2

Quadratic Equations and Expressions

QUICK LOOK

Identity: $f(x) = \phi(x)$ is an identity if f(x) and $\phi(x)$ have the same value for every real value in R. An equation with arbitrary coefficients may be an identity under certain conditions.

- $ax^2 + bx + c = 0$ will be an identity (or can have more than two solutions) if coefficient of each power of x is separately zero, i.e., a = 0, b = 0, c = 0, d = 0.
- $ax^3 + bx^2 + cx + d = 0$ will be an identity if a = 0, b = 0, c = 0, d = 0.

Polynomial equations and their solutions: If f(x) is a function of x then f(x) = 0 is an equation in one unknown (or variable) and zeros of f(x) or roots of f(x) = 0 are the values of x which make f(x) equal to 0.

- (i) If f(x) is a polynomial of the first degree in x then the equation f(x) = 0 is of the first degree in one unknown. ax + b = 0 is an equation of the first degree in x. Its solution (or root) is found like this: ax = -b;
- $\therefore x = \frac{-b}{a}$. A first degree equation has only one solution.
- (ii) If f(x) is a polynomial of the second degree in x then the equation f(x) = 0 is of the second degree (or quadratic equation) in one unknown.

 $ax^2 + bx + c = 0$ is an equation of the second degree in x where $a \neq 0$.

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The roots of $ax^2 + bx + c = 0$ can also be found by factorizing $ax^2 + bx + c$ and equating each factor to 0 separately. A second degree equation has two solutions (different or equal).

(iii) If f(x) is a polynomial of the degree three (or more) then the equation f(x) = 0 is cubic (or of higher degree) in one unknown.

Such equations can be solved if f(x) can be factorized in linear or quadratic factors.

An equation of the nth degree has n solutions (different or equal).

Example: Solve $x^{3} + x^{2} + x = 84$.

Here the equation is $x^3 + x^2 + x - 84 = 0$

We have to factorize $x^3 + x^2 + x - 84$.

Trying x = 1, -1, 2, -2, etc., we get,

when x = 4, $x^3 + x^2 + x - 84 = 4^3 + 4^2 + 4 - 84 = 0$

 $\therefore (x-4) \text{ is a factor of } x^3 + x^2 + x - 84.$

Dividing $x^3 + x^2 + x - 84$ by x - 4. We get $x^2 + 5x + 21$.

$$x^3 + x^2 + x - 84 = 0$$

$$\Rightarrow (x-4)(x2+5x+21) = 0$$

$$x - 4 = 0$$
 or $x^2 + 5x + 21 = 0$

$$\therefore$$
 $x = 4$ or $x = \frac{-5 \pm \sqrt{25 - 84}}{2}$

Exponential equations and their solutions: If the equation involves terms or factors of the type $a^{f(x)}$ or $\{\phi(x)^{f(x)}, \text{ it will be an exponential equation.}\}$

(iv) If the exponential equation is such that it can be put in the form $a^{f(x)} = a\psi(x), a \neq 1$ $a \neq 1$ then $f(x) = \psi(x)$ will give the solution.

Example: Solve $(2\sqrt{2})^{x^2} = 8^{3x}$.

Here $(2\sqrt{2})^{x^2} = \{(2\sqrt{2})^2\}^{3x}$

or
$$(2\sqrt{2})^{x^2} = (2\sqrt{2})^{6x}$$

$$\therefore$$
 $x^2 = 6x$ or $x(x-6) = 0$;

$$\therefore$$
 $x = 0, 6.$

- (v) If the exponential equation cannot be put in the above form, select an exponential as y so that the equation changes into a polynomial equation in y.
- (vi) In the exponential a^x , a is greater than 0. So, no negative value of a^x is possible.

Logarithmic equations and their solutions: If the equation involves logarithm of some function of the unknown then it will be a logarithmic equation.

If the logarithmic equation is such that it can be put in the form $\log_a f(x) = \log_a \phi(x)$ then $f(x) = \phi(x)$ will give the solution. Only those values of x from $f(x) = \phi(x)$ will give admissible solutions which make both f(x) and g(x) greater than 0.

- If the logarithmic equation cannot be put in the above form, select a logarithm as y so that the equation changes into a polynomial equation in y.
- If the bases of the logarithms are also functions of x, the admissible solutions must make the values of the bases greater than 0 but not equal to 1.

Equations Involving Modulus, Greatest Integer Function, etc., and Their Solutions

- f(x) = |x a| is a piecewisely defined function whose definition is f(x) = x - a, $x \ge a - (x - a)$, x < a
- f(x) = [x] is a piecewisely defined function whose definition is

 $f(x) = n, n \le x < n + 1$ where n is an integer.

- f(x) = [x+n] = [x] + n, where n is an integer.
- If the definition of the function is not uniform over R, the set R of real numbers should be divided into subsets according to the definitions of the function and the equation in the corresponding interval is to be solved. A solution will be admissible if it lies in the interval of definition of that equation.

In-equations and their Solutions Laws of inequality are as follows

- a+b>a+c
- and a > ba+c>b+c. \Rightarrow
- a > bca > bc if c > 0 ca < bc if c > 0
- \Rightarrow b > c if a > 0 b < c if a < 0ab > ac
- a > b and c > da+c>b+d.
- a > 0, b > 0a+b>0 and ab>0

a < 0, b < 0a+b < 0 and ab > 0 \Rightarrow

ab < 0a > 0, b < 0 \Rightarrow

 $x > y \text{ if } a > 1 \ x < y \text{ if } 0 < a < 1$ ax > ay \Rightarrow

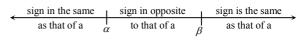
f(x) > 0, f(x) < 0, $f(x) \ge 0$, $f(x) \le 0$ are all inequations in one variable if they hold for all $x \in A \subset R$. But if they hold for all $x \in R$ then they are inequalities.

- ax+b>0 is a linear inequation. For this inequation, ax > -b, we have $x > \frac{-b}{a}$ if a > 0 or $x < \frac{-b}{a}$ if a < 0. The solution set is an infinite set
- $ax^2 + bx + c > 0$ (or < 0 or ≥ 0 or ≤ 0) is a quadratic inequation. The solution of the inequation is the set of real values of x for which the inequality is true. The set can be obtained conveniently by sign-scheme.

The sign-scheme for $ax^2 + bx + c, x \in R$

It is as follows: Let the roots of the corresponding equation $ax^2 + bx + c = 0$ be α, β .

• If α, β are real and unequal $(\alpha < \beta)$ then



- $\stackrel{(+)}{\leftarrow} \qquad \qquad \stackrel{(-)}{\leftarrow} \qquad \qquad \stackrel{(+)}{\rightarrow} \qquad \qquad \qquad \rightarrow$ \therefore if a > 0,]
 - $\xleftarrow{(-)} \qquad \qquad (+) \qquad (-) \qquad \longrightarrow \qquad \longrightarrow$ if a < 0.
- If α, β are real and equal then

If
$$a > 0$$
,
$$(+) \qquad (+) \qquad (+) \qquad (+) \qquad (-) \qquad (-)$$

If α, β are imaginary (non-real complex) then

sign is the same as that of a throughout

 \therefore if a > 0, the expression is always positive If a < 0, the expression is always negative.

|x| < a, (a > 0) holds when -a < x < a

|x| > a, (a > 0) holds when x > a or x < -a

 $x^2 > a^2$ holds when x > a or x < -a

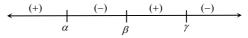
 $x^2 < a^2$ holds when -a < x < a.

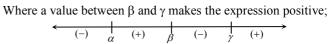
Positive definiteness and negative definiteness of a quadratic polynomial

- $ax^2 + bx + c > 0$ holds for all $x \in R$, i.e. $ax^2 + bx + c$ is positive definite, if D < 0 and a > 0 where $D = b^2 - 4ac$.
- $ax^2 + bx + c \ge 0$ holds for all $x \in R$, i.e., $ax^2 + bx + c$ is nonnegative, if $D \le 0$ and a > 0.
- $ax^2 + bx + c < 0$ holds for all $x \in R$, i.e., $ax^2 + bx + c$ is negative definite, if D < 0 and a < 0.

The sign-scheme for $ax^3 + bx^2 + cx + d, x \in R$ It is as follows: Let the roots of the corresponding equation $ax^3 + bx^2 + cx + d = 0$ be α, β, γ .

• If α, β, γ are real and unequal $(\alpha < \beta < \gamma)$ then





Where a value between β and γ makes the expression negative.

Note

- The sign-scheme for fourth or higher degree polynomials is also prepared as above by detecting the sign of the value of the polynomial for x belonging to an interval determining by two consecutive roots and then setting alternate signs in the other intervals.
- If two roots of f(x) = 0 for the in-equation f(x) > 0 be real and equal to α then $(x-\alpha)^2$ is a factor of f(x), which is positive for all real x except $x = \alpha$ where f(x) is zero.
- \therefore The solution of f(x) > 0 will be the same as $\frac{f(x)}{(x-\alpha)^2} > 0$. So the omission of the factor $(x-\alpha)^2$ from f
 - (x) will not affect the solution of the in-equation.
- If two roots of f(x) = 0 for the in-equation be complex conjugate $\alpha \pm i\beta$ then $(x-\alpha)^2 + \beta^2$ is a positive factor of f(x). So the omission of the factor $(x-\alpha)^2 + \beta^2$ from f(x)will not affect the solution of the in-equaiton.
- The solution of an in-equation f(x) > 0 or < 0 or ≥ 0 or ≤ 0 is directly dependent on the solution of the corresponding equation f(x) = 0.

Quadratic equation and its roots: If $ax^2 + bx + c = 0$, $(a \ne 0)$

be a quadratic equation whose only two roots are α,β then

Roots
$$\alpha, \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
,

where $b^2 - 4ac$ is the discriminant D.

- The nature of the roots will be as follows:
 - $D > 0 \Leftrightarrow$ roots are equal and unequal (a, b, c being real)
 - $D = 0 \Leftrightarrow$ roots are real and equal (a, b, c being real)
 - $D < 0 \Leftrightarrow$ roots are non real conjugate complex (a, b, c being
 - D is a perfect square \Leftrightarrow roots are rational (a, b, c being real) D is a perfect square \Leftrightarrow roots are rational (a, b, c being rational)
 - D is not a perfect square (but positive) \Leftrightarrow roots are conjugate irrational (a, b, c being rational)

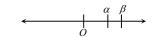
If any of the coefficients a, b, c is normal complex and p + iq is a complex root of $ax^2 + bx + c = 0$ then the other root need not be p - iq. If any of the coefficients a, b, c is irrational and $p + \sqrt{q}$ be an irrational root of $ax^2 + bx + c = 0$ then the other root need not be $p - \sqrt{q}$. The above notes hold for equation of higher degrees also. If a + b + c = 0 then the equation $ax^2 + bx + b$ c = 0 has the root x = 1.

$$\alpha + \beta = \frac{-b}{a}, \alpha\beta = \frac{c}{a}$$

Sign of real roots

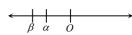
When $D \ge 0$, both roots are positive if

$$\alpha + \beta = \frac{-b}{a} > 0, \ \alpha\beta = \frac{c}{a} > 0$$



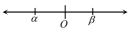
both roots are negative if

$$\alpha + \beta = \frac{-b}{a} < 0, \ \alpha\beta = \frac{c}{a} > 0$$



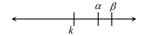
When D > 0, one root is positive and one root is negative if

$$\alpha \beta = \frac{c}{a} < 0$$



Location of real roots:

When $D \ge 0$,



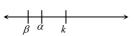
both roots are greater than k

$$\Rightarrow \alpha - k > 0, \beta - k > 0$$

$$\Rightarrow (\alpha - k) + (\beta - k) > 0, (\alpha - k)(\beta - k) > 0$$

$$\Rightarrow \alpha + \beta - 2k > 0, \alpha\beta - k(\alpha + \beta) + k^2 > 0$$

both roots are less than k



$$\Rightarrow \alpha - k < 0, \beta - k < 0$$

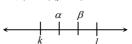
$$\Rightarrow$$
 $(\alpha - k) + (\beta - k) < 0, (\alpha - k)(\beta - k) > 0$

both roots lie between k and l (k < l)

$$\Rightarrow \alpha - k > 0, \beta - k > 0, \alpha - l < 0, \beta - l < 0$$

$$\Rightarrow \alpha - k + \beta - k > 0, \alpha - l + \beta - l < 0$$

$$(\alpha-k)(\beta-k) > 0, (\alpha-l)(\beta-l) > 0$$



- (b) When D > 0,
- (i) one root is less than k and the other greater than k

$$\Rightarrow \alpha - k < 0, \beta - k > 0$$

$$\Rightarrow \alpha - k < 0, \beta - k > 0$$

$$\Rightarrow (\alpha - k)(\beta - k) < 0$$

- $\Rightarrow (\alpha k)(\beta k) < 0$
- (ii) one root is less than k and the other greater than l(k<1)

$$\Rightarrow \alpha - k < 0, \beta - k > 0, \alpha - l < 0, \beta - l > 0$$

\leftarrow α k 1 β

Equations of higher degrees and their roots

 $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$, when a is are real $(a_0 \neq 0)$, is an nth degree polynomial equation in one variable x. It has n roots (unequal or equal) which are either real or nonreal complex.

