CHEMISTRY

- 1. How much water (in litre) is added to 1 litre of HCl solution of pH = 1 to make its pH = 2.
- Ans. 9 litre

Sol. $M_1V_1 = M_2V_2$ $0.1 \times 1 = 0.01 \times V_2$ $V_2 = 10$ litre Ans. 10 - 1 = 9 litre

2. Consider the following reaction sequence

$$CaCl_{2} + Na_{2}CO_{3} \longrightarrow X + Y$$

$$\square$$

$$Z$$
(A) X : CaCO_{3}, Y : NaCl, Z : HCl
(B) X : CaO, Y : NaCl + CO_{2}, Z : KCl
(C) X : CaO, Y : NaCl + CO_{2}, Z : NaCl
(D) X : CaCO_{3}, Y : NaCl, Z : KCl

Ans. (A)

Sol.
$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + NaCl$$

 $\downarrow HCl$
 $CaCl_2$

3. Complex

CFSE

(P)	$[NiF_6]^{2-}$	(i)	$-2\Delta_0$	
(Q)	$[Ti(H_2O)_6]^{3+}$	(ii)	$-2.4\Delta_0$	
(R)	$[Fe(CN)_{6}]^{3-}$	(iii)	$-0.4 \Delta_0$	
(S)	$[Ni(NH_3)_6]^{2+}$	(iv)	$-1.2 \Delta_0$	
(1) P-(ii) ; Q-(iii) ; R-(i) ; S-(iv)				
(2) P-(i) ; Q-(ii) ; R-(iii) ; S-(iv)				
(3) P-(iii) ; Q-(ii) ; R-(iv) ; S-(i)				
(4) P-(iv) ; Q-(iii) ; R-(ii) ; S-(i)				

Ans. (1)

Sol. (P)
$$Ni^{+4} \rightarrow [Ar]3d^{6}$$

 $t_{2g}^{2,2,2}e_{g}^{0,0}$
 $CFSE = -0.4 \times 6\Delta_{0} = -2.4\Delta_{0}$
(Q) $[Ti(H_{2}O)_{6}]^{3+}$
 $Ti^{+3} \rightarrow [Ar]3d^{1}$
 $t_{2g}^{1,0,0}e_{g}^{0,0}$
 $CFSE = -0.4 \times 1\Delta_{0} = -0.4\Delta_{0}$
(R) $[Fe(CN)_{6}]^{3-}$
 $Fe^{+3} \rightarrow [Ar]3d^{5}$ $CN^{-} = SFL$
 $t_{2g}^{2,2,1}e_{g}^{0,0}$
 $CFSE = -0.4 \times 5\Delta_{0} = -2\Delta_{0}$
(S) $[Ni(NH_{3})_{6}]^{2+}$
 $Ni^{+2} \rightarrow [Ar]3d^{8}$
 $t_{2g}^{2,2,2}e_{g}^{1,1}$
 $CFSE = -0.4 \times 6\Delta_{0} + 2 \times 0.6\Delta_{0}$
 $= -2.4 \Delta_{0} + 1.2 \Delta_{0} = -1.2\Delta_{0}$

4.	Column-I		Column-II		
	(P) Electron precise		(i) B_2H_6		
	(Q) Electron rich		(ii) HF		
	(R) Electron deficient		(iii) MgH ₂		
	(S) Saline Hydride		(iv) CH ₄		
	(1) P-(iv)	Q – (ii)	R – (i)	S – (iii)	
	(2) P-(ii)	Q – (iii)	R – (i)	S - (iv)	
	(3) P-(iv)	Q – (iii)	R – (ii)	S-(i)	
	(4) P-(ii)	Q – (iv)	R – (i)	S – (iii)	
Ans.	(1)				
Sol.	Electron precise		CH ₄		

r · · ·	
Electron rich	HF
Electron deficient	B_2H_6
Saline Hydride	MgH_2

Statement-1 : 5f e⁻ can participate in bonding to a greater extent as compared to 4f electrons.
 Statement-2 : Both resemble in their angular part of wave function but 5f is not as buried as 4f orbitals.

(1) Both statement-1 and statement-2 are correct and statement-2 is correct expalantion of statement-1

(2) Both statement-1 and statement-2 are correct but statement-2 is not correct expalantion of statement-1

- (3) Statement-1 is correct and statement-2 is incorrect
- (4) Statement-1 is incorrect and statement-2 is correct

6. $C_2^{2^-}$ has same magnetic property and bond order with : (1) NO⁺ (2) O₂⁺ (3) N₂⁺ (4) O₂

Ans. (1)

Sol.
$$C_2^{2-} \Rightarrow \sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma 2s^2, \lceil \pi 2p_x^2 = \pi 2p_y^2 \rceil \sigma 2p_z^2$$

B.O. =
$$\frac{10-4}{2} = 3$$
 (Diamagnetic)

 $NO^{\oplus} \Rightarrow \mbox{ According } N_2 \mbox{ like configuration }$

(No. of electrons = 7 + 8 - 1 = 14)

$$\sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right]\sigma 2p_z^2$$

B.O. = $\frac{10-4}{2} = 3$ (Diamagnetic)
 $\Omega^{\oplus} \rightarrow \sigma 1s^2 \sigma^* 1s^2 = 2s^2 \sigma^* 2s^2 - 2s^2 \left[\sigma 2s^2 - \sigma^2 s^2\right] \left[\sigma^* 2s^2 - \sigma^2 s^2\right]$

$$O_2^{\oplus} \Rightarrow \sigma 1s^2 \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \left[\pi^* 2p_x^1 = \pi^* 2p_y^0\right]$$

(No. of electrons = 16 - 1 = 15)

B.O.
$$=\frac{10-5}{2}=2.5$$
 (Paramagnetic)

7. Light of wavelengths 400 nm is used for photoelectric effect.

Metal	Li	Na	Κ	Mg	Cu
Work function	2.42	2.3	2.25	3.7	4.8

In how many of the following metals photoelectric is possible?

