## **Redox Reaction**

| 1. | The correct option for a redox couple is: (2023)                                                                                                                                                                                                                                                                                                 |    | Identify the in                                                                                                                                                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li>(a) Both are oxidised forms involving same element.</li> <li>(b) Both are reduced forms involving same element.</li> <li>(c) Both the reduced and oxidised forms involve same element.</li> <li>(d) Cathode and anode together.</li> </ul>                                                                                              | 7. | (a) $\underline{Cl}O_3^-$ is +5<br>(b) $K_2\underline{Cr}_2O_7$ is<br>(c) $H\underline{Au}Cl_4$ is<br>(d) $Cu_2\underline{O}$ is -1<br>Which of the disproportion |
| 2. | On balancing the given redox reaction,<br>$aCr_2O_7^{2^-} + bSO_3^{2^-}(aq) + cH^+(aq) \rightarrow 2aCr^{3^+}(aq)$<br>$+ bsO_4^{2^-}(aq) + \frac{c}{2}H_2O(l)$ , the coefficients a, b<br>and c are found to be, respectively-                                                                                                                   |    | A. $2Cu^{+} \rightarrow Cu$<br>B. $3MnO_{4}^{2-} +$<br>C. $2KMnO_{4} \rightarrow$<br>D. $2MnO_{4}^{-} + 3$                                                        |
|    | (2023)<br>(a) 3, 8, 1<br>(b) 1, 8, 3<br>(c) 8, 1, 3<br>(d) 1, 3, 8                                                                                                                                                                                                                                                                               |    | <ul> <li>(a) A and B o</li> <li>(b) A, B and C</li> <li>(c) A, C and I</li> <li>(d) A and D o</li> </ul>                                                          |
| 3. | Which of the following reactions is a<br>decomposition redox reaction? (2022)<br>(a) $P_4(s) + + 3OH^-(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$<br>(b) $2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$<br>(c) $N_2(g) + O_2(g) \rightarrow 2NO(g)$<br>(d) $Cl_2(g) + 2OH^-(aq) \rightarrow Cl0^-(aq) + Cl^-(aq) + 4H_2O(l)$ | 8. | The correct s<br>is<br>(a) $O = Br - E$<br>(b) $O - Br - B$                                                                                                       |
| 4. | Which of the following reactions is the metal<br>displacement reaction? Choose the right<br>option. (2021)<br>(a) $Cr_2O_3 + 2Al \xrightarrow{\Delta} Al_2O_3 + 2Cr$<br>(b) $Fe + 2HCl \rightarrow FeCl_2 + H_2 \uparrow$<br>(c) $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2 \uparrow$                                                           |    | (c) $O = Br - H$                                                                                                                                                  |
| 5. | (d) $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$<br>What is the change in oxidation number of carbon in the following reaction? (2020)<br>$CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(I) + 4HCl(g)$<br>(a) 0 to +4<br>(b) -4 to +4                                                                                                                       | 9. | (d) $O = Br - B$<br>O<br>For the redox<br>$MnO_4^- + C_2O_4^{2-}$<br>The correct co<br>the balanced                                                               |

- (c) 0 to -4
- (d) +4 to +4
- 6. The oxidation number of the underlined atom in the following species.

ncorrect option.

- (2020 Covid Re-NEET)
- +6
- +3
- he following reactions are ation reaction? (2019)  $u^{2+} + Cu^0$ 
  - $4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$
  - $K_2MnO_4 + MnO_2 + O_2$
  - $3Mn^{2+} + 2H_2O \rightarrow 5MnO_2 + 4H^{\oplus}$

rect option from the following

- nly
- С
- D
- nly
- tructure of tribromooctaoxide (2019)



reaction  $+ H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$ oefficients of the reactants for equation are (2018)

| 1   | $MnO_4^-$ | $C_2 O_4^{2-}$ | $H^+$ |
|-----|-----------|----------------|-------|
| (a) | 16        | 5              | 2     |
| (b) | 2         | 5              | 16    |
| (c) | 5         | 16             | 2     |
| (d) | 2         | 16             | 5     |
|     |           |                |       |

- 10. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behavior? (2016-I)
  - (a)  $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$
  - (b)  $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
  - (c)  $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
  - (d)  $3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
- 11. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO<sub>4</sub> for complete oxidation? (2015 Re) (a)  $Fe(NO_2)_2$ 
  - (b)  $FeSO_4$
  - (c)  $FeSO_3$
  - (d)  $FeC_2O_4$
- 12. In acidic medium,  $H_2O_2$  changes  $Cr_2O_7^{-2}$  to  $CrO_5$  which has two (-O-O-) bonds. Oxidation state of Cr in  $CrO_5$  is: (2014) (a) +3 (b) +6
  - (c) -10
  - (d) +5