MULTIPLE CHOICE QUESTIONS

Identity and Polynomial

- Both the roots of given equation (x-a)(x-b)+ (x-b)(x-c)+(x-c)(x-a)=0 are always:
 - a. Positive
- **b.** Negative

c. Real

- d. Imaginary
- 2. If 3 is a root of $x^2 + kx 24 = 0$, it is also a root of:
 - **a.** $x^2 + 5x + k = 0$
- **b.** $x^2 5x + k = 0$
- **c.** $x^2 kx + 6 = 0$
- **d.** $x^2 + kx + 24 = 0$
- For what values of k will the equation $x^{2}-2(1+3k)x+7$ (3+2k) = 0 have equal roots?
 - **a.** 1, -10/9
- **b.** 2, -10/9
- $\mathbf{c.} 3, -10/9$
- **d.** 4, -10/9

Equations of Higher Degrees and Their Roots

- If the difference between the corresponding roots of x^2 + ax + b = 0 and $x^2 + bx + a = 0$ is same and $a \ne b$, then:
 - **a.** a + b + 4 = 0
- **b.** a + b 4 = 0
- **c.** a b 4 = 0
- **d.** a b + 4 = 0
- If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then a/c, b/a, c/b are in:
 - **a.** A.P.

b. G.P.

c. H.P.

- d. None of these
- If the roots of the equation $x^2 5x + 16 = 0$ are α , β and the roots of equation $x^2 + px + q = 0$ are $\alpha^2 + \beta^2$, $\alpha\beta/2$, then:
 - **a.** p = 1, q = -56
- **b.** p = -1, q = -56
- **c.** p = 1, q = 56
- **d.** p = -1, q = 56
- If one root of the equation $x^2 + px + q = 0$ is the square of the other, then:
 - **a.** $p^3 + q^2 q(3p+1) = 0$ **b.** $p^3 + q^2 + q(1+3p) = 0$

 - **c.** $p^3 + q^2 + q(3p-1) = 0$ **d.** $p^3 + q^2 + q(1-3p) = 0$
- Let α and β be the roots of the equation $x^2 + x + 1 = 0$, the equation whose roots are α^{19} , β^7 is:
 - **a.** $x^2 x 1 = 0$
- **b.** $x^2 x + 1 = 0$
- **c.** $x^2 + x 1 = 0$
- **d.** $x^2 + x + 1 = 0$
- If one root of a quadratic equation is $\frac{1}{2+\sqrt{5}}$, then the 9. equation is:

- **a.** $x^2 + 4x + 1 = 0$
- **b.** $x^2 + 4x 1 = 0$
- **c.** $x^2 4x + 1 = 0$
- d. None of these
- **10.** If one of the roots of the equation $x^2 + ax + b = 0$ and $x^2 + ax + b = 0$ bx + a = 0 is coincident. Then the numerical value of (a+b) is:
 - **a.** 0

b. -1

c. 2

d. 5

Properties of Quadratic Equation

- 11. The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other is:
 - **a.** 2/3

b. -2/3

c. 1/3

d. - 1/3

Quadratic Expression

- 12. If x be real, then the minimum value of $x^2 8x + 17$ is:
 - **a.** 0– 1

b. 0

c. 1

d. 2

Solution of Quadratic Equations and Nature of Roots

- 13. The roots of the equation $a(x^2+1)-(a^2+1)x=0$ are:
 - **a.** $a, \frac{1}{a}$
- **b.** a, 2a
- **c.** $a, \frac{1}{2a}$
- d. None of these
- **14.** The roots of the equation $ix^2 4x 4i = 0$ are:
 - $\mathbf{a.} 2i$

- **b.** 2*i*
- c. -2i, -2i
- **d.** 2*i*, 2*i*
- 15. The number of roots of the quadratic equation $8\sec^2\theta - 6\sec\theta + 1 = 0$ is:
 - a. Infinite
- **b.** 1

c. 2

- **d.** 0
- **16.** The number which exceeds its positive square root by 12
 - **a.** 9

b. 16

c. 25

- d. None of these
- 17. If $x^{2/3} 7x^{1/3} + 10 = 0$, then x = ?
 - **a.** {125}

- **d.** {125, 8}
- **18.** The solution set of the equation $x^{\log_x(1-x)^2} = 9$ is:
 - $a. \{-2, 4\}$
- **b.** {4}
- $\mathbf{c.} \{0, -2, 4\}$
- d. None of these

- 19. The number of real roots of the equation $e^{\sin x} e^{-\sin x} 4$
 - **a.** 1

- **b.** 2
- c. Infinite
- d. None
- **20.** The solution of the equation $x + \frac{1}{x} = 2$ will be:
- **b.** 0, -1, $-\frac{1}{5}$
- $\mathbf{c.} -1, -\frac{1}{5}$
- d. None of these
- **21.** If $\sqrt{3x^2 7x 30} + \sqrt{2x^2 7x 5} = x + 5$, then x is equal to:

c. 6

- **d.** 5
- 22. If x_1, x_2, x_3 are distinct roots of the equation $ax^2 + bx + c = 0$ then:
 - **a.** $a = b = 0, c \in R$
- **b.** $a = c = 0, b \in R$
- **c.** $b^2 4ac \ge 0$
- **d.** a = b = c = 0
- **23.** The value of $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$ is:

c. 2

- **d.** 3
- **24.** The equation $e^x x 1 = 0$ has:
 - **a.** Only one real root x = 0
 - **b.** At least two real roots
 - c. Exactly two real roots
 - d. Infinitely many real roots
- **25.** A real root of the equation $\log_4 \{\log_2(\sqrt{x+8} \sqrt{x})\} = 0$ is:
 - **a**. 1

c. 3

- **d.** 4
- **26.** If the roots of the equations $px^2 + 2qx + r = 0$ and $qx^2 - 2\sqrt{pr}x + q = 0$ be real, then:
 - **a.** p=q
- **b.** $q^2 = pr$
- **c.** $p^2 = qr$
- **d.** $r^2 = pq$
- 27. If a > 0, b > 0, c > 0 then both the roots of the equation $ax^2 + bx + c = 0$?
 - a. Are real and negative
 - **b.** Have negative real parts
 - c. Are rational numbers
 - d. None of these

Relation between Roots and Coefficients

- **28.** If one root of $5x^2 + 13x + k = 0$ is reciprocal of the other, then k = ?
 - **a.** 0

b. 5

c. 1/6

- **d.** 6
- 29. If the product of the roots of the equation $(a+1)x^2 + (2a+3)x + (3a+4) = 0$ be 2, then the sum of roots is:
 - **a.** 1

c. 2

- d. -2
- **30.** If α , β are the roots of the equation $ax^2 + bx + c = 0$ then the equation whose roots are $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$, is:
 - **a.** $acx^2 + (a+c)bx + (a+c)^2 = 0$
 - **b.** $abx^2 + (a+c)bx + (a+c)^2 = 0$
 - **c.** $acx^2 + (a+b)cx + (a+c)^2 = 0$
 - d. None of these
- 31. If α and β be the roots of the equation $2x^2 + 2(a+b)x + a^2 + b^2 = 0$, then the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ is:

 - **a.** $x^2 2abx (a^2 b^2)^2 = 0$ **b.** $x^2 4abx (a^2 b^2)^2 = 0$
 - **c.** $x^2 4abx + (a^2 b^2)^2 = 0$ **d.** None of these
- **32.** If the sum of the roots of the equation $\lambda x^2 + 2x + 3\lambda = 0$ be equal to their product, then $\lambda = ?$
 - a. 4

- d. None of these
- 33. If α and β are the roots of the equation $2x^2 3x + 4 = 0$, then the equation whose roots are α^2 and β^2 is:
 - **a.** $4x^2 + 7x + 16 = 0$
- **b.** $4x^2 + 7x + 6 = 0$
- **c.** $4x^2 + 7x + 1 = 0$
- **d.** $4x^2 7x + 16 = 0$
- **34.** If the ratio of the roots of the equation $ax^2 + bx + c = 0$ be p:q, then:
 - **a.** $pqb^2 + (p+q)^2 ac = 0$ **b.** $pqb^2 (p+q)^2 ac = 0$
 - **c.** $pqa^2 (p+q)^2bc = 0$
- d. None of these
- **35.** If α, β be the roots of the equation $x^2 2x + 3 = 0$, then the equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ is:
 - $\mathbf{a.} x^2 + 2x + 1 = 0$
- **b.** $9x^2 + 2x + 1 = 0$
- **c.** $9x^2 2x + 1 = 0$
- **d.** $9x^2 + 2x 1 = 0$

- **36.** If α, β be the roots of $x^2 px + q = 0$ and α', β' be the roots of $x^2 - p'x + q' = 0$, then the value $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$ is:
 - **a.** $2\{p^2-2q+p'^2-2q'-pp'\}$
 - **b.** $2\{p^2-2q+p'^2-2q'-qq'\}$
 - c. $2\{p^2-2q-p'^2-2q'-pp'\}$
 - **d.** $2\{p^2-2q-p'^2-2q'-qq'\}$
- 37. If α, β are the roots of (x-a)(x-b) = c, $c \ne 0$, then the roots of $(x-\alpha)(x-\beta)+c=0$ shall be:
 - **a.** a, c

c. *a*,*b*

- **38.** If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+a} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then the product of the roots will be:
 - **a.** $\frac{p^2 + q^2}{2}$
- **b.** $-\frac{(p^2+q^2)}{2}$
- **c.** $\frac{p^2 q^2}{2}$
- **d.** $-\frac{(p^2-q^2)}{2}$
- **39.** If α, β are roots of $x^2 3x + 1 = 0$, then the equation whose roots are $\frac{1}{\alpha-2}, \frac{1}{\beta-2}$ is:
 - **a.** $x^2 + x 1 = 0$
- **b.** $x^2 + x + 1 = 0$
- **c.** $x^2 x 1 = 0$ **d.** None of these
- **40.** If α and β are the roots of $6x^2 6x + 1 = 0$, then the value of $\frac{1}{2}[a+b\alpha+c\alpha^2+d\alpha^3] + \frac{1}{2}[a+b\beta+c\beta^2+d\beta^3] \text{ is:}$

 - **a.** $\frac{1}{4}(a+b+c+d)$ **b.** $\frac{a}{1} + \frac{b}{2} + \frac{c}{3} + \frac{d}{4}$
 - **c.** $\frac{a}{2} \frac{b}{2} + \frac{c}{3} \frac{d}{4}$
- d. None of these
- **41.** If the roots of the quadratic equation $\frac{x-m}{mx+1} = \frac{x+n}{nx+1}$ are reciprocal to each other, then:
 - **a.** n = 0
- **b.** m=n
- **c.** m + n = 1
- **d.** $m^2 + n^2 = 1$
- **42.** If *a* and *b* are roots of $x^2 px + q = 0$, then $\frac{1}{a} + \frac{1}{b} = ?$
- **a.** $\frac{1}{p}$ **b.** $\frac{1}{q}$ **c.** $\frac{1}{2p}$ **d.** $\frac{p}{q}$

- **43.** If α, β are the roots of $ax^2 + bx + c = 0$ and $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$ are in G.P., where $\Delta = b^2 - 4ac$, then:
- **b.** $b\Lambda = 0$
- c. $cb \neq 0$
- **d.** $c\Delta = 0$
- **44.** If $3p^2 = 5p + 2$ and $3q^2 = 5q + 2$ where $p \neq q$, then the equation whose roots are 3p-2q and 3q-2p is:
 - **a.** $3x^2 5x 100 = 0$
- **b.** $5x^2 + 3x + 100 = 0$
- $\mathbf{c.} \ 3x^2 5x + 100 = 0$
- **d.** $5x^2 3x 100 = 0$

