Chapter-1: Some Basic Concepts of Chemistry

- 1. (c) According to Avogadro's law "equal volumes of all gases contain equal number of molecules under similar conditions of temperature and pressure". Thus if 1 L of a gas contains N molecules, 2 L of any other gas under the same conditions of temperature and pressure will contain 2N molecules.
- **2. (d)** In CuO and Cu₂O the O: Cu is 1:1 and 1:2 respectively. This is law of multiple proportion.
- 3. (d) Round off the digit at 2^{nd} position of decimal 3.929 = 3.93.
- 4. **(b)** Suppose weight of metallic chloride = 100 g Then weight of metal = 47.22 g Weight of chlorine = 100 - 47.22 = 52.78 g

 $\therefore \text{ Equivalent weight of metal} = \frac{47.22}{52.78} \times 35.5 = 31.76$

- 5. **(d)** Molecular weight of $ZnSO_4.7H_2O$ = $65 + 32 + (4 \times 16) + 7(2 \times 1 + 16) = 287 \text{ g}$ \therefore percentage mass of zinc $(Zn) = \frac{65}{287} \times 100 = 22.65\%$
- **6. (b)** From the molarity equation.

$$M_1V_1 + M_2V_2 = M_3V_3$$

Let M₃ be the molarity of final mixture,

$$M_3 = \frac{M_1 V_1 + M_2 V_2}{V_3}$$
 where $V_3 = V_1 + V_2$

$$M_3 = \frac{480 \times 1.5 + 520 \times 1.2}{480 + 520} = 1.344 \text{ M}$$

7. **(b)** Given $N_1 = 10N$, $V_1 = 10$ mL, $N_2 = 0.1N$, $V_2 = ?$ $N_1V_1 = N_2V_2$

or
$$10 \times 10 = 0.1 \times V_2$$

or $V_2 = \frac{10 \times 10}{0.1}$, $V_2 = 1000 \,\text{mL}$

Volume of water to be added = $V_2 - V_1 = 1000 - 10 = 990 \text{ mL}.$

8. **(b)** $M_1V_1 = M_2V_2$ $0.5 \times 100 = 0.1 \times V_2$ $V_2 = 500 \text{ cm}^3$

9.

Volume of water to be added to 100 cm^3 of solution = $500 - 100 = 400 \text{ cm}^3$

(b) Molarity of a mixture of solution of same substance is

 $M_1V_1 + M_2V_2 + M_3V_3 + ... = M(V_1 + V_2 + V_3)$ (1st soln) (2nd soln) (3rd soln) (mixture) 10. (a) Choice (a) is P_4S_3 124 g of P is present in 220 g of P_4S_3 (31 × 4)

∴ 1.24 g of P is present in = $\frac{220}{124} \times 1.24 = 2.2$ g

11. (a) Fe (no. of moles) = $\frac{558.5}{55.85}$ = 10 moles = 10N_A atoms.

No. of moles in 60 g of C = 60/12 = 5 moles $= 5N_A$ atoms.

12. (d) At S.T.P. 22.4 litre of gas contains 6.023 × 10²³ molecules ∴ molecules in 8.96 litre of gas

$$=\frac{6.023\times10^{23}\times8.96}{22.4}\approx24.1\times10^{22}$$

13. (c) Number of molecules of gas at STP

$$=\frac{6.023\times10^{23}\times2.8}{22.4}=7.5\times10^{22}$$
 molecules

Number of atoms in diatomic molecule

=
$$2 \times 7.5 \times 10^{22}$$

= 15×10^{22} atoms

14. (c) : $100 \text{ g CaCO}_3 = 6.023 \times 10^{23} \text{ molecules}$

$$\therefore 10 \text{ g CaCO}_3 = \frac{6.023 \times 10^{23}}{100} \times 10$$

$$=6.023 \times 10^{22}$$
 molecule

1 molecule of $CaCO_3 = 50$ protons

$$6.023 \times 10^{22}$$
 molecule of $CaCO_3 = 50 \times 6.023 \times 10^{22}$
= 3.0115×10^{24}

15. (c) 50% of X (Atomic mass 10), 50% of Y (Atomic mass 20).

