N_2^- and O_2^- respectively. Which of the following statements is wrong ? (1) In N_2^- , N-N bond weakens (2) In O_2^- , O-O bond order increases (3) In O_2^- , O-O bond order decreases (4) N_2^- becomes pagamegnetic	4
32.	2	
33.	The pair of compounds which can form a co-ordinate bond is :- (1) $(C_2H_5)_3B$ and $(CH_3)_3N$ (2) HCl and HBr (3) BF ₃ and NH ₃ (4) (1) & (3) both	
34.	In the neutralization process of NH ₃ and AlCl ₃ the compound formed will have the bonding (1) Ionic (2) Covalent (3) Coordinate (4) Hydrogen	
35.	 Glycerol is more viscous than glycol the reason is :- (1) Higher molecular wt. (2) More covalent (3) More extent of hydrogen bonding (4) Complex structure 	
36.	Incorrect order of viscosity :- (1) $H_2SO_4 > HNO_3$ (2) $H_2O > CH_3OH$ (3) o-nitro phenol > p-nitro phenol (4) Glycol > ether	
37.	Which of the following can form H-Bond with water(1) HCN(2) NH4F(3) NaHCO3(4) All	
38.	Which of the following does not form a hydrogenbond with water(1) $(CH_3)_2CO$ (2) CH_3CN (3) CH_3OH (4) C_2H_6	
39.	A metal M readily forms its sulphate MSO_4 , which is water soluble. It forms an insoluble hydroxide $M(OH)_2$ which is soluble in NaOH solution, then M is :-	


(2) Ca


(1) Mg

(3) Be

(4) Ba

- **40.** Which is most ionic :
 - (1) P_2O_5 (2) MnO (3) CrO_3 (4) Mn_2O_7
- **41**. Lithium chloride is highly soluble in (1) C_6H_6 (2) H_2O (3) D_2O (4) All
- **42.** Which of the following linear combinations of atomic orbitals is incorrectly depicted ?

43. Which of the following molecule contains net π -bond only

(1) B_{2}	(2) C ₂
(3) C_2^{-2}	(4) Both 1 & 2

- 44. Pick out the incorrect statement :-
 - (1) sp³d hybridisation involves $d_{x^2-y^2}$ orbital
 - (2) Hybridised orbital form σ-bond when overlaps with other orbitals.
 - (3) SF_2 molecule is more polar than CS_2
 - (4) o-nitrophenol is more volatile than pnitrophenol.
- **45.** The group of substances in which at melting point covalent bond becomes weak :-
 - (1) NaCl, KCl, CaCl₂
 - (2) $I_{2(S)}$, $CH_{4(S)}$, dry ice
 - (3) B_4C , dimond, SiC
 - (4) All of the above
- **46.** The incorrect statement is :-
 - (1) π^* p have two nodal planes
 - (2) Bond order of $HeH^{\scriptscriptstyle +}$ is 0.5
 - (3) In NCO- , C is sp hybridised
 - (4) O_3 is polar while O_2 is non polar

47. Solid CH_4 is (1) Molecular solid (2) Ionic solid (3) Covalent solid (4) None of these **48**. Which compound has the weakest bond (1) Diamond (2) Neon(solid) (3) KCl (4) water (ice) **49**. Which of the following order is incorrect? (1) $Na_2O < K_2O < Rb_2O$ (basic nature) (2) $CH_4 > SiH_4 > GeH_4 > SnH_4$ (Stability of hydride) (3) $NH_3 < PH_3 < AsH_3$ (basic nature) (4) $N_2O_5 > P_2O_5 > As_2O_5$ (acidic nature) **50**. Which order are correct ? (a) Thermal stability : $BeSO_4 < MgSO_4 < CaSO_4$ $< SrSO_4 < BaSO_4$ (b) Basic Nature : ZnO > BeO > MgO > CaO(c) Solubility in water : LiOH > NaOH > KOH> RbOH > CsOH (d) Melting point : NaCl > KCl > RbCl > CsCl > LiCl (2) b, c (1) a, b, d (3) a, d (4) All correct **51.** Which of the following order is not correct ? (1) $SF_2 > SF_4 > SF_6$ (ionic character) (2) $AlF_3 < Al_2O_3 < AIN$ (covalent character)

- (3) $CaCl_2 < SnCl_2 < CdCl_2$ (covalent character)
- (4) $\text{ZnCl}_2 < \text{CdCl}_2 < \text{HgCl}_2$ (ionic character)