Condition for Common Roots, Quadratic Expressions and **Position of Roots**

- **45.** If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real and less than 3, then:
 - **a.** a < 2
- **b.** $2 \le a \le 3$
- **c.** $3 < a \le 4$
- **d.** a > 4
- **46.** If both the roots of $k(6x^2+3)+rx+2x^2-1=0$ and $6k(2x^2+1) + px + 4x^2 - 2 = 0$ are common, then 2r - p is equal to:
 - a. -1

b. 0

- **d.** 2
- **47.** If the two equations $x^2 cx + d = 0$ and $x^2 ax + b = 0$ have one common root and the second has equal roots, then 2(b+d) = ?
 - **a.** 0

b. a+c

c. *ac*

- **d.** –ac
- **48.** If every pair of the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$, $x^2 + rx + pq = 0$ have a common root, then the sum of three common roots is:
 - a. $\frac{-(p+q+r)}{2}$
- **b.** $\frac{-p+q+r}{2}$
- **c.** -(p+q+r)
- **49.** If the equation $x^2 + px + q = 0$ and $x^2 + qx + p = 0$, have a common root, then p+q+1=?
- **b.** 1
- **c.** 2
- **50.** $x^2 11x + a$ and $x^2 14x + 2a$ will have a common factor, if a = ?
 - **a.** 24
- **b.** 0, 24 **c.** 3, 24

- **51.** If $x^2 3x + 2$ be a factor of $x^4 px^2 + q$, then (p,q) = ?
 - a. (3, 4)
- **b.** (4, 5)
- c. (4, 3)
- d.(5,4)

- 52. If x is real, the expression $\frac{x+2}{2x^2+3x+6}$ takes all value in the interval:
 - **a.** $\left(\frac{1}{13}, \frac{1}{3}\right)$
- **b.** $\left[-\frac{1}{13}, \frac{1}{3} \right]$
- $\mathbf{c.}\left(-\frac{1}{3},\frac{1}{13}\right)$
- d. None of these
- **53.** If x, y, z are real and distinct, then $u = x^2 + 4y^2 + 9z^2 4y^2 + 9z^2 + 6z^2 + 6z$ 6yz - 3zx - zxy is always:
 - a. Non-negative
- **b.** Non-positive

- c. Zero
- d. None of these
- **54.** If x is real, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real
 - values, provided: **a.** a > b > c
- **b.** a < b < c
- **c.** a > c < b
- **d.** a < c < b
- 55. If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real and less than 3, then:
 - **a.** a < 2
- **b.** $2 \le a \le 3$
- **c.** $3 < a \le 4$
- **d.** a > 4
- **56.** If a,b,c are real numbers such that a+b+c=0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has:
 - **a.** At least one root in [0, 1]
 - **b.** At least one root in [1, 2]
 - **c.** At least one root in [-1,0]
 - d. None of these
- 57. If the equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0$ $a_1 \neq 0$, $n \geq 2$, has a positive root $x = \alpha$, then the equation $na_n x^{n-1}$ $+(n-1) a_{n-1}x^{n-2} + + a_1 = 0$ has a positive root, which is

 - **a.** Greater than or equal to α **b.** Equal to α ?
 - **c.** Greater than α
- **d.** Smaller than α

Descarte's Rule of Signs

- 58. The maximum possible number of real roots of equation $x^5 - 6x^2 - 4x + 5 = 0$ is:
 - **a.** 0

b. 3

c. 4

d. 5

Calculus in Problems of Equations and Expressions

- **59.** If $\frac{2x}{2x^2 + 5x + 2} > \frac{1}{x + 1}$, then:
 - **a.** -2 > x > -1
- **b.** $-2 \ge x \ge -1$
- $\mathbf{c.} -2 < x < -1$
- **d.** $-2 < x \le -1$

- **60.** If for real values of x, $x^2 3x + 2 > 0$ and $x^2 3x 4 \le 0$,
 - **a.** $-1 \le x < 1$
- **b.** $-1 \le x < 4$
- $\mathbf{c} \cdot -1 \le x < 1 \text{ or } 2 < x \le 4$
- **d.** $2 < x \le 4$

Equation and In-equation Containing Absolute Value

- **61.** The roots of $|x-2|^2 + |x-2| 6 = 0$ are:
 - **a.** 0, 4
- **b.** -1, 3 **c.** 4, 2
- **d.** 5, 1
- **62.** The set of all real numbers x for which $x^2 |x + 2| + x > 0$,
 - **a.** $(-\infty, -2) \cup (2, \infty)$
- **b.** $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
- **c.** $(-\infty, -1) \cup (1, \infty)$
- **d.** $(\sqrt{2}, \infty)$
- **63.** Product of real roots of the equation $t^2x^2 + |x| + 9 = 0$ ($t \ne 0$)
 - a. Is always +ve
- **b.** Is always –ve
- c. Does not exist
- d. None of these
- **64.** The number of solution of $\log_4(x-1) = \log_2(x-3)$?
 - **a.** 3

c. 2

d. 0

NCERT EXEMPLAR PROBLEMS

More than One Answer

- **65.** Let $f: R \to R$ $a \in R$ and given by $f(x) = x^5 - 5x + a$. Then:
 - **a.** f(x) has three real roots, if a > 4
 - **b.** f(x) has only one real root, if a > 4
 - **c.** f(x) has three real roots, if a < -4
 - **d.** f(x) has three real roots, if -4 a < 4
- **66.** Let f(x) be a quadratic expression which is positive for all real x. If g(x) = f(x) - f'(x) + f''(x), then for any real x:
 - **a.** g(x) > 0
- **b.** $g(x) \ge 0$
- c. $g(x) \leq 0$
- **d.** g(x) < 0
- **67.** The real values of λ for equation, $3x^3 + x^2 - 7x + \lambda = 0$, has two distinct real roots in [0, 1] lie in the interval: (s)
 - **a.** (-2,0)
- **b.** [0,1]
- **c.** [0,2]
- **d.** $(-\infty,\infty)$
- **68.** The roots of the equation, $(x^2 + 1)^2 = x(3x^2 + 4x + 3)$, are given by:
 - **a.** $2 \sqrt{3}$
- **b.** $(-1+i\sqrt{3})/2, i=\sqrt{-1}$
- c. $2 + \sqrt{3}$
- **d.** $(-1-i\sqrt{3})/2$, $i=\sqrt{-1}$

- 69. If A, G and H are the Arithmetic mean, Geometric mean and Harmonic mean between two unequal positive integers. Then the equation $Ax^2 - |G|x - H = 0$ has:
 - a. both roots are fraction
 - b. at least one root which is negative fraction
 - c. exactly one positive root
 - d. at least one root which is an integer
- **70.** If $a, b, c \in R$ and the equality $ax^2 bx + c = 0$ has complex roots which are reciprocal of each:
 - $\mathbf{a} \cdot |b| \leq |a|$
- **b.** $|b| \le |c|$

 $\mathbf{c.} a = c$

- $\mathbf{d}.b \ge a$
- **71.** The equation $|x+1||x-1| = a^2 2a 3$ can have real solution for x, if a belongs x to:
 - **a.** $(-\infty, -1] \cup [3, \infty)$
- **b.** $[1-\sqrt{5},1+\sqrt{5}]$
- **c.** $[1-\sqrt{5},-1] \cup [3,1+\sqrt{5}]$ **d.** none of these
- 72. The equation $x^2 + a^2x + b^2 = 0$ has two roots each of which exceeds a number c, then:
 - **a.** $a^4 > 4b^2$
- **b.** $c^2 + a^2c + b^2 > 0$
- $c. -a^2/2 > c$
- d. none of these
- 73. A quadratic equation whose difference of roots is 3 and the sum of the squares of the roots is 29 is given by:
 - **a.** $x^2 + 9x + 14 = 0$
- **b.** $x^2 + 7x + 10 = 0$
- **c.** $x^2 7x 10 = 0$
- **d.** $x^2 7x + 10 = 0$
- 74. If a, b, c are distinct number in arithmetic progression, then both the roots of the quadratic equation (a+2b-3c) $x^2+(b+2c-3a)x+(c+2a-3b)=0$ are:
 - a. real

- **b.** positive
- c. negative
- d. rational

Assertion and Reason

Note: Read the Assertion (A) and Reason (R) carefully to mark the correct option out of the options given below:

- a. If both assertion and reason are true and the reason is the correct explanation of the assertion.
- b. If both assertion and reason are true but reason is not the correct explanation of the assertion.
- c. If assertion is true but reason is false.
- **d.** If the assertion and reason both are false.
- e. If assertion is false but reason is true.

75. Assertion: If $a,b,c \in R - \{0\}$, then at least one $ax^2 + bx + c$ = 0, $bx^2 + cx + a = 0$ and cx + ax + b = 0 has imaginary roots

Reason: If $a,b,c \in R, a \neq 0$, then imaginary roots of the equation $ax^2 + bx + c = 0$ occur in conjugate pair.

76. Assertion: The equation $f(x)1 + \frac{x}{1} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} = 0$ has two pairs of repeated roots.

Reason: Polynomial equation P(x) = 0 has a repeated root α if $P(\alpha) = 0$ and $P'(\alpha) = 0$.

77. Assertion: If all the four roots of $x^4 - 4x^3 + ax^2 - bx + 1 = 0$ are positive, then a = 6 and b = 4.

Reason: If polynomial equation P(x) = 0 has four positive roots, then the polynomial equation P'(x) = 0 has 3 positive

78. Assertion: If $a, b, c \in Q \& 2^{1/3}$ satisfies $a + bx + cx^2 = 0$, then a = 0, b = 0, c = 0.

Reason: A polynomial equation with rational coefficients cannot have irrational roots.

79. Let $a, b, c \in R$, a > 0 and function $f: R \to R$ be defined by $f(x) = ax^2 + 2bx + c.$

Assertion: $b^2 < ac \implies f(x) > 0$ for every value of x

Reason: f is strictly decreasing in the interval $(-\infty, b/a)$ and strictly increasing in the interval $(-b/a, \infty)$

80. Assertion: If $a,b,c \in \mathbb{R}$ and 2a+3b+6c=0, then the equation $ax^2 + bx + c = 0$ has at least one root in [0, 1]

Reason: If a continuous function f defined on R assumes both positive and negative values, then it, vanishes at least once.

81. Assertion: Let $f(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$. If f(x)assumes real values for real values of x and non-real values of for non-real values of x, then a = 0

Reason: If a, b, c are complex numbers, $a \ne 0$ then $a+i\beta$, $\beta \neq 0$ is a root of $ax^2+bx+c=0$ if and only if $\alpha - i\beta$ is a root of $ax^2 + bx + c = 0$

82. Assertion: If $a \ne 0$ and the equation $ax^2 + bx + c = 0$ has two roots α and β such that $\alpha < -2$ and $\beta > 2$, then a+|b|+c and a have the opposite signs.

Reason: If a>0 and $\gamma, \delta(\gamma < \delta)$ are of $ax^2 + bx + c = 0$, then graph of the parabola $y = ax^2 + bx + c$, for $\gamma < x < \delta$ lies below the x-axis.

83. Let a, b, c, p, q be the real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and $\alpha, \frac{1}{\beta}$ are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$.

Assertion: $(p^2 - q)(b^2 - ac) \ge 0$ and

Reason: $b \notin pa$ or $c \notin qa$.

Comprehension Based

Paragraph-I

Read the following passage and answer the questions. If a continuous f defined on the real line R, assumes positive and negative values in R, then the equation f(x) = 0 has a root in R. For Illustration:, if it is known that a continuous function f on R is positive at some point and its minimum values is negative, then the equation f(x) = 0 has a root in R. Consider $f(x) = ke^x - x$ for all real x where k is real constant.