Relative number of atoms of $X = \frac{50}{10} = 5$ and

$$Y = \frac{50}{20} = 2.5$$

Simple Ratio 2:1

Formula X₂Y

16. (b) $2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3$

According to equation, $\frac{3}{2}$ mole of O_2 combines with 2 mole Al.

$$2 \text{ mole Al} = 54 \text{ g}$$

- 17. (a) $A_3(BC_4)_2 = 3 \times 2 + 2[5 + (-2 \times 4)] = 0.$
- 18. (a) $N^{3-} = 10e^{-}$ 4.2 g of N^{3-} ions have $= \frac{10 \text{ N}_A}{14} \times 4.2 = 3 \text{ N}_A$

- 19. (d) 2CO 2CO₂ 1 vol 2 vol 2 vol 1 vol of O₂ reacts with 2 vol of CO 1 L of O₂ reacts with 2 L of CO CO left after reaction = 3 - 2 = 1 L 1 L of O₂ produces 2 L of CO₂. Hence, after the reaction, CO = 1 L, $CO_2 = 2 L$
- **20.** (c) $Cr_2 O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$ Equivalent weight of K₂ Cr₂ O₇ $= \frac{\text{Molecular Mass}}{6} = \frac{294.2}{6} = \frac{M}{6}$
- **21.** (a) Mass of one atom of oxygen = $\frac{10}{6.023 \times 10^{23}}$ $=2.66 \times 10^{-23} \,\mathrm{g}$

Mass of one atom of nitrogen =
$$\frac{14}{6.023 \times 10^{23}}$$
$$= 2.32 \times 10^{-23} \text{ g}$$

Mass of 1×10^{-10} mole of oxygen = 16×10^{-10} g Mass of 1×10^{-10} mole of copper = $63 \times 1 \times 10^{-10}$ $=63 \times 10^{-10} g$

Equivalent weight =
$$\frac{\text{Mass of metal} \times 11200}{\text{Volume in mL of hydrogen}}$$

Given, mass of metal = 0.32 g

Volume of hydrogen at NTP = 112 mL Equivalent weight = $\frac{0.32 \times 11200}{112}$ = 32 g

23. (c) Number of moles of A = $\frac{x}{46}$

Number of atoms of A =
$$\frac{x}{40 y}$$
 × Avogadro no. = y (say)
Or $x = \frac{40 y}{\text{Avogadro no.}}$

Number of moles of B = $\frac{2x}{80}$

Number of atoms of B

$$= \frac{2x}{80} \times \text{Av. no.} = \frac{2}{80} \times \frac{40 y}{\text{Av. no.}} \times \text{Av. no.} = y$$

- 24. (a) No. of molecules in different cases
 - : 22.4 litre at STP contains (a) 6.023×10^{23} molecules of H₂

 $\therefore 15 \text{ litre at STP contains} = \frac{15}{22.4} \times 6.023 \times 10^{23}$

 $=4.03 \times 10^{23}$ molecules of H.

- (b) : 22.4 litre at STP contains 6.023×10^{23} molecules of N₂
 - : 5 litre at STP contains = $\frac{5}{22.4} \times 6.023 \times 10^{23}$ = 1.344×10^{23} molecules of N₂

(c) : $2 \text{ g of H}_2 = 6.023 \times 10^{23} \text{ molecules of H}_2$ $\therefore 0.5 \text{ g of H}_2 = \frac{0.5}{2} \times 6.023 \times 10^{23}$

= 1.505×10^{23} molecules of H₂

(d) Similarly 10 g of O₂ gas

$$= \frac{10}{32} \times 6.023 \times 10^{23} \text{ molecules of O}_2$$

= 1.88×10^{23} molecules of O₂

Thus (a) will have maximum number of molecules

25. One molecule of sugar $(C_{12}H_{22}O_{11}) = 45$ atoms

Number of moles of sugar = $\frac{1000}{342}$ = 2.92

Number of molecules = $2.92 \times 6.023 \times 10^{23}$ $= 17.60 \times 10^{23}$ molecules

