G.O.C

DPP-03

2. Which of the following pairs are resonance structures of each other.

- **3.** Which compound below does not contain any conjugated multiple bonds ?
 - (1) 1, 2, 4-pentatriene
 - (2) 1, 3-cyclobutadiene
 - (3) 1, 5-hexadiene
 - (4) 3-methyl-2, 4-hexadiene
- 4. The intermediate having unpaired electrons is

(1) CH_3^+ (2) CH_3^-

- (3) CH_5^+ (4) CH_3^{\bullet}
- 5. Number of unshared lone pairs and shared lone pairs are respectively

6. In the given resonance hybrid, how many lone pairs are localized ?

Urea NH₂ - C - NH₂ is obtained during formation of ammonium cyanate by using KCNO and (NH₄)₂SO₄
: NH₂CONH₂ ⇒ NH₄CNO

Formation of urea suggests

- (1) Organic compound can never be synthesized in laboratory
- (2) Phenomenon of isomerism
- (3) Organic compound can be synthesized in laboratory
- (4) Both (2) and (3)
- 8. Total number of parallel P_z orbitals in p-chloronitrobenzene is :
- 9. Find the number of carbon atoms where \oplus charge is delocalized in the resonance hybrid.

10. Find the number of compounds having both localised and delocalised lone pair at N-atom.

	Answer Key
1.	$(1 \rightarrow S), (2 \rightarrow P), (3 \rightarrow Q), (4 \rightarrow R)$
2.	(1)
3.	(3)
4.	(4)
5.	(3)
6.	(4)
7.	(4)
8.	(10)
9.	(6)

10. (5)