- **84.** The line y = x meets $y = ke^x$ for $k \le 0$ at:
 - a. no point
- **b.** one point
- c. two points
- **d.** more than two points
- **85.** The positive value of k for which $ke^x x = 0$ has only one root is:

b. 1

- **d.** log_a 2
- **86.** For k > 0, the set of all values of k for which $ke^x - x = 0$ has two distinct roots, is:
 - **a.** $\left(0, \frac{1}{e}\right)$
- **b.** $\left(\frac{1}{e},1\right)$
- $\mathbf{c.}\left(\frac{1}{\rho},\infty\right)$
- $\mathbf{d.}(0,1)$

Paragraph-II

Consider the polynomial $f(x) = 1 + 2x + 3x^2 + 4x^3$. Let s be the sum of all distinct real roots of f(x) and let t = |s|

- **87.** The real numbers *s* lies in the interval:

 - **a.** $\left(-\frac{1}{4}, 0\right)$ **b.** $\left(-11, -\frac{3}{4}\right)$ **c.** $\left(-\frac{3}{4}, -\frac{1}{2}\right)$ **d.** $\left(0, \frac{1}{4}\right)$

- **88.** The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval:
 - **a.** $\left(\frac{3}{4},3\right)$
- **b.** $\left(\frac{21}{64}, \frac{11}{16}\right)$
- **c.** (9,10)
- **d.** $\left(0, \frac{21}{64}\right)$
- The function f'(x) is:
 - **a.** increasing in $\left(-t, -\frac{1}{4}\right)$ and decreasing in $\left(-\frac{1}{4}, t\right)$
 - **b.** decreasing in $\left(-t, -\frac{1}{4}\right)$ and increasing in $\left(-\frac{1}{4}, t\right)$
 - **c.** increasing in (-t,t)
 - **d.** decreasing in (-t,t)

Match the Column

90. A Observe the following columns:

Column I	Column II			
(A) A The number of solution of the system of equations $x + 2y = 6$ and $ x - 3 = y$ is m , then.	1. m is the AM of n and p			
(B) If x and y are integers and $(x-8)(x-10)=2^y$ the number of solution is n , then.	2. n is the GM of m and p			
(C) The number of integral solution for the equation $x + 2y = 2xy$ is p then.	3. p is the HM of m and n			
	4. $n = \frac{m^p + p^m}{mp}$ $m = \sqrt{n\sqrt{p\sqrt{n\sqrt{p\sqrt{n\infty}}}}}$			

- **a.** A \rightarrow 1,5; B \rightarrow 2,4; C \rightarrow 3
- **b.** A \to 2,5; B \to 5, 1 C \to 1
- **c.** $A \rightarrow 3,4$; $B \rightarrow 1,3$; $C \rightarrow 2,4$
- **d.** $A \rightarrow 2,3$; B-3,4; $C \rightarrow 1,4$
- **91.** Observe the following columns:
 - Column I Column II (A) If a + b + 2c = 0, $c \ne$ then 1. at least one root in equation $ax^2 + bx + c = 0$ (-2,0)has

- **(B)** Let $a, b, c \in R$ such that 2a **2.** at least one root in -3b 6c = 0, then equation $ax^2 + bx + c = 0$ has
- (-1, 0)
- (C) Let a, b, c be zero real numbers such $\int_{0}^{1} (1+\cos^{8}x) (ax^{2}+bx+c)$ $dx = \int_{0}^{2} (1 + \cos^{8} x) (ax^{2} +$ bx +c) dx, then the equation $ax^2 + bx + c = 0$ has
- 3. at least one root in (-1, 1)

- 4. at least one root in (0, 1)
- 5. at least one root in (0, 2)
- **a.** A \rightarrow 3,4,5; B \rightarrow 1,2,3; C \rightarrow 3,4,5
- **b.** A \rightarrow 1,2,3; B \rightarrow 1,3,5; C \rightarrow 3,4,5
- **c.** $A \rightarrow 1,2,5$; $B \rightarrow 1,5,3$; $C \rightarrow 3,2,5$
- **d.** $A \rightarrow 2,5,3$; $B \rightarrow 1,4,5$; $C \rightarrow 2,1,5$
- **92.** Observe the following columns:

Column I	Column II
(A) If a , b , c , d are four non zero numbers such that $(d + a - b)^2 + (d + b - c)^2 = 0$ and roots of the equation $a(b - c)x^2 + b(c - a)x + c(a - b) = 0$ are real and equal, then	1. $a+b+c \neq 0$
(B) If a, b, c are three non zero real numbers such that the roots of the equation	2. , <i>b</i> , <i>c</i> are in AP
(C) If the three equations x^2 + $px + 12 = 0$, $x^2 + qx + 15 = 0$ and $x^2(p + q)x + 36 = 0$ have a common positive root and a , b , c be their other roots, then	3. <i>a</i> , <i>b</i> , <i>c</i> are in GP
	4. <i>a</i> , <i>b</i> , <i>c</i> are in HP

5. a = b = c

- **a.** A \rightarrow 1,2,3,4,5; B \rightarrow 1,2; C-1
- **b.** $A \rightarrow 2,1,4,3,5$; $B \rightarrow 1,3$; C-1
- **c.** $A \rightarrow 2,1,3,5,4$; $B \rightarrow 3,2$; $C \rightarrow 2$
- **d.** A \rightarrow 5,2,3,4,1; B \rightarrow 1,2; C \rightarrow 5

Integer

- **93.** If α, β are the roots of the equation $\lambda(x^2 x) + x + 5 = 0$. If λ_1 and λ_2 are two values of λ for which the roots α, β are related by $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{5}$, then the value of $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_3}{\lambda_3}$ must be
- **94.** If α, β, γ are such that $\alpha + \beta + \gamma = 4$, $\alpha^2 + \beta^2 + \gamma^2 = 6$, $\alpha^3 + \beta^2 + \gamma^2 = 6$ $\beta^3 + \gamma^3 = 8$, then the value of $[\alpha^4 + \beta^4 + \gamma^4]$ must be equal to: (where [.] denotes the greatest integer function)
- 95. Sum of all roots of the equation

- **96.** In copying a quadratic equation of the form $x^2 + px + q = 0$ then coefficient of x was wrongly written as -10 in place of -11 and the roots were found to be 4 and 6. If α , β are the roots of the correct equation, then the value of $\alpha^4 + \beta^4$ must be equal to:
- **97.** If α and β are the roots of the equation $x^2 + px + q = 0$ and also $x^{3900} + p^{1950}x^{1950} + q^{1950} = 0$ and if $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are the roots of $x^n + 1 + (x+1)^n = 0$, then the value of *n* must be equal to:
- **98.** The smallest value of k, for which both the roots of the equation $x^2 - 8kx + 16(k^2 - k + 1) = 0$ are real, distinct and have values at least 4, is:
- 99. Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations 3x - y - z = 0, -3x+z=0, -3x+2y+z=0 Then the number of such points for which $x^2 + y^2 + z^2 \le 100$ is:
- **100.** Let ω be the complex number $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$. Then the number of district complex number z satisfying

$$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0 \text{ is equal to:}$$

ANSWER

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
c	c	b	a	c	b	d	d	b	d
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	c	a	c	d	b	d	a	d	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
c	d	c	a	a	b	b	b	b	a
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
b	d	a	b	b	a	c	b	c	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
a	d	d	a	a	b	c	a	a	b
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
d	b	a	d	a	a	d	b	c	c
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
a	b	c	b	b,d	a,d	All	All	b,c	a,b,c
71.	72.	73.	74.	75.	76.	77.	78.	79.	80.
b,c	a,b,c	b,d	a,b	b	d	b	c	b	b
81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
с	a	b	a	a	a	с	a	b	a
91.	92.	93.	94.	95.	96.	97.	98.	99.	100.
a	a	254	7	3	4177	1950	k=2	7	1

SOLUTION

Multiple Choice Questions

(c) Given equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a) = 0 can be re-written as $3x^2 - 2(a+b+c)x$ +(ab+bc+ca)=0 $D = 4[(a+b+c)^2 - 3(ab+bc+ca)]$

$$= 4[a^{2} + b^{2} + c^{2} - ab - bc - ac]$$
$$= 2[(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] \ge 0$$

Hence both roots are always real.

- (c) Equation $x^2 + kx 24 = 0$ has one root as 3, 2.
- \Rightarrow 3² + 3k 24 = 0
- $\Rightarrow k = 5$

Put x = 3 and k = 5 in option

Only (c) gives the correct answer i.e.

- $3^2 15 + 9 = 0$
- 0 = 0
- **(b)** Since roots are equal then $[-2(1+3k)]^2$ 3. =4.1.7(3+2k)
- $1+9k^2+6k=21+14k$
- $9k^2 8k 20 = 0$

Solving, we get k = 2,-10/9

- (a) $\alpha + \beta = -a$, $\alpha\beta = b$
- $\Rightarrow \alpha \beta = \sqrt{a^2 4b} \text{ and } \gamma + \delta = -b, \ \gamma \delta = a$ $\Rightarrow \gamma \delta = \sqrt{b^2 4a}$ According to question, $\alpha \beta = \gamma \delta$ $\Rightarrow \sqrt{a^2 4b} = \sqrt{b^2 4a}$ $\Rightarrow a + b + 4 = 0$

- 5. (c) As given, if α , β be the roots of the quadratic equation, then

$$\Rightarrow \alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2}$$

$$\Rightarrow -\frac{b}{a} = \frac{b^2 / a^2 - 2c / a}{c^2 / a^2} = \frac{b^2 - 2ac}{c^2}$$

$$\Rightarrow \frac{2a}{c} = \frac{b^2}{c^2} + \frac{b}{a} = \frac{ab^2 + bc^2}{ac^2}$$

- $\Rightarrow 2a^2c = ab^2 + bc^2$ $\Rightarrow \frac{2a}{b} = \frac{b}{c} + \frac{c}{a} \frac{c}{a}, \frac{a}{b}, \frac{b}{c} \text{ are in A.P.}$
- $\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$ are in H.P.
- **6. (b)** Since roots of the equation $x^2 5x + 16 = 0$ are α , β .

$$\Rightarrow \alpha + \beta = 5, \alpha\beta = 16 \text{ and } \alpha^2 + \beta^2 + \frac{\alpha\beta}{2} = -p$$

$$\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta + \frac{\alpha\beta}{2} = -p$$

$$\Rightarrow 25 - 2(16) + \frac{16}{2} = -p$$

$$\Rightarrow$$
 $p = -1$ and $(\alpha^2 + \beta^2) \left(\frac{\alpha\beta}{2}\right) = q$

$$\Rightarrow [(\alpha + \beta)^2 - 2\alpha\beta] \frac{\alpha\beta}{2} = q$$

- \Rightarrow (25-32)8=q
- 7. (d) Let α and α^2 be the roots then $\alpha + \alpha^2 = -p$, $\alpha \cdot \alpha^2 = q$

Now
$$(\alpha + \alpha^2)^3 = \alpha^3 + \alpha^6 + 3\alpha^3(\alpha + \alpha^2)$$

$$\Rightarrow -p^3 = q + q^2 - 3pq \Rightarrow p^3 + q^2 + q(1-3p) = 0$$

8. (d) Roots of $x^2 + x + 1 = 0$ are

$$x = \frac{-1 \pm \sqrt{1-4}}{2}, = \frac{-1 \pm \sqrt{3}i}{2} = \omega, \omega^2$$

Take $\alpha = \omega, \beta = \omega^2$

$$\therefore \quad \alpha^{19} = w^{19} = w, \beta^7 = (w^2)^7 = w^{14} = w^2$$

 \therefore Required equation is $x^2 + x + 1 = 0$

9. **(b)** Given root
$$=\frac{1}{2+\sqrt{5}} = \frac{2-\sqrt{5}}{-1} = -2+\sqrt{5}$$

$$\therefore \quad \text{Other root} = -2 - \sqrt{5}$$

Again, sum of roots = -4 and product of roots = -1.

The required equation is $x^2 + 4x - 1 = 0$

10. (b) If
$$\alpha$$
 is the coincident root, then $x^2 + a \alpha + b = 0$ and $\alpha^2 + b\alpha + a = 0 \Rightarrow \frac{\alpha^2}{a^2 - b^2} = \frac{\alpha}{b - a} = \frac{1}{b - a}$

$$\alpha^2 = -(a+b)$$
, $\alpha = 1$

$$\Rightarrow$$
 $-(a+b)=1 \Rightarrow (a+b)=-1$

11. (a) Let the roots are α and 2α

Now,
$$\alpha + 2\alpha = \frac{1 - 3a}{a^2 - 5a + 3}$$
, $\alpha \cdot 2\alpha = \frac{2}{a^2 - 5a + 3}$

$$\Rightarrow 3\alpha = \frac{1 - 3a}{a^2 - 5a + 3}, \ 2\alpha^2 = \frac{2}{a^2 - 5a + 3}$$

$$\Rightarrow 2 \left[\frac{1}{9} \frac{(1-3a)^2}{(a^2-5a+3)^2} \right] = \frac{2}{a^2-5a+3}$$

$$\Rightarrow \frac{(1-3a)^2}{a^2-5a+3} = 9 \Rightarrow 9a^2-45a+27 = 1+9a^2-6a$$

$$\Rightarrow$$
 39 $a = 26 \Rightarrow a = 2/3$

12. (c) Since a = 1 > 0 therefore its minimum value is

$$=\frac{4ac-b^2}{4a}=\frac{4(1)(17)-64}{4}=\frac{4}{4}=1$$

13. (a) Equation
$$a(x^2+1)-(a^2+1)x=0$$

$$\Rightarrow ax^2 - (a^2 + 1)x + a = 0$$

$$\Rightarrow$$
 $(ax-1)(x-a) = 0 \Rightarrow x = a, \frac{1}{a}$.