Number of atoms = $45 \times 17.60 \times 10^{23}$ $= 7.92 \times 10^{25}$ atoms

- $1 \text{ mol} = 6.023 \times 10^{23} \text{ atoms/molecules}$ **26.** 1 mol = Molar volume = 22.4 L at NTP
- 1 mol = Gram atomic mass or gram molecular mass 27. 22400 mL of water contains = 6.023×10^{23} molecules
 - $1 \text{ mL of water contains} = \frac{6.023 \times 10^{23}}{22400} \text{ molecules}$ = 20 drops (given)
 - $\therefore 1 \text{ drop of water will contain} = \frac{6.023 \times 10^{23}}{22400 \times 20}$

= 1.344×10^{18} molecules.

Moles = given wt./molecular wt. 28. (c) (a) Weight of $H_2 = \text{mole} \times \text{molecular wt.}$ $=0.2 \times 2 = 0.4 g$

(b) 6.023×10^{23} represents 1 mole Thus 6.023×10^{22} will represent in 0.1 mole Weight of $N_2 = 0.1 \times 28 = 2.8 \text{ g}$

- (c) Weight of silver = 0.1 g
- (d) Weight of oxygen = $32 \times 0.1 = 3.2 \text{ g}$ Thus, 0.1 g silver is the lightest.
- 58.5 g of NaCl contains 6.023×10^{23} molecules. 29. 10 g will contain 1.03×10^{23} molecules of NaCl. Since it contain 95% NaCl, so, total number of molecules

$$= \frac{95}{100} \times 1.03 \times 10^{23} = 0.98 \times 10^{23} \text{ or } 10^{23}.$$

- $2C_6H_6+15O_2(g) \rightarrow 12CO_2(g)+6H_2O(g)$ **30.** (d) 2(78) 15(32)
 - : 156 g of benzene required oxygen = $15 \times 22.4 L$
 - ∴ 1 g of benzene required oxygen = $\frac{15 \times 22.4}{156}$ L
 - :. 39 g of benzene required oxygen

$$=\frac{15\times22.4\times39}{156}$$
 = 84.0 L

- 31. (c) According to stoichiometry they should react as follow $4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$ 4 mole of NH₃ requires 5 mole of O₂. 1 mole of NH₃ requires = $\frac{5}{4}$ = 1.25 mole of O₂. Hence O₂ is consumed completely.
- 32. (c)

Element	%	Relative no. of atoms	Simplest ratio of atoms
С	49.3	49.3/12=4.1	4.1/2.74 = 1.5 $1.5 \times 2 = 3$
Н	6.84	6.84/1 = 6.84	$6.84/2.74 = 2.5$ $= 2.5 \times 2 = 5$
O	43.86	43.86/16 = 2.74	2.74/2.74 = 1 $1 \times 2 = 2$

 \therefore Empirical formula = $C_3H_5O_2$ Empirical formula mass

$$=(3 \times 12) + (5 \times 1) + (2 \times 16) = 36 + 5 + 32 = 73$$

Molecular mass = $2 \times \text{Vapour density}$

$$= 2 \times 73 = 146$$

$$n = \frac{\text{Molecular mass}}{\text{Empirical formula mass}} = 146/73 =$$

Molecular formula = Empirical formula \times 2

 $=(C_3H_5O_2)\times 2=C_6H_{10}O_4$ $^{\prime}$ 2Fe + $^{\prime}$ + $^{\prime}$ CO, 33. (a) Fe_2O_3 3CO 1 vol. 3 vol. 2 vol. 3 vol. 2 mol 3 mol 1 mol. 3 mol. (:: vol% = mol%)

One gram mol of any gas occupies 22.4 litre at NTP. 1 mol of Fe₂O₃ requires 3 mol of CO for its reduction i.e., 1 mol of Fe₂O₃ requires 3×22.4 litre or 67.2 dm³ CO to get itself reduced.