	52.	Match the column :-							
		(A) NO_3^- + HCl	(p) Kessome attraction						
		(B) Xe + H ₂ O	(q) Debye attraction						
		(C) $CH_3-C-CH_3+CH_3-C=N$ (r) London force							
		(D) $CO_2 + CS_2$	(s) Ion-dipole attraction						
		(1) A-s, B-q, C-p, D-r	(2) A-q, B-s, C-p, D-r						
		(3) A-s, B-p, C-q, D-r	(4) A-s, B-q, C-r, D-p						
	53.	Correct order is :-							
		(1) MgO $<$ NiO $<$ $K_{2}O$ $<$ $Cs_{2}O$ (basic strength)							
)		(2) Cs ⁺ < K ⁺ < Mg ²⁺ < Be ²⁺ (ionic mobility in aqueous solution)							
		(3) $\text{Li}_2\text{CO}_3 < \text{Na}_2\text{CO}_3 < \text{K}_2\text{CO}_3$ (solubility order)							
		(4) $NH_3 < PH_3 < AsH_3$	(thermal stability)						
ļ	54.	Which of the following statement is not correct ?							
		(1) NO has one unpaired electron in ABMO.							
		(2) N–H bond length is higher in $\mathrm{N_2H_4}$ as compared to $\mathrm{N_2H_2}$							
[(3) Both PF_5 and IF_5 have	ve identical shape						
		(4) Both SO_2 and BrF_3 a	are polar and planar						
	55.	In which of the following central atom remains sa							
		(1) Solidification of PCl_5							
		(2) Dimerisation of NO_2							

- (3) Trimerisation of SO_3
- (4) BF_3 forms adduct with lewis base

E/	EXERCISE-III (Analytical Questions)												ANSV	VER	NEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	1	2	2	1	3	2	1	2	1	4	1	1	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	1	3	1	2	4	3	2	3	1	2	3	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	2	4	4	3	3	3	4	4	3	2	1	4	4	1	3
Que.	46	47	48	49	50	51	52	53	54	55					
Ans.	2	1	2	3	3	4	1	3	3	2					
110	.10														

EX	ERCISE	-IV (Asse	rtion & Re	eason)				Targ	et AIIMS
			Directio	ns for Asse	rtion	& Reason	questions		
The	-			nents each, p ired to choos					-
(A)	If both Ass	ertion & Re	ason are Tr	ue & the Reas	son is a	correct expl	anation of t	he Assertio	n.
(B)	If both Ass	ertion & Re	ason are Tr	ue but Reason	n is not	a correct exp	planation of	the Assert	on.
(C)	If Assertion	n is True but	the Reasor	n is False.					
(D)	If both Ass	ertion & Re	ason are fal	se.					
n F	netal and n Reason	onmetals		ned between ns are shared (4) D	10.	Assertion Reason oxygen. (1) A	-		cy of Mg is 2 ectrons with (4) D
c F ti	compounds, Reason han H ₂ O.	than H_2O .		nt for ionic D ₂ O is higher (4) D	11.	Assertion molecular re Reason covalent bor (1) A	eactions. : Ionic bo		e faster than veaker than (4) D
n F		: Hydrated IA group e : Lithium i (2) B	elements.	us of Li ⁺ is (4) D	12.	Reason (1) A	: Lil has n (2) B	nore ionic d (3) C	(4) D
F	Reason	: LiCl exhil : Lithium is (2) B	bits covalent s lightest me (3) C		13.	Assertion greater than Reason (1) A	n Cl–Cl bon	d.	I–H bond is than Cl ₂ . (4) D
	Assertion neating.	: K ₂ CO ₃ do	o not gives	\rm{CO}_2 gas on	14.				nd to be non-
		: Value of (2) B				Reason pounds are	strong.		these com
S F s	Assertion 60 ₂ is polar Reason ulphur. 1) A	r. –		–polar while naller than (4) D	15.	 (1) A Assertion Reason ised. (1) A 			(4) D shape is sp ³ hybrid (4) D
F	Assertion Reason 1) A	: CH ₃ OH i		water	16.	planar mole Reason	ecule.		NF ₃ is non- 2 polar thar
C	$C_2H_5OH.$		_	greater than		N–F bond. (1) A	(2) B	(3) C	(4) D
C	Reason C ₂ H ₅ OH. 1) A	: Molecular (2) B	wt. of H ₂ O i (3) C	s higher than (4) D	17.	Assertion Reason packed.	-	-	ter than water es are closely
		: NO ⁺ is m				(1) A	(2) B	(3) C	(4) D
а	Reason Intibonding 1) A		not have (3) C	electron in (4) D	18 .	Assertion Reason (1) A		ler of O ₂ and 3N are isoe (3) C	d BN is same lectronic (4) D
									111