14. (c) We have
$$ix^2 - 4x - 4i = 0$$

$$\Rightarrow$$
 $x^2 + 4ix - 4 = 0 \Rightarrow x^2 + 2ix + 2ix - 4 = 0$

$$\Rightarrow$$
 $(x+2i)(x+2i)=0 \Rightarrow x=-2i, -2i$.

15. (d)
$$8 \sec^2 \theta - 6 \sec \theta + 1 = 0 \implies \sec \theta = \frac{1}{2}$$

or
$$\sec \theta = \frac{1}{4}$$
, but $\sec \theta \ge 1$ or $\sec \theta \le -1$.

Hence the given equation has no solution.

16. (b) Let the required number is x

So,
$$x = \sqrt{x} + 12 \implies x - 12 = \sqrt{x} \implies x^2 - 25x + 144 = 0$$

$$\Rightarrow x^2 - 16x - 9x + 144 = 0 \Rightarrow x = 16$$

Since x = 9 does not hold the condition.

By inspection, since 16 exceeds its positive square root i.e.,4 by 12.

17. (d) Given that $x^{2/3} - 7x^{1/3} + 10 = 0$. Given equation can be written as $(x^{1/3})^2 - 7(x^{1/3}) + 10 = 0$

Let $a = x^{1/3}$, then it reduces to the equation

$$a^2 - 7a + 10 = 0 \Rightarrow (a - 5)(a - 2) = 0 \Rightarrow a = 5,2$$

Putting these values, we have $a^3 = x \implies x = 125$ and 8.

18. (a)
$$x^{\log_x(1-x)2} = 9$$

$$\Rightarrow \log_{x}(9) = \log_{x}(1-x)^{2} (:: a^{x} = N \Rightarrow \log_{a} N = x)$$

$$\Rightarrow$$
 9 = $(1-x)^2 \Rightarrow 1+x^2-2x-9=0$

$$\Rightarrow$$
 $x^2 - 2x - 8 = 0 \Rightarrow (x+2)(x-4) = 0 \Rightarrow x = -2,4$.

19. (d) Given equation $e^{\sin x} - e^{-\sin x} - 4 = 0$

Let $e^{\sin x} = y$, then given equation can be written as

$$y^2 - 4y - 1 = 0 \Rightarrow y = 2 \pm \sqrt{5}$$

But the value of $y = e^{\sin x}$ is always positive, so

$$y = 2 + \sqrt{5} \ (\because 2 < \sqrt{5})$$

$$\Rightarrow \log_e y = \log_e (2 + \sqrt{5}) \Rightarrow \sin x = \log_e (2 + \sqrt{5}) > 1$$

Which is impossible, since $\sin x$ cannot be greater than 1. Hence we cannot find any real value of x which satisfies the given equation.

20. (d)
$$x + \frac{1}{x} = 2 \Rightarrow x + \frac{1}{x} - 2 = 0 \ (\because x \neq 0)$$

$$\Rightarrow$$
 $x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1,1$

21. (c)
$$\sqrt{3x^2 - 7x - 30} + \sqrt{2x^2 - 7x - 5} = x + 5$$

 $\sqrt{3x^2 - 7x - 30} = (x + 5) - \sqrt{2x^2 - 7x - 5}$

on squaring.
$$\sqrt{2x^2-7x-5}=5$$

$$2x^2 - 7x - 30 = 0 \Rightarrow x = 6.$$

22. (d) Since quadratic equation $ax^2 + bx + c = 0$ has three distinct roots so it must be an identity.

So,
$$a = b = c = 0$$
.

23. (c)
$$x = \sqrt{2+x} \implies x^2 - x - 2 = 0$$

$$\Rightarrow$$
 $(x-2)(x+1)=0 \Rightarrow x=2,-1$

But $\sqrt{2+\sqrt{2+\dots}} \neq -1$, so it is equal to 2.

24. (a)
$$e^x = x+1 \Rightarrow 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots = x+1$$

$$\Rightarrow \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = 0; x^2 = 0, x^3 = 0, \dots = 0$$

Hence, x = 0 only one real root.

Check the equation with options then only option (a) satisfies the equation.

25. (a)
$$\log_4 \log_2(\sqrt{x+8} - \sqrt{x}) = 0$$

$$\Rightarrow$$
 $4^0 = \log_2(\sqrt{x+8} - \sqrt{x}) \Rightarrow 2^1 = \sqrt{x+8} - \sqrt{x}$

$$\Rightarrow$$
 4 = x + 8 + x - 2 $\sqrt{x^2 + 8x}$ \Rightarrow 2 $\sqrt{x^2 + 8x}$ = 2x + 4

$$\Rightarrow$$
 $x^2 + 8x = x^2 + 4 + 4x \Rightarrow 4x = 4 \Rightarrow x = 1$.

26. (b) Equations
$$px^2 + 2qx + r = 0$$
 and $qx^2 - 2(\sqrt{pr})x + q = 0$ have real roots, then from first

$$4q^2 - 4pr \ge 0 \Rightarrow q^2 - pr \ge 0 \Rightarrow q^2 \ge pr$$
 ...(i)

and from second $4(pr)-4q^2 \ge 0$ (for real root)

$$\Rightarrow pr \ge q^2$$
 ... (ii)

From (i) and (ii), we get result $q^2 = pr$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Let $b^2 - 4ac > 0, b > 0$

Now if $a > 0, c > 0, b^2 - 4ac < b^2$

$$\Rightarrow$$
 The roots are negative.

Let $b^2 - 4ac < 0$, then the roots are given by

$$x = \frac{-b \pm i\sqrt{(4ac - b^2)}}{2a}, \quad (i = \sqrt{-1})$$

Which are imaginary and have negative real part (: b > 0)

:. In each case, the roots have negative real part.

28. (b) Let first root =
$$\alpha$$
 and second root = $\frac{1}{\alpha}$

Then
$$\alpha \cdot \frac{1}{\alpha} = \frac{k}{5} \implies k = 5$$
.

29. (b) It is given that
$$\alpha\beta = 2 \Rightarrow \frac{3a+4}{a+1} = 2$$

$$\Rightarrow 3a+4=2a+2 \Rightarrow a=-2$$

Also
$$\alpha + \beta = -\frac{2a+3}{a+1}$$

Putting this value of a, we get sum of roots

$$=-\frac{2a+3}{a+1}=-\frac{-4+3}{-2+1}=-1$$
.

30. (a) Here
$$\alpha + \beta = -\frac{b}{a}$$
 and $\alpha\beta = \frac{c}{a}$

If roots are $\alpha + \frac{1}{\beta}$, $\beta + \frac{1}{\alpha}$, then sum of roots are

$$= \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \frac{\alpha + \beta}{\alpha\beta} = -\frac{b}{ac}(a+c)$$

and product
$$= \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

$$= \alpha \beta + 1 + 1 + \frac{1}{\alpha \beta} = 2 + \frac{c}{a} + \frac{a}{c} = \frac{2ac + c^2 + a^2}{ac} = \frac{(a+c)^2}{ac}$$

Hence required equation is given by

$$x^{2} + \frac{b}{ac}(a+c)x + \frac{(a+c)^{2}}{ac} = 0$$

$$\Rightarrow acx^2 + (a+c)bx + (a+c)^2 = 0.$$

Trick: Let a = 1, b = -3, c = 2, then $\alpha = 1$, $\beta = 2$

$$\therefore \quad \alpha + \frac{1}{\beta} = \frac{3}{2} \text{ and } \beta + \frac{1}{\alpha} = 3$$

Therefore, required equation must be

$$(x-3)(2x-3) = 0$$
 i.e. $2x^2 - 9x + 9 = 0$

Here (a) gives this equation on putting a = 1, b = -3, c = 2.

31. (b) Sum of roots
$$\alpha + \beta = -(a+b)$$
 and $\alpha\beta = \frac{a^2 + b^2}{2}$

$$\Rightarrow (\alpha + \beta)^2 = (a+b)^2 \text{ and } (\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$$
$$= 2ab - (a^2 + b^2) = -(a-b)^2$$

Now the required equation whose roots are

$$(\alpha + \beta)^2$$
 and $(\alpha - \beta)^2$

$$x^{2} - \{(\alpha + \beta)^{2} + (\alpha - \beta)^{2}\} x + (\alpha + \beta)^{2}(\alpha - \beta)^{2} = 0$$

$$\Rightarrow x^2 - \{(a+b)^2 - (a-b)^2\}x - (a+b)^2(a-b)^2 = 0$$

$$\Rightarrow x^2 - 4abx - (a^2 - b^2)^2 = 0$$

32. (d) Under condition,
$$-\frac{2}{\lambda} = 3 \Rightarrow \lambda = -\frac{2}{3}$$

33. (a)
$$\alpha + \beta = \frac{3}{2}$$
 and $\alpha\beta = 2$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{9}{4} - 4 = -\frac{7}{4}$$

Hence required equation $x^2 - (\alpha^2 + \beta^2)x + \alpha^2\beta^2 = 0$

$$\Rightarrow x^2 + \frac{7}{4}x + 4 = 0$$

$$\Rightarrow$$
 $4x^2 + 7x + 16 = 0$

34. (b) Let $p\alpha, q\alpha$ be the roots of the given equation $ax^2 + bx + c = 0$.

Then
$$p\alpha + q\alpha = -\frac{b}{a}$$
 and $p\alpha \cdot q\alpha = \frac{c}{a}$

From first relation,
$$\alpha = -\frac{b}{a(p+q)}$$

Substituting this value of α in second relation, we get

$$\frac{b^2}{a^2(p+q)^2} \times pq = \frac{c}{a}$$

$$\Rightarrow b^2 pq - ac(p+q)^2 = 0$$

Students should remember this question as a fact.

35. (b) α, β be the roots of $x^2 - 2x + 3 = 0$, then $\alpha + \beta = 2$ and $\alpha\beta = 3$ Now required equation whose roots are

$$\frac{1}{\alpha^2}, \frac{1}{\beta^2} \text{ is } x^2 - \left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right) x + \frac{1}{\alpha^2 \beta^2} = 0$$

$$\Rightarrow x^2 - \left(-\frac{2}{9}\right)x + \frac{1}{9} = 0 \Rightarrow 9x^2 + 2x + 1 = 0.$$

36. (a) As given, $\alpha + \beta = p$, $\alpha\beta = q$, $\alpha' + \beta' = p'$, $\alpha'\beta' = q'$

Now,
$$(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$$

$$= 2(\alpha^2 + \beta^2) + 2(\alpha'^2 + \beta'^2) - 2\alpha'(\alpha + \beta) - 2\beta'(\alpha + \beta)$$

$$= 2\{(\alpha + \beta)^2 - 2\alpha\beta + (\alpha' + \beta')^2 - 2\alpha'\beta' - (\alpha + \beta)(\alpha' + \beta')\}$$

$$= 2\{p^2 - 2q + p'^2 - 2q' - pp'\}.$$

- **37.** (c) As given, $\alpha + \beta = a + b$, $\alpha\beta = ab c$ or $ab = \alpha\beta + c$. Then the required equation is $x^2 - x(\alpha + \beta) + \alpha\beta + c = 0$ $\Leftrightarrow x^2 - x(a + b) + ab = 0$, whose roots are a, b.
- **38. (b)** Given equation can be written as $x^2 + x(p+q-2r) + pq pr qr = 0 \qquad . .$

whose roots are α and $-\alpha$, then the product of roots

$$-\alpha^2 = pq - pr - qr = pq - r(p+q) \qquad \qquad \dots (ii)$$

and sum
$$0 = p + q - 2r \Rightarrow r = \frac{p+q}{2}$$
 ... (iii)

From (ii) and (iii), we get

$$-\alpha^{2} = pq - \frac{p+q}{2}(p+q) = -\frac{1}{2} \{ (p+q)^{2} - 2pq \}$$
$$= -\frac{(P^{2} + q^{2})}{2}.$$

39. (c) α, β are the roots of the equation $x^2 - 3x + 1 = 0$ $\therefore \alpha + \beta = 3$ and $\alpha\beta = 1$

$$S = \frac{1}{\alpha - 2} + \frac{1}{\beta - 2} = \frac{\alpha + \beta - 4}{\alpha \beta - 2(\alpha + \beta) + 4} = \frac{3 - 4}{1 - 2 \cdot 3 + 4} = 1$$

and
$$P = \frac{1}{(\alpha - 2)(\beta - 2)} = \frac{1}{\alpha\beta - 2(\alpha + \beta) + 4} = -1$$

Hence the equation whose roots are $\frac{1}{\alpha - 2}$ and $\frac{1}{\beta - 2}$ are

$$x^{2} - Sx + P = 0 \Rightarrow x^{2} - x - 1 = 0$$
.