34. (b) H₂ 2HCl 71 g 2 g of H₂ reacts with 71 g of Cl₂

100 g of H₂ will react with $\frac{71}{2} \times 100 = 3550$ g of Cl₂

20 mL

solid

Hence, Cl, is the limiting reagent.

71 g of Cl₂ produces 73 g of HCl

100 g of Cl_2 will produce $\frac{73}{71} \times 100 = 102.8 \text{ g of HCl}$ $\text{NH}_3(\text{g}) + \text{HCl}(\text{g}) \rightarrow \text{NH}_4\text{Cl}(\text{s})$ 35. (b) 20 mL t = 0

Final volume = 20 mL.

t = t

(d) $2\text{NaHCO}_3 \xrightarrow{150^{\circ}\text{C}} \text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$ $\frac{n_{\text{NaHCO}_3}}{n_{\text{CO}_2}} = \frac{2}{1}$ **36.** $n_{NaHCO_3} = 2n_{CO_2}$ $= 2 \times \frac{112}{22400} = 0.01 \text{ mol}$ $W_{NaHCO_3} = 0.01 \times 84 = 0.84 \text{ g}$ $W_{Na_2CO_3} = 1.00 - 0.84 = 0.16 g$ $\% \text{ Na}_2\text{CO}_3 = 16.$

- **37.** (c) $5 L \text{ water} = 5 \times 10^3 \text{ g} = 5 \times 10^6 \text{ mg}$ 5×10^6 mg water contains 25 mg CaCO₃ \therefore 10⁶ mg water contains 5 mg CaCO₂ :. Concentration is 5 ppm.
- **(b)** Number of moles of $O_2 =$ 38. Number of moles of N₂ = $\frac{4w}{28} = \frac{w}{7}$

:. Ratio =
$$\frac{w}{32}$$
 : $\frac{w}{7}$ = 7 : 32

It is given that only 50% of the expected product is formed hence only 10 litre of NH₂ is formed

$$N_2$$
 used = 5 L,

$$left = 30 - 5 = 25 L$$

$$H_2$$
 used = 15 L, left = 30 - 15 = 15 L

 H_2^2 used = 15 L, left = 30-15=15 L 1 mole of $(NH_4)_2$ HPO₄ would give $\frac{1}{2}$ mole of P_2O_5 **40.**

$$2(NH4)2 HPO4 = P2O5$$

$$2(36+1+31+64)=264 62+80=142$$
% of P₂O₅ = wt. of P₂O₅
wt. of salt

41. (c) Density =
$$\frac{\text{Mass}}{\text{Volume}}$$

Volume =
$$\frac{\text{Mass}}{\text{Density}} = \frac{1 \text{ gram}}{1 \text{ gram cm}^{-3}} = 1 \text{cm}^3$$

 \therefore Volume occupied by 1 gram water = 1 cm³

or Volume occupied by $\frac{6.023 \times 10^{23}}{18}$ molecules of

water =
$$1 \text{ cm}^3$$

[: lg water =
$$\frac{1}{18}$$
 moles of water]

Thus volume occupied by 1 molecule of water

$$=\frac{1\times18}{6.023\times10^{23}}\text{cm}^3=3.0\times10^{-23}\text{cm}^3.$$

i.e. the correct answer is option (c).