ALLEN -

A		

re-	-						N. Oli		
19.	o-nitrophen				30.	Reason		-	oolarsolvents. ar covalent
	Reason H-bonding o	occurs.		ermolecular		compound. (1) A	(2) B	(3) C	(4) D
	(1) A	(2) B	(3) C	(4) D	31.	Assertion	: Sigma b	onds are st	ronger than
2 0 .		: H_2O_2 is not	ot used as solv	vent for ionic		π bonds.	-		-
	compounds <i>Reason</i> (1) A	: Dielectric (2) B	constant of 1 (3) C	H ₂ O ₂ is low (4) D		Reason (1) A	: Sigma b (2) B	onds are cov (3) C	alent bonds. (4) D
21.		: Ionic com in solution s		oits electrical	32.	Assertion molecule.	: CO_2 is no	on polar while	e SO ₂ is polar
	Reason compounds	: In solution		ons of ionic		Reason polar.			hile C-O non
	(1) A	(2) B	(3) C	(4) D		(1) A	(2) B	(3) C	(4) D
22.	Assertion o-nitrophen	: p-nitroph ol.	enol is more	volatile than	33.	Assertion molecules.	: Both H	₂ O and SnO	Cl ₂ are bent
	Reason higher than	: Molecular o-nitrophen	-	trophenol is		Reason hybridised.	: Both H	-	Cl ₂ are sp ²
	(1) A	(2) B	(3) C	(4) D		(1) A	(2) B	(3) C	(4) D
23.	Assertion Reason antibonding	-		an N ₂ actrons in	34.	Assertion Reason (1) A		aramagnetic der of NO is (3) C	
	(1) A		(3) C	(4) D	35.	Assertion	: Nitroger	n is unreact	ive at room
24.	Assertion Reason (1) A		quare plana sp³d hybrid (3) C			temperature temperature catalysts).	e but becon e (on heatir	mes reactive ng or in the	at elevated presence of
25.	NH3 molecu			e polar than nile NH_3 is			elocalization	gen molect of electrons (3) C	
	Reason trigonal plan (1) A	-	(3) C	(4) D	36.		: NO_3^- is	planar.	no lone pair
26.	Assertion Reason	: OF ₄ does : Empty d-	not exists. -orbitals are	e absent in		at central at (1) A	tom. (2) B	(3) C	(4) D
	valence she (1) A	ll of oxygen. (2) B	(3) C	(4) D	37.	Assertion	: The ele	ctronic stru	cture of O ₃
27.	Asertion Reason (1) A	: BeCl ₂ sho : More pola (2) B	ows covalent arization of (3) C			is 0 0-	,Ö,		
28.		: MgO and		omorphous		Reason because oct (1) A	: 0 0 et around '0 (2) B		not allowed e expanded. (4) D
	(1) A	(2) B	(3) C	(4) D	38.		: LiCl is p	oredominantl	y a covalent
29.	Assertion Reason	: NF ₃ mole : N-F bond	cule is polar Is are polar.			compound. <i>Reason</i> 'Li' and 'Cl'		gativity differe	ence between
	(1) A								

- Assertion :- Ozone is a powerful oxidizing agent **39**. in comparison to O_{2} . **Reason** :- Ozone is diamagnetic but O_2 is paramagnetic. (1) A (2) B (3) C (4) D **40.** Assertion :- B_2 molecule is diamagnetic. **Reason** :- The highest occupied molecular orbital is of σ type. (2) B (3) C (4) D (1) A **41.** Assertion :- BH_4^- is known while BH_6^{-3} is not. **Reason** :- B has very small atomic size. (2) B (1) A (3) C (4) D Assertion :- Some molecules are polar. **42**. **Reason** :- The centre of negative charge and positive charge do not coincide each other in some molecule. (1) A (2) B (3) C (4) D **Assertion :-** $R_3P = O$ exists but $R_3N = O$ does **43**. not exists Reason :- P is more electronegative than N (1) A (2) B (3) C (4) D
- 44. **Assertion :-** ClF₃ has T-shape structure. Reason :- It has two lone pair arrange at 180° (Angle). (1) A (2) B (3) C (4) D **45**. Assertion :- Bond Dissociation energy is $F_2 > Cl_2$. **Reason** :- Cl₂ have more electronic repulsion than F₂. (2) B (3) C (4) D (1) A **46**. Assertion :- H₂O molecule can form four hydrogen bonds. **Reason** :- Two lone pairs and two hydrogens are directly attached with oxygen atoms. (1) A (2) B (3) C (4) D
 - **Assertion :-** Bond angle in $\begin{array}{c} \textcircled{O} \textcircled{O} \\ R \end{matrix}$ is more than 47.

expected.

Reason :- It is due to lp-lp repulsion.

(1) A	(2) B	(3) C	(4) D
· · /	()	(-) -	()

	ANS	WER	KEY
Que. 1 2 3 4 5 6 7 8 9 10 11 12	13	14	15
Ans. 3 4 2 2 3 2 3	3	1	2
Que. 16 17 18 19 20 21 22 23 24 25 26 27	28	29	30
Ans. 2 4 3 1 3 3 4 1 4 4 1 1	1	2	4
Que. 31 32 33 34 35 36 37 38 39 40 41 42	43	44	45
Ans. 2 3 3 2 3 1 1 3 2 4 2 1	3	3	4
Que. 46 47			
Ans. 1 3			
			113

114			
			DE02\B0A-B0\T
			IG/MODULE-2/2
			CHEMICAL BON
			DING/02-EXERC
			SE P65
			_