40. (b) α , β are the roots of the equation $6x^2 - 6x + 1 = 0$

$$\Rightarrow \alpha + \beta = 1, \alpha\beta = 1/6$$

$$\therefore \frac{1}{2}[a+b\alpha+c\alpha^2+d\alpha^3] + \frac{1}{2}[a+b\beta+c\beta^2+d\beta^3]$$

$$= a + \frac{1}{2}b(\alpha+\beta) + \frac{1}{2}c(\alpha^2+\beta^2) + \frac{1}{2}d(\alpha^3+\beta^3)$$

$$= a + \frac{1}{2}b + \frac{1}{2}c[(\alpha+\beta)^2 - 2\alpha\beta] + \frac{1}{2}d[(\alpha+\beta)^3]$$

$$-3\alpha\beta(\alpha+\beta)$$

$$= a + \frac{b}{2} + \frac{1}{2}c\left[(1)^2 - 2 \cdot \frac{1}{6}\right] + \frac{1}{2}d\left[(1)^3 - 3 \cdot \frac{1}{6}\right]$$

$$= \frac{a}{1} + \frac{b}{2} + \frac{c}{3} + \frac{d}{4}.$$

- **41.** (a) Given, $\frac{x-m}{mx+1} = \frac{x+n}{nx-1}$
- \Rightarrow $x^2(m-n)+2mnx+(m+n)=0$

Roots are $\alpha, \frac{1}{\alpha}$ respectively, then $\alpha \cdot \frac{1}{\alpha} = \frac{m+n}{m-n}$

- $\Rightarrow m-n=m+n \Rightarrow n=0$.
- **42.** (d) Roots of given equation $x^2 px + q = 0$ is a and b

$$i.e., \quad a+b=p \qquad \qquad \dots (i)$$

and ab = q ... (ii)

Then
$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab} = \frac{p}{q}$$
.

43. (d) $(\alpha^2 + \beta^2)^2 = (\alpha + \beta)(\alpha^3 + \beta^3)$

$$\left(\frac{b^2 - 2ac}{a^2}\right)^2 = \left(\frac{-b}{a}\right)\left(\frac{-b^2 + 3abc}{a^3}\right)$$

 $\Rightarrow 4a^2c^2 = acb^2 \Rightarrow ac(b^2 - 4ac) = 0$

As $a \neq 0 \Rightarrow c\Delta = 0$

44. (a) Given roots are 3p-2q and 3q-2p.

Sum of roots = $(3p-2q)+(3q-2p) = (p+q) = \frac{5}{3}$

Product of roots = (3p-2q)(3q-2p)

$$= 9pq - 6q^2 - 6p^2 + 4pq = 13pq - 2(3p^2 + 3q^2)$$

$$= 13\left(\frac{-2}{3}\right) - 2(5p + 2 + 5q + 2)$$

$$= 13\left(\frac{-2}{3}\right) - 2\left[5\left(\frac{5}{3}\right) + 4\right]$$

$$= \frac{-26}{3} - 2\left\lceil \frac{25}{3} + 4 \right\rceil = \frac{-100}{3}$$

Hence, equation is $3x^2 - 5x - 100 = 0$.

45. (a) Given equation is $x^2 - 2ax + a^2 + a - 3 = 0$

If roots are real, then $D \ge 0$

$$\Rightarrow$$
 $4a^2-4(a^2+a-3) \ge 0$

$$\Rightarrow$$
 $-a+3 \ge 0$

$$\Rightarrow a-3 \le 0$$

$$\Rightarrow a \leq 3$$

As roots are less than 3, hence f(3) > 0

$$9-6a+a^2+a-3>0$$

$$\Rightarrow a^2 - 5a + 6 > 0$$

$$\Rightarrow (a-2)(a-3) > 0$$

$$\Rightarrow a < 2, a > 3$$
.

Hence a < 2 satisfy all the conditions.

46. (b) Given equation can be written as

$$(6k+2)x^2 + rx + 3k - 1 = 0 ...(i)$$

and
$$2(6k+2)x^2 + px + 2(3k-1) = 0$$
 ... (ii)

Condition for common roots is

$$\frac{12k+4}{6k+2} = \frac{p}{r} = \frac{6k-2}{3k-1} = 2 \text{ or } 2r-p = 0$$

47. (c) Let roots of $x^2 - cx + d = 0$ be α, β then roots of $x^2 - ax + b = 0$ be α, α

$$\therefore \quad \alpha + \beta = c, \alpha\beta = d, \alpha + \alpha = a, \alpha^2 = b$$
Hence $2(b+d) = 2(\alpha^2 + \alpha\beta) = 2\alpha(\alpha + \beta) = ac$

48. (a) Let the roots be $\alpha, \beta, \beta, \gamma$ and γ, α respectively.

$$\therefore \quad \alpha + \beta = -p, \ \beta + \gamma = -q, \ \gamma + \alpha = -r$$

Adding all, we get $\Sigma \alpha = -(p+q+r)/2$ etc.

49. (a) Let α is the common root, so $\alpha^2 + p\alpha + q = 0$...(i)

and
$$\alpha^2 + q\alpha + p = 0$$
 ... (ii)

from (i) - (ii),

$$\Rightarrow$$
 $(p-q)\alpha + (q-p) = 0 \Rightarrow \alpha = 1$

Put the value of α in (i), p+q+1=0.

50. (b) Expressions are $x^2 - 11x + a$ and $x^2 - 14x + 2a$ will have a common factor, then

$$\Rightarrow \frac{x^2}{-22a+14a} = \frac{x}{a-2a} = \frac{1}{-14+11}$$

$$\Rightarrow \frac{x^2}{-8a} = \frac{x}{-a} = \frac{1}{-3} \Rightarrow x^2 = \frac{8a}{3} \text{ and } x = \frac{a}{3}$$

$$\Rightarrow \left(\frac{a}{3}\right)^2 = \frac{8a}{3} \Rightarrow \frac{a^2}{9} = \frac{8a}{3} \Rightarrow a = 0, 24.$$

Trick: We can check by putting the values of a from the options.

51. (d) $x^2 - 3x + 2$ be factor of $x^4 - px^2 + q = 0$

Hence
$$(x^2 - 3x + 2) = 0 \Rightarrow (x - 2)(x - 1) = 0$$

 \Rightarrow x = 2,1, putting these values in given equation

So,
$$4p-q-16=0$$
 ...(i)

and
$$p - q - 1 = 0$$
 ... (ii)

Solving (i) and (ii), we get (p, q) = (5, 4)

52. (b) If the given expression be y, then

$$y = 2x^2y + (3y-1)x + (6y-2) = 0$$

If $y \neq 0$ then $\Delta \geq 0$ for real x i.e. $B^2 - 4AC \geq 0$

or
$$-39y^2 + 10y + 1 \ge 0$$
 or $(13y + 1)(3y - 1) \le 0$

$$\Rightarrow$$
 $-1/13 \le y \le 1/3$

If y = 0 then x = -2 which is real and this value of y is included in the above range.

53. (a) $x, y, z \in R$ and distinct.

Now,
$$u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$$

$$= \frac{1}{2}(2x^2 + 8y^2 + 18z^2 - 12yz - 6zx - 4xy)$$

$$= \frac{1}{2} \left\{ x^2 - 4xy + 4y^2 \right\} + \left(x^2 - 6zx + 9z^2 \right) + \left(4y^2 - 12yz + 9z^2 \right) \right\}$$

$$= \frac{1}{2} \left\{ (x-2y)^2 + (x-3z)^2 + (2y-3z)^2 \right\}$$

Since it is sum of squares. So u is always non-negative.

54. (d) Let
$$y = \frac{(x-a)(x-b)}{(x-c)}$$
 or $y(x-c) = x^2 - (a+b)x + ab$

or
$$x^2 - (a+b+y)x + ab + cy = 0$$

$$\Delta = (a+b+y)^2 - 4(ab+cy)$$

$$= y^2 + 2y(a+b-2c) + (a-b)^2$$

Since x is real and y assumes all real values, we must have $\Delta \ge 0$ for all real values of y. The sign of a quadratic in y is same as of first term provided its discriminant $B^2 - 4AC < 0$

This will be so if $4(a+b-2c)^2-4(a-b)^2<0$

or
$$4(a+b-2c+a-b)(a+b-2c-a+b) < 0$$

or
$$16(a-c)(b-c) < 0$$
 or $16(c-a)(c-b) = -ve$

$$\therefore$$
 c lies between a and b i.e., $a < c < b$... (i)

Where a < b, but if b < a then the above condition will be b < c < a or a > c > b ... (ii)

Hence from (i) and (ii) we observe that (d) is correct answer.

55. (a) Given equation is $x^2 - 2ax + a^2 + a - 3 = 0$ If roots are real, then $D \ge 0$

 $\Rightarrow 4a^2 - 4(a^2 + a - 3) \ge 0 \Rightarrow -a + 3 \ge 0$

$$\Rightarrow a-3 \le 0 \Rightarrow a \le 3$$

As roots are less than 3, hence f(3) > 0

$$9-6a+a^2+a-3>0 \implies a^2-5a+6>0$$

$$\Rightarrow$$
 $(a-2)(a-3) > 0 \Rightarrow$ either $a < 2$ or $a > 3$

Hence a < 2 satisfy all.

56. (a) Let f'(x) denotes the quadratic expression $f'(x) = 3ax^2 + 2bx + c$, whose antiderivative be denoted by $f(x) = ax^3 + bx^2 + cx$

Now f(x) being a polynomial in R, f(x) is continuous and differentiable on R. To apply Rolle's theorem.

We observe that f(0) = 0 and f(1) = a + b + c = 0, by hypothesis. So there must exist at least one value of x, say $x = \alpha \in (0,1)$ such that $f'(\alpha) = 0 \iff 3a\alpha^2 + 2b\alpha + c = 0$

That is, $f'(x) = 3ax^2 + 2bx + c = 0$ has at least one root in [0, 1].

- **57. (d)** Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x$; f(0) = 0; $f(\alpha) = 0$
- f'(x) = 0, has at least one root between $(0, \alpha)$
- i.e., equation $na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + + a_1 = 0$ has a positive root smaller than α .

58. (b)
$$f(x) = x^5 - 6x^2 - 4x + 5 = 0$$

2 changes of sign \Rightarrow maximum two positive roots.

$$f(x) = x^5 - 6x^2 - 4x + 5 = 0$$

1 changes of sign \Rightarrow maximum one negative roots.

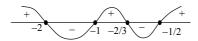
total maximum possible number of real roots = 2 + 1 = 3.

59. (c) Given
$$\frac{2x}{2x^2 + 5x + 2} - \frac{1}{x+1} > 0$$

$$\Rightarrow \frac{2x^2 + 2x - 2x^2 - 5x - 2}{(2x+1)(x+2)(x+1)} > 0 \Rightarrow \frac{-3x - 2}{(2x+1)(x+2)(x+1)} > 0$$

$$\Rightarrow \frac{-3(x+2/3)}{(x+1)(x+2)(2x+1)} > 0 \Rightarrow \frac{(x+2/3)}{(x+1)(x+2)(2x+1)} < 0$$

Equating each factor equal to 0,



We get x = -2, -1, -2/3, -1/2

$$x \in]-2,-1[\cup]-2/3,-1/2$$

$$\Rightarrow$$
 -2/3 < x < -1/2 or -2 < x < -1

60. (c)
$$x^2 - 3x + 2 > 0$$
 or $(x - 1)(x - 2) > 0$

$$\therefore x \in (-\infty, 1) \cup (2, \infty) \qquad \dots (i)$$

Again $x^2 - 3x - 4 \le 0$ or $(x-4)(x+1) \le 0$

$$\therefore \quad x \in [-1, 4] \qquad \qquad \dots (ii)$$

From eq. (i) and (ii), $x \in [-1,1) \cup (24]$

$$\Rightarrow$$
 $-1 \le x < 1$ or $2 < x \le 4$

61. (a) We have
$$|x-2|^2 + |x-2| - 6 = 0$$

Let
$$|x-2| = X$$
; $X^2 + X - 6 = 0$

$$\Rightarrow X = \frac{-1 \pm \sqrt{1 + 24}}{2} = 2, -3$$

- X = 2 and X = -3
- \therefore |x-2| = 2 and |x-2| = -3, which is not possible.

$$\Rightarrow$$
 $x-2=2$

or
$$x - 2 = -2$$

$$\therefore$$
 $x = 4$

or
$$x = 0$$

62. (b) Case (i): If $x + 2 \ge 0$

i.e.
$$x \ge -2$$
,

We get $x^2 - x - 2 + x > 0$

- $\Rightarrow x^2 2 > 0$
- $\Rightarrow (x-\sqrt{2})(x+\sqrt{2})>0$

$$\Rightarrow x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$

But $x \ge -2$

$$\therefore x \in [-2, -\sqrt{2}) \cup (\sqrt{2} \infty) \qquad \dots (i)$$

Case (ii): x + 2 < 0 *i.e.* x < -2,

then
$$x^2 + x + 2 + x > 0$$

$$\Rightarrow x^2 + 2x + 2 > 0$$

$$\Rightarrow$$
 $(x+1)^2 + 1 > 0$. Which is true for all x

$$\therefore x \in (-\infty, -2)$$
 ... (ii)

From (i) and (ii),

we get,
$$x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$$

- 63. (c) Expression is always +ve,
- So $t^2x^2 + |x| + 9 \neq 0$.