42. $2Al(s) + 6HCl(aq) \rightarrow 2Al^{3+}(aq) + 6Cl^{-}(aq) + 3H_{2}(g)$: 6 moles of HCl produces 3 moles of H₂

3 moles of $H_2 = 3 \times 22.4 \text{ L of } H_2 \text{ at S.T.P}$

∴ 1 mole of HCl produces
$$\frac{3 \times 22.4}{6}$$
 L of H₂ at S.T.P

= 11.2 L of H₂ at STP

43. (d) Molecular weight of $(CHCOO)_2$ Fe = 170 Fe present in 100 mg of (CHCOO), Fe

$$=\frac{56}{170}\times100 \text{ mg} = 32.9 \text{ mg}$$

This is present in 400 mg of capsule

% of Fe in capsule =
$$\frac{32.9}{400} \times 100 = 8.2 \approx 8$$

- 44. (a) $2Ag_2CO_3 \xrightarrow{\Delta} 4Ag + 2CO_2 + O_2$ $2 \times 276 \text{ g} \xrightarrow{A \times 108 \text{ g}} 4 \times 108 \text{ g}$ $\therefore 2 \times 276 \text{ g of } Ag_2CO_3 \text{ gives } 4 \times 108 \text{ g of silver}$ $\therefore 1 \text{ g of } Ag_2CO_3 \text{ gives} = \frac{4 \times 108}{2 \times 276}$ $\therefore 2.76 \text{ g of } Ag_2CO_3 \text{ gives}$ $\frac{4 \times 108 \times 2.76}{2 \times 276} = 2.16 \text{ g}$
- **45.** (a) $Mg^{2+} + Na_2CO_3 \longrightarrow MgCO_3 + 2Na^+$ 1 g eq. 1g eq.
 1 g eq. of $Mg^{2+} = 12$ g of $Mg^{2+} = 12000$ mg
 = 1000 milli eq. of Na_2CO_3 ∴ 12 mg $Mg^{2+} = 1$ milli eq. Na_2CO_3
- **46. (b)** For one mole of the oxide; Moles of M = 0.98 Moles of O²⁻ = 1 Let moles of M³⁺ = x∴ Moles of M²⁺ = 0.98-xOn balancing charge $(0.98-x) \times 2 + 3x - 2 = 0$ x = 0.04∴ % of M³⁺ = $\frac{0.04}{0.98} \times 100 = 4.08\%$
- 47. (c) Percentage (by mass) of elements given in the body of a healthy human adult is:Oxygen = 61.4%, Carbon = 22.9%,
 Hydrogen = 10.0% and Nitrogen = 2.6%
 ∴ Total weight of person = 75 kg
 - ... Mass due to ${}^{1}\text{H}$ is $= 75 \times \frac{10}{100} = 7.5 \text{ kg}$ If ${}^{1}\text{H}$ atoms are replaced by ${}^{2}\text{H}$ atoms.

Mass gain by person would be = 7.5 kg

- 48. (d) The reaction may given as $Z_2 O_3 + 3H_2 \longrightarrow 2Z + 3H_2O$ $0.1596 \text{ g of } Z_2O_3 \text{ react with } 6 \text{ mg of } H_2$ 6 mg = 0.006 g $\therefore 1 \text{ g of } H_2 \text{ react with } = \frac{0.1596}{0.006} = 26.6 \text{ g of } Z_2O_3$ $\therefore \text{ Eq. wt. of } Z_2O_3 = 26.6$ (from the definition of eq. wt.) Eq. wt. of Z + Eq. wt. of O = E + 8 = 26.6 $\Rightarrow \text{Eq. wt. of } Z = 26.6 8 = 18.6 \text{ g}$ Valency of metal in Z = 26.6 8 = 18.6 g
 - Valency of metal in $Z_2O_3 = 3$ Eq. wt.of metal = $\frac{\text{Atomic wt.}}{\text{valency}}$ ∴ At. wt. of $Z = 18.6 \times 3 = 55.8 \text{ g}$
- ∴ At. wt. of Z = 18.6 × 3 = 55.8 g
 49. (c) Mass of iron in 100 g haemoglobin = 0.334 g
 ∴ In 67200 g haemoglobin, mass of iron
 = 67200 × 0.334 / 100
 ∴ Number of Fe atoms in one molecule of haemoglobin