## Answer Key

- S1. Ans. (c)
- S2. Ans. (d)
- S3. Ans. (b)
- S4. Ans. (a)
- S5. Ans. (b)
- S6. Ans. (d)
- S7. Ans. (a)
- S8. Ans. (a)
- S9. Ans. (b)
- S10. Ans. (b)
- S11. Ans. (b)
- S12. Ans. (b)

| S1. | Ans.(c)                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Redox couples is both the reduced and oxidised form involve same element.                                                                                                                  |
| S2. | Ans.(d)                                                                                                                                                                                    |
|     | Reaction has to be balanced in acidic medium 'O' atoms are balanced by adding $H_2O$ and then H-atom is balanced by adding $H^+$ ions and charge is balanced by $e^-$ .                    |
|     | Oxidation: $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^- \times 3$                                                                                                                 |
|     | Reduction: $Cr_2O_7^{2-}$ + 14H <sup>+</sup> + 6e <sup>-</sup> $\rightarrow$ 2Cr <sup>3+</sup><br>+ 7H <sub>2</sub> O                                                                      |
|     | $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$                                                                                                               |
|     | a = 1                                                                                                                                                                                      |
|     | b = 3                                                                                                                                                                                      |
|     | c = 8                                                                                                                                                                                      |
| S3. | Ans.(b)                                                                                                                                                                                    |
|     | Decomposition redox reaction leads to<br>breakdown of a compound into two or<br>more compounds at least one of which<br>must be in the elemental state with<br>change in oxidation number. |
|     | $2Pb(NO_3^{2-})_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2^{\circ}(g)$                                                                                                                      |
| S4. | Ans.(a)                                                                                                                                                                                    |
|     | Aluminium is more electropositive than Cr, so it displaced chromium from $Cr_2O_3$ .                                                                                                       |
|     | $Cr_2O_3 + Al \xrightarrow{\Delta} Al_2O_3 + Cr$                                                                                                                                           |
| S5. | Ans.(b)                                                                                                                                                                                    |
|     | $CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$                                                                                                                                        |
|     | In the given reaction                                                                                                                                                                      |
|     | Let Carbon oxidation number assumes                                                                                                                                                        |
|     | to be x                                                                                                                                                                                    |
|     | H oxidation state is +1                                                                                                                                                                    |
|     | In CH <sub>4</sub>                                                                                                                                                                         |
|     | $\mathbf{x} + 4 \times 1 = 0$                                                                                                                                                              |
|     | $\mathbf{X} = -4$                                                                                                                                                                          |
|     | In CCl <sub>4</sub>                                                                                                                                                                        |

Cl oxidation state is -1 x + 4 × (-1) = 0 x = +4 Thus, Change in oxidation state of

Thus, Change in oxidation state of carbon is from –4 to +4.

(a) 
$$\underline{Cl}O_3^-$$
  
 $x + 3 (-2) = -1$   
 $x = +5$   
(b)  $K_2\underline{Cr}_2O_7$   
 $2(+1) + 2x + 7(-2) = 0$   
 $X = +6$   
(c)  $H\underline{Au}Cl_4$   
 $(+1) + x + 4(-1) = 0$   
 $x = +3$ 

(d) 
$$Cu_2 \underline{O}$$
  
  $2(+1) + x = 0$   
  $x = -2$ 

S7. Ans.(a)

A. 
$$2Cu^{+} \xrightarrow{red}_{0} 0$$
  
 $Uu^{2(+)} + Cu^{2(+)} + Cu^{2}$  Disproportionation

B. 
$$3Mn O_4^{2(-)} + 4H^{(+)} \longrightarrow 2MnO_4^{+7} + MnO_2$$
  
oxd  $+2H_2O$  Disproportionation

C. 
$$2 \text{KMnO}_4^{-2} \longrightarrow \text{K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2$$

 $\therefore$  not a disproportionation

D. 
$$2M_{n}^{+7}O_{4}^{-} + 3M_{n}^{+2} + 2H_{2}O \longrightarrow 5M_{n}^{+4}O_{2} + 4H^{\oplus}$$

The correct structure of  $Br_3O_8$ .

The oxidation no of bromine is  $\frac{16}{3}$  in this structure

$$O = Br - Br - Br - Br = O$$

$$I = I = I$$

$$O = O$$

$$I = I$$

Tribromooctaoxide

- S9. Ans.(b)  $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$
- S10. Ans.(b)

 $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ 

This reaction is not a oxidation reaction as none of the atom in the reaction is showing any change in the oxidation number.  $H_2SO_4$ , here in the reaction is not acting as a reducing nor an oxidizing agent.

S11. Ans.(b)

 $Fe(NO_2)_2 \rightarrow Fe^{3+} + 2NO_3^-$ 

 $Fe^{2+} \rightarrow Fe^{3+}$  change in oxidation state = 1

 $2NO_2^- \rightarrow 2NO_3^-$  change in oxidation state = 4

Total change in oxidation state = 5

So,  $Fe(NO_2)_2$  will have maximum number of moles.

 $Fe(NO_2)_2$  will need maximum amount of acidic  $KMnO_4$ 

For *FeSO*<sub>4</sub>

 $Fe^{2+} \rightarrow Fe^{3+}$  change in oxidation state = 1

 $FeSO_4$  will need least amount of  $KMnO_4$ .

S12. Ans.(b)

 $CrO_5$  has a very famous butterfly structure

x + 4(-1) + 1(-2) = 0x = +6