Hence roots of given equation does not exist.

64. (b) We have $\log_4(x-1) = \log_2(x-3)$

$$(x-1) = (x-3)^2$$

$$\Rightarrow x - 1 = x^2 + 9 - 6x$$

$$\Rightarrow x^2 - 7x + 10 = 0$$

$$\Rightarrow (x-5)(x-2) = 0$$

 $x = 5 \text{ or } x = 2$

But
$$x-3 < 0$$
, when $x = 2$.

$$\therefore$$
 Only solution is $x = 5$.

Hence number of solution is one.

NCERT Exemplar Problems

More than One Answer

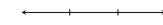
65. (b, d) Plan: Concepts of curve tracing are used in this question.

Number of roots are taken out from the curve traced.

Let
$$y = x^5 - 5x$$

- (a) As $x \to \infty$, $y \to \infty$ and as $x \to -\infty$, $y \to -\infty$
- (b) Also, at x = 0, y = 0, thus the curve passes through the origin.

(c)
$$\frac{dy}{dx} = 5x^4 - 5 = 5(x^4 - 1)$$

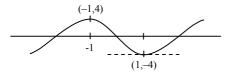


$$=5(x^2-1)(x^2+1)=5(x-1)(x+1)(x^2+1)$$

Now, $\frac{dy}{dx} > 0$ in $(-\infty, -1) \cup (1, \infty)$, thus f(x) is increasing in

these interval. Also, $\frac{dy}{dx} < 0$ in (-1, 1), thus decreasing in

- (d) Also, at x = -1, dy/dx its sign from +ve to -ve.
- \therefore x = -1 is point of local minima.



Local maximum value, $y = (-1)^5 - 5(-1) = 4$

Local minimum value, $y = (1)^5 - 5(1) = -4$

Now, let y = -a

As, evident from the graph, if $-a \in (-4, 4)$

i.e.,
$$a \in (-4, +4)$$

Then, f(x) has three real roots and if -a > 4

Or -a < -4, then f(x) has one real root. i.e., for a < -4 or a > 4, f(x) has one real root.

66. (a, d) Let $f(x) = ax^2 + bx + c > 0. \forall x \in R$

$$\Rightarrow b^2 - 4ac < 0$$

And
$$a > 0$$
 ...(i)

Now,
$$g(x) = f(x) - f'(x) + f''(x)$$

= $ax^2 + (b-2a)x + (2a-b+c)$

Discriminant = $(b-2a)^2 - a(2a-b+c)$

$$=(b^2-4ac)-4a^2<0$$
 (from Eq. (i)]

$$\Rightarrow$$
 $g(x) > 0, \forall x \in R \Rightarrow g(x) \ge 0, \forall x \in R.$

67. (a, b, c, d) Given equation is $3x^3 + x^2 - 7x + \lambda = 0$

Let
$$f(x) = 3x^3 + x^2 - 7x + \lambda$$

$$\therefore f'(x) = 9x^2 + 2x - 7$$

$$=9(x+1)(x-7/9)$$

For max or min f'(x) = 0

$$\therefore x = -1, x = 7/9 \frac{7}{9} \in [0,1]$$

Hence Eq. (i) has two distinct real roots in [0, 1] for all values of λ

68. (a, b, c, d) Given equation is $(x^2 + 1)^2 = x(3x^2 + 4x + 3)$

$$\Rightarrow x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$$

$$\Rightarrow x^2 \left(x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2} \right) = 0$$

$$\Rightarrow x \neq 0$$

$$\therefore x^2 + \frac{1}{x^2 - 3} \left(x + \frac{1}{x} \right) - 2 = 0$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) - 4 = 0$$

$$\Rightarrow \left(x+\frac{1}{x}-4\right)\left(x+\frac{1}{x}+1\right)=0$$

Or
$$(x^2 - 4x + 1)(x^2 + x + 1) = 0$$

Or
$$\{(x-2)^2-3\}\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)=0$$

$$\therefore x = 2 \pm \sqrt{3}, \frac{-1 \pm i\sqrt{3}}{2}$$

69. (b, c) Given equation is

$$Ax^2 - |G|x - H = 0 \qquad \dots (i)$$

Let α, β are the roots then $\alpha + \beta = \frac{|G|}{A}$ and $\alpha\beta = -\frac{H}{A}$

Since,
$$A > |G| > H$$
 or $1 > \frac{|G|}{A} > \frac{H}{A}$

Hence, A is positive

 \therefore $\alpha + \beta$ and $\alpha\beta$ has positive and negative fraction respectively.

Also,
$$|G|^2 = AH$$
 ...(ii)

Discriminant of Equation (i) = $(-|G|)^2 - 4 \cdot A \cdot (-H)$

$$= |G|^2 + 4AH = 5|G|^2 > 0$$
 [From Equation (ii)]

Hence roots of Eq. (i) are and distinct.

$$\alpha + \beta > 0$$
 and $\alpha\beta < 0$

One root is positive and other is negative and at least one root is a fraction. So, the equation has a negative fraction root.

70. (a, b, c) If roots is
$$\alpha, \frac{1}{\alpha}$$

$$\therefore \quad \alpha \cdot \frac{1}{\alpha} = \frac{c}{a} \Rightarrow c = a$$

Since, $(|a|-|b|)^2 \ge 0$ or $|a| \ge |b|$

But a = c, $\therefore |c| \ge |b|$.

71. **(b, c)**
$$|x+1||x-1|=a^2-2a-3$$

$$\Rightarrow |x^2-1|=a^2-2a-3$$

$$\therefore a^2 - 2a - 3 \ge 0 \Rightarrow (a+1)(a-3) \ge 0$$

$$\therefore$$
 $a \in (-\infty, -1) \cup [3, \infty)$

$$\therefore B^2 - 4AC > 0 \implies a^4 > 4b^2, \text{ (a) is correct.}$$

If $f(x) = x^2 + a^2x + b^2$ (: c lie outside the roots)

$$f(c) > 0$$
, then $c^2 + a^2c + b^2 > 0$

(b) is correct. Also (x- coordinate of vertex) > c

$$\Rightarrow -\frac{a^2}{2} > c$$

: (c) is correct.

73. **(b, d)**
$$|\alpha - \beta| = 3$$
 and $|\alpha|^2 + |\beta|^2 = 29$. $|\alpha - \beta|^2 = 9$

$$\Rightarrow \alpha^2 + \beta^2 - 2\alpha\beta = 9$$

$$\therefore \quad \alpha\beta = 10 \ (\because \alpha^2 + \beta^2 = 29)$$

Then
$$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta = 29 + 20 = 49$$

$$\alpha + \beta = \pm 7$$

$$\therefore$$
 Required equation is $x^2 \pm 7x + 10 = 0$

74. (a, b) Let
$$A = a + 2b - 3c$$
, $B = b + 2c - 3a$,

$$C = c + 2a - 3b$$

A + B + C = 0Hence, roots are 1 and $\frac{C}{A}$

Assertion and Reason

- **75. (b)** If each of the three equation has real roots, then $b^2 4ac \ge 0, c^2 4ab \ge 0$ and $a^2 4ab \ge 0$
- $\Rightarrow a^2b^2c^2 \ge 64a^2b^2c^2$. A contradiction.
- **76.** (d) If α is a repeated root of f(x) = 0, then $f(\alpha) = 0$ and $f'(\alpha) = 0$.

$$\therefore 1 + \frac{\alpha}{1} + \frac{\alpha^2}{2!} + \frac{\alpha^3}{3!} + \frac{\alpha^4}{4!} = 0 \text{ and } 1 + \frac{\alpha}{1} + \frac{\alpha^2}{2!} + \frac{\alpha^3}{3!} = 0$$

$$\Rightarrow \frac{\alpha^4}{4!} = 0 \Rightarrow \alpha = 0$$
. But $\alpha = 0$ does not satisfy $f(x) = 0$.

77. **(b)** Let
$$x_1, x_2, x_3, x_4$$
 be four positive roots of $x^4 - 4x^3 + ax^2 -bx + 1 = 0$, then $x_1 + x_2 + x_3 + x_4 = 4$ and $x_1x_2x_3x_4 = 1$.

$$\Rightarrow \frac{1}{4}(x_1 + x_2 + x_3 + x_4) = (x_1 x_2 x_3 x_4)^{1/4}$$

That is A.M. = G.M. This is possible if and only if $x_1 = x_2 = x_3 = x_4 = 1$. Thus the given equation becomes

$$(x-1)^2 = 0 \Rightarrow a = 6, b = 4.$$

Reason follows immediately from the Rolle's theorem.

78. (c) By multiplying a,b,c by an appropriate natural number, we may assume that a, b, c are integers. We may further assume that a, b, c have no factor in common.

Now,
$$a + b2^{1/3} + c2^{2/3} = 0$$

$$\Rightarrow a^3 = -2(b+2^{1/3}c)^3 = -2(b^3+2c^3-3abc)$$

$$\Rightarrow$$
 2 | $a^2 \Rightarrow$ 2 | $a \Rightarrow a = 2a_1$ for some $a_1 \in I$.

Thus,
$$4a_1^3 = -(b^3 + 2c^3 - 6a_1bc)$$

$$\Rightarrow b^3 = -2(2a_1^3 + c^3 - 3a_1bc)$$

$$\Rightarrow$$
 2 | $b^3 \Rightarrow 2$ | $b \Rightarrow b = 2b_1$ for some $b_1 \in I$.

Therefore $4b_1^3 = -(2a_1^3 + c^3 - 6a_1b_1c)$

$$\Rightarrow$$
 $c^3 = -2(a_1^3 + 2b_1^3 - 3a_1b_1c)$

$$\Rightarrow 2 \mid c^3 \Rightarrow 2 \mid c$$
.

This is a contradiction. Reason is false as $2^{\frac{1}{3}}$ is irrational but is a root of $x^3 - 2 = 0$.

79. (b) We have
$$f'(x) = 2ax + 2b = 2a\left(x + \frac{b}{a}\right)$$

Not that f'(x)=0 for x=-b/a and f'(x)<0 for x<-b/a and f'(x)>0 for x>-b/a

This shows that f is strictly decreasing on $(-\infty, -b/a)$ and strictly increasing on $(-b/a, \infty)$.

Also note that f has a local minimum at x = -b/a.

We have
$$\min f(x) = f\left(\frac{-b}{a}\right) = \frac{b^2 - ac}{a}$$

If
$$b^2 - ac > 0$$
 and $a > 0$, then $f(x) \ge \min f(x) > 0$

Thus, Assertion is true and Reason is true. However, Reason alone is not the complete explanation for Reason.

80. (b) Consider
$$f: R \to R$$
 defined by $f(x) = \frac{1}{3}ax^2 + \frac{1}{2}bx^2 + cx$

Then is f continuous and differentiable on R and $f(1)\frac{1}{2}a + \frac{1}{2}b + c = \frac{1}{2}(2a + 3b + 6c) = 0$ and f(0) = 0. By the

Rolle's theorem there exists $\alpha \in (0,1)$ such that $f'(\alpha) = 0$

But
$$f'(x) = ax^2 + bx + c$$

Thus, $ax^2 + bx + c = 0$ has at least one root in (0, 1)

Reason is true but its not the correct explanation of Assertion.

81. (c) If $a \ne 0$, we rewrite f(x) as follows:

$$f(x) = a\left\{x^2 + \frac{b}{a}x + \frac{c}{a}\right\} = a\left\{\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}\right\}$$
$$f\left(-\frac{b}{2a} + i\right) = a\left\{(i)^2 + \frac{4ac - b^2}{4a^2}\right\} = a\left\{1 + \frac{4a - b^2}{4a^2}\right\}$$

Which is real? This contradicts our assumption that is non real for non-real x. Therefore, a = 0. Reason is false since -i is a root of $x^2 + x + 1 + i = 0$ but i is not a root of $x^2 + x + 1 + i = 0$.