 $=\frac{672\times0.334}{56}=4$

50. (d) Specific volume (volume of 1 g) of cylindrical virus particle =
$$6.02 \times 10^{-2}$$
 cc/g
Radius of virus (r) = $7 \text{ Å} = 7 \times 10^{-8}$ cm
Length of virus = 10×10^{-8} cm

Volume of virus

$$\pi r^2 l = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8} = 154 \times 10^{-23} \text{ cc}$$

Wt. of one virus particle = $\frac{\text{volume}}{\text{specific volume}}$

:. Mol. wt. of virus = Wt. of N_A particle

$$= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23} = 15400 \text{ g/mol} = 15.4 \text{ kg/mol}$$

51. (d) Since molarity of solution is 3.60 M. It means 3.6 moles of H₂SO₄ is present in its 1 litre solution.

Mass of 3.6 moles of H₂SO₄

= Moles × Molecular mass

 $=3.6 \times 98 \text{ g} = 352.8 \text{ g}$

 \therefore 1000 mL solution has 352.8 g of H₂SO₄

29% H₂SO₄ by mass means 29 g of H₂SO₄ is present in 100 g of solution

- $\therefore 352.8 \text{ g of H}_2\text{SO}_4 \text{ is present in}$ $= \frac{100}{29} \times 352.8 \text{ g of solution}$
- = 1216 g of solution

Density =
$$\frac{\text{Mass}}{\text{Volume}} = \frac{1216}{1000} = 1.216 \text{ g/mL} = 1.22 \text{ g/mL}$$

52. (c) For element Fe, mole of atoms = $\frac{69.9}{56}$ = 1.25

For element O, mole of atoms = $\frac{30.1}{16}$ = 1.88

Mole ratio of Fe =
$$\frac{1.25}{1.25}$$
 = 1,

Mole ratio of
$$O = \frac{1.88}{1.25} = 1.5$$

Simplest whole number ratio of Fe and O = 2, 3Empirical formula of compound = Fe_2O_2

Molecular mass of $Fe_2O_3 = 160 g$

$$n = \frac{Molecular\ mass}{Empirical\ formula\ mass} = \frac{160}{160} = 1$$

Molecular formula = Fe_2O_3

53. (a) $2 \text{ Mg} + O_2 \xrightarrow{2} 3 2 \text{MgO}$ $2 \times 24 \qquad 2 \times 16 \qquad 2 (24 + 16)$

48 g of Mg requires, 32 g of O_2

1 g of Mg requires, $\frac{32}{48} = 0.66$ g of O_2

Oxygen available = 0.5 g

Hence, O₂ is limiting reagent.

32 g of O₂ reacts with 48 g of Mg

0.5 g of O₂ will react with $\frac{48}{32} \times 0.5 = 0.75$ g of Mg

Excess of Mg = (1.0-0.75) = 0.25 g

54. (c)
$$M_2O_x \xrightarrow{Reduction} M$$

Eq. of $M_2O_x = eq.$ of Metal

$$\frac{\text{Wt. of } M_2O_x}{\text{Eq. wt. of } M_2O_x} = \frac{\text{Wt. of Metal}}{\text{Eq. wt. of Metal}}$$

$$\frac{4}{2\times 56 + x\times 16} = \frac{2.8}{56}$$

$$2x$$

On solving we get,

On solving we get,

$$\Rightarrow \frac{4}{56 + 8x} = \frac{2.8}{56} \Rightarrow \frac{1}{14 + 2x} = \frac{1}{20} \Rightarrow 2x = 6 \Rightarrow x = 3$$

Hence, the oxide is M_2O_3 .

55. (a) Given equivalent weight of metal =
$$9 g$$

Vapour density of metal chloride = 59.25

: molecular weight of metal chloride

$$= 2 \times V \cdot D = 2 \times 59.25 = 118.5 g$$

∴ valency of metal

equivalent weight of metal 35.5
Valency of metal =
$$\frac{118.5}{9+35.5} = \frac{118.5}{44.5} = 2.66$$

Therefore atomic weight of the metal

$$= 9 \times 2.66 = 23.9 \text{ g}$$