Ans. (3)

Sol. (Li, Na, K)

$$E = \frac{1240}{\lambda} = \frac{1240}{400} = 3.1 \text{ eV}$$

Li, Na and K have less work function in comparison of energy of incident light.

So, Li, Na and K can show photoelectric effect but Mg and Cu can not show photoelectric effect.

8. Correct order of density for alkali metal

(1) Li < Na < K < Rb < Cs
(2) Li < K < Na < Rb < Cs
(3) Li > Na > K > Rb > Cs
(4) Li > K > Na > Rb > Cs

Ans. (2)

- **Sol.** Order of density : Li < K < Na < Rb < Cs
- 9. Statement-1 : Boron is hard as it has high lattice energy.

Statement-2 : Boron has high melting and boiling point as compared to other group members.

- (1) Both statements-1 and 2 are correct.
- (2) Both statement-1 and 2 are incorrect.
- (3) Statement-1 is correct and statement-2 is incorrect.
- (4) Statement-1 is incorrect and statement-2 is correct.
- Ans. (1)

10. Statement-1 : SbCl₅ is more covalent than SbCl₃.

Statement-2 : Higher oxidation state of halogens is more stable.

- (1) Both statements-1 and 2 are correct.
- (2) Both statement-1 and 2 are incorrect.
- (3) Statement-1 is correct and statement-2 is incorrect.
- (4) Statement-1 is incorrect and statement-2 is correct.

Ans. (3)

- 11. (A) During changing $PbSO_4$ is converted into PbO_2 at anode.
 - (B) During changing PbSO₄ is converted into at PbO₂ at cathode.

(C) In lead storage battery $\sim 38\%$ con. H₂SO₄ is used.

Correct statements are:

(1) A, B, C (2) A, B (3) A, C (4) B, C

Ans. (3)

Most probable speed of gas B at 90K is same as root mean square speed of gas A (Molar mass = 40) at 600K.

Calculate molar mass of gas B.

Ans. 4

Sol.
$$\sqrt{\frac{2R \times T_B}{M_B}} = \sqrt{\frac{3RT_A}{M_A}}$$

 $\frac{2 \times 90}{M_B} = \frac{3 \times 600}{40}$
 $M_B = 4$

13. An ideal gas in container with conducting walls is expanded isothermally from 2L to 3L against constant external pressure of 2 atm. Determine work done by the gas in Joule.

Sol.
$$W = -P_{ext}(V_2 - V_1)$$

= $-2(3 - 2) = -2$ atm-L
= -2×101.3
= -202.6 J

14. A volatile chloride contains 55% chlorine by weight.
0.57 gm metal chloride vapour occupies 100 ml at STP.
Formula of metal chloride :

(1) MCl₂
(2) MCl₄
(3) MCl₃
(4) MCl

Ans. (1)
Sol. Molecular mass of metal chloride (MCl_x)

 $= 0.57 \times 227 = 129 = A + 35.5x$ $\frac{\text{Mass of Cl}}{\text{Mass of metal}} = \frac{55}{45} = \frac{35.5x}{A}$ A = 29xMolecular mass = A + 35.5x = 127.5 64.5x = 129 $\Rightarrow \qquad x = 2$

Metal chloride is MCl_2

15. Column-I

Column-II

(i) Nylon-2, Nylon-6	(a) Polyester
(ii) Dacron	(b) Addition polymer
(iii) PAN	(c) Synthetic polymer
(iv) 2-chlorobuta-1,3-diene	(d) Biodegradable polymer
(1) (i)-(d); (ii)-(a); (iii)-(b); (iv)-(c)	

Ans. (1)

16. Find the products A and B in the given reaction :

Ans. (4)

17.
$$\begin{array}{c} O \\ H \\ CH_3-C-CH_2-CH_2-CH_2-CH_2-CH_3 \xrightarrow{(i) \text{ Mg/dry ether}} \\ Br \end{array} Major product$$

Major product is :

18.
$$\underbrace{\bigcirc}_{\text{NaNO}_2/\text{HCl}}^{\text{OH}} X : \xrightarrow{\text{oxidation}}^{\text{oxidation}} Y$$

Which is incorrect.

 $\stackrel{\oplus}{N}$ O is electrophile(2) X is para nitroso phenol(3) Y is para nitro phenol(4) x is para nitro phenol

Ans. (4)

19.
A B 8 cm
Height of solvent
Height of solvent
What will be the value of
$$R_F$$
 of most polar component
If R_F is $x \times 10^{-2}$. What is x ?

Sol.
$$R_F = \frac{2}{8} = \frac{1}{4} = 0.25$$

So, x = 25

Ans. (1)

Ans. (2)

22. Match the column

Column-I

- (a) Acid rain
- (b) CO₂
- (c) CH₄
- (d) Phosphate fertilizer

- Column-II
- (p) Oxide of nitrogen
 - (q) Eutrophication
- (r) Global warning
- (s) Rain water at pH 5.6
- **Ans.** (a)-(p); (b)-(s); (c)-(r); (d)-(q)