82. (a) α, β are roots of $ax^2 + bx + c = 0 \Leftrightarrow \alpha, \beta$ are roots of $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$. As coefficient of $x^2 > 0$, graph of the

parabola $y = x^2 + \frac{b}{a}x + \frac{c}{a}$ for $\alpha < x < \beta$ lies below the x-axis.

As
$$-1, \in (\alpha, \beta)$$
, $(-1)^2 + \frac{b}{a}(-1) + \frac{c}{a} < 0$ and $1^2 + \frac{b}{a} + \frac{c}{a} < 0$

$$\Rightarrow 1 - \frac{b}{a} + \frac{c}{a} < 0 \text{ and } 1 + \frac{b}{a} + \frac{c}{a} < 0$$

$$\Rightarrow \frac{1}{a}(a+|b|+c)<0$$

Thus, a+|b|+c and a have the opposite signs.

83. (b) Given, $x^2 + 2px + q = 0$

$$\therefore \quad \alpha + \beta = -2p \qquad \qquad \dots (i)$$

$$\alpha \beta = q \qquad \qquad \dots (ii)$$

$$\alpha\beta = q \qquad \qquad \dots (ii)$$

and $ax^2 + 2bx + c = 0$

$$\therefore \quad \alpha + \frac{1}{\beta} = -\frac{2b}{a} \qquad \qquad \dots (iii)$$

and
$$\frac{\alpha}{\beta} = \frac{c}{a}$$
 ...(iv)

Now, $(p^2 - q)(b^2 - ac)$

$$= \left[\left(\frac{\alpha + \beta}{-2} \right)^2 - \alpha \beta \right] \left[\left(\frac{\alpha + \frac{1}{\beta}}{2} \right)^2 - \frac{\alpha}{\beta} \right] a^2$$
$$= \frac{(\alpha - \beta)^2}{16} \left(\alpha - \frac{1}{\beta} \right)^2 \cdot a^2 \ge 0$$

Assertion is true

Again, now
$$pa = -\left(\frac{\alpha+\beta}{2}\right)a = -\frac{\alpha}{2}(\alpha+\beta)$$

and
$$b = -\frac{a}{2} \left(\alpha + \frac{1}{\beta} \right)$$

Since, $pa \neq b$

$$\Rightarrow \alpha + \frac{1}{\beta} \neq \alpha + \beta$$

 $\Rightarrow \beta^2 \neq 1, \beta \neq \{-1,0,1\}, \text{ b which is correct. Similarly, if}$

$$\Rightarrow a\frac{\alpha}{\beta} \neq a\alpha\beta$$

$$\Rightarrow \alpha \left(\beta - \frac{1}{\beta}\right) \neq 0$$

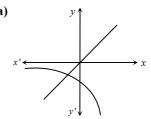
$$\Rightarrow \alpha \neq 0 \text{ and } \beta - \frac{1}{\beta} \neq 0$$

$$\Rightarrow \beta \neq \{-1,0,1\}$$

Reason is true. Both Assertion and Reason are true. But Reason does not explain Assertion.

Comprehension Based

84. (a)



Let y = x intersect the curve $y = ke^x$ at exactly one point when $k \leq 0$.

85. (a) Let
$$f(x) = ke^x - x$$

$$f'(x) = ke^x - 1 = 0 \Rightarrow x = -\ln k$$

$$f''(x) = ke^x$$

$$f''(x)]_{x=-\ln k} = 1 > 0$$

Hence,
$$f(-\ln k) = 1 + \ln k$$

For one root of given equation

$$1 + \ln k = 0 \implies k = \frac{1}{e}$$

86. (a) For two distinct roots,

$$1 + \text{In } k < 0 \ (k > 0)$$

In
$$k < -1$$
 $k < 1/e$

Hence,
$$k \in \left(0, \frac{1}{e}\right)$$

87. (c) Given,
$$f(x) = 4x^3 + 3x^2 + 2x + 1$$

$$f'(x) = 2(6x^2 + 3x + 1)$$

$$D = 9 - 24 < 0$$

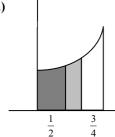
Hence, f(x) = 0 has only one real root.

$$f\left(-\frac{1}{2}\right) = 1 - 1 + \frac{3}{4} - \frac{4}{8} > 0$$

$$f\left(-\frac{3}{4}\right) = 1 - \frac{6}{4} + \frac{27}{16} - \frac{108}{64} = \frac{64 - 96 + 108 - 108}{64} < 0$$

$$f(x)$$
 changes its sign in $\left(-\frac{3}{4}, -\frac{1}{2}\right)$, hence

$$f(x) = 0$$
 has a root in $\left(-\frac{3}{4}, -\frac{1}{2}\right)$



$$\int_{0}^{1/2} f(x)dx < \int_{0}^{t} f(x)dx < \int_{0}^{3/4} f(x)dx$$

Now,
$$\int f(x)dx = \int (1+2x+3x^2+4x^3)dx$$

$$= x + x^2 + x^3 + x^4$$

$$\Rightarrow \int_{0}^{1/2} f(x) dx = \frac{15}{16} > \frac{3}{4}$$

$$\int_{0}^{3/4} f(x)dx = \frac{530}{256} < 3$$

89. (b)

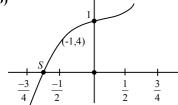


Figure is self explanatory

Match the Column

90. (a) (A) Case (i): If
$$x > 3$$
, the $x + 2y = 6$, $x - 3 = y$ We get $x = 4$, $y = 1$

Case (ii): If
$$x < 3$$
, then $\begin{cases} x + 2y = 6 \\ 3 - 4 = y \end{cases}$ $y = 3, x = 0$

Hence, the only solution are (0, 3) and (4, 1) i.e., m = 2

(B) Since,
$$2^y$$
 is positive for all values of y , then $(x-8)(x-10)$ should be positive, Therefore, $x > 10$ or $x < 8$

Since, 2^y is a power of 2, x-10 and x-8 should be both powers of 2.

$$\therefore$$
 $x = 12$ and $x = 6$ are only values of x that fit for this condition.

Hence, (12, 3) and (6, 3) are the only solutions.

ie,
$$n=2$$

(C)
$$x+2y=2xy \Rightarrow x=2y(x-1)$$

or
$$2y = \frac{x}{x-1} = 1 + \frac{1}{x-1}$$

$$\therefore$$
 $x-1=1,-1 \text{ or } x=2,0$

Then
$$2y = 2,0 \Rightarrow y = 1,0$$

Hence, the only solutions are (2, 1) and (0, 0) ie, p = 2

$$P \to m = \frac{n+p}{2} + \frac{2+2}{2} = 2, Q \to n = \sqrt{np} = \sqrt{4} = 2,$$

$$R \to p = \frac{2mn}{m+n} = \frac{8}{4} = 2, S \to n = \frac{2^2 + 2^2}{4} = 2.$$

$$T \rightarrow \sqrt{n\sqrt{p\sqrt{n\sqrt{p\sqrt{n...\infty}}}}} = \sqrt{2\sqrt{2\sqrt{2\sqrt{2...}}}} = 2^{1/2+1/4+1/8+1}$$

$$=2^{\frac{1}{\frac{2}{1-1/2}}}=2=m$$

91. (a) (A)Let $f(x) = ax^2 + bx + c$

Then f(1) = a + b + c = -c (: a + b + 2c = 0) and f(0) = c

:.
$$f(0)f(1) = -c^2 < 0$$
 (: $c \neq 0$)

 \therefore Equation f(x) = 0 has a root in (0, 1)

f(x) = 0 has a root in (0, 2) (T) as well as in (-1, 1).

(B) Let
$$f'(x) = ax^2 + bx + c$$

$$f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx + d = \frac{(2ax^3 + 3bx^2 + 6cx)}{6} + d$$

$$f(0) = d$$

and
$$f(-1) = \frac{(-2a+3b-6c)}{6} + d = -\frac{(2a-3b+6c)}{6} + d$$

$$= 0 + d \ (\because 2a - 3b + 6c = 0) = d$$

Hence,
$$f(0) = f(-1)$$

Hence, f'(x) = 0 has at least one root in (-1, 0).

$$\therefore f(x) = 0 \text{ has a root in } (-2, 0) (P) \text{ as well as in } (-1 1).$$

(C) Let
$$f(x) = \int (1 + \cos^8 x)(ax^2 + bx + c)dx$$

Given
$$f(1) - f(0) = f(2) - f(0) \implies f(1) = f(2)$$

$$\Rightarrow$$
 $f'(x) = 0$ has at least one root in $(0, 1)$

$$\Rightarrow$$
 $(1+\cos^8 x)(ax^2+b+c)=0$ has at least one root in (0, 1)

 $\Rightarrow ax^2 + bx + c = 0$ has at least one root in (0, 1)

 \therefore $ax^2 + bx + c = 0$ has a root in (0,2) (T) as well as in (-1, 1)

92. (a) (A) a(b-c)+b(c-a)+c(a-b)=0

 \therefore x=1 is a root of $a(b-c)x^2+b(c-a)x+c(a-b)=0$

: Roots are equal then other root is also 1.

 $\therefore \quad \text{Product of roots} = \frac{c(a-b)}{a(b-c)} = 1$

 $\therefore b = \frac{2ac}{a+c} \Rightarrow a,b,c \text{ an in HP}.$

Also, $(d + a - b)^2 + (d + b - c)^2 = 0$ which is possible only when

d + a - b = 0, d + b - c = 0

 \therefore b-a=c-b=d

ie, 2b = a + c

 $\Rightarrow a,b,c$ are in AP

 \therefore a,b,c are in AP and HP then a = b = c then a, b, c are also in GP

 $\therefore a = b = c$

 $\therefore a+b+c\neq 0$ (P)

(B) (b-c)+(c-a)+(a-b)=0

 \therefore x = 1 is a root of $(b-c)x^2 + (c-a)x + (a-b) = 0$

: Roots are equal

:. Other root is also 1.

Then product of roots $=\frac{a-b}{b-c}=1$

 $b = \frac{a+c}{2} \implies a,b,c$ are in AP.

and $a+b+c \neq 0$ (P)

(C) Let α be a common positive root, then

 $\alpha^2 + p\alpha + 12 = 0 \qquad \qquad \dots (i)$

 $\alpha^2 + q\alpha + 15 = 0 \qquad \qquad \dots (ii)$

and $\alpha^2 + (p+q)\alpha + 36 = 0$...(iii)

Applying Eqs. (i) + (ii) - (iii), we get

 $\alpha^2 + 27 - 36 = 0$

or $\alpha^2 = 9 \implies \alpha = 3 \ (\because \alpha \text{ is positive})$

Let other root of Eq. (i) is a (given)

then $a \times 3 = 12$

 $\Rightarrow a = 4$

Let other root of Eq. (ii) is b (given) then $b \times 3 = 15$

 $\Rightarrow h = 5$

and let other root of Eq. (iii) is c (given) then $c \times 3 = 36$

 \Rightarrow c = 12

 $\therefore a+b+c=21\neq 0$

Integer

93. (254) The given equation can be written as

$$\lambda x^2 - (\lambda - 1)x + 5 = 0$$

 $\therefore \quad \alpha + \beta = \frac{\lambda - 1}{\lambda}, \, \alpha \beta = \frac{5}{\lambda} \text{ but given } \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{5}$

or $5(\alpha^2 + \beta^2) = 4\alpha\beta$

or $5\{(\alpha+\beta)^2 - 2\alpha\beta\} = 4\alpha\beta$ or $5\left\{\left(\frac{\lambda-1}{\lambda}\right)^2 - \frac{10}{\lambda}\right\} = \frac{20}{\lambda}$

or $\lambda^2 - 16\lambda + 1 = 0$

It is a quadratic equation in λ , let roots be λ_1 and λ_2 ,

then $\lambda_1 + \lambda_2 = 16$, $\lambda_1 \lambda_2 = 1$

 $\therefore \frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1} = \frac{\lambda_1^2 + \lambda_2^2}{\lambda_1 \lambda_2} = \frac{(\lambda_1 + \lambda_2)^2 - 2\lambda_1 \lambda_2}{\lambda_1 \lambda_2}$

$$=\frac{(16)^2-2.1}{1}=256-2=254$$

94. (7) We have

$$(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$

$$\Rightarrow$$
 16 = 6 + 2($\alpha\beta$ + $\beta\gamma$ + $\gamma\alpha$)

 $\therefore \quad \alpha\beta + \beta\gamma + \gamma\alpha = 5$

Also, $\alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$

$$= (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha)$$

 $\Rightarrow 8-3\alpha\beta\gamma = 4(6-5)$

or $3\alpha\beta\gamma = 4$ or $\alpha\beta\gamma = 4/3$

Now, $(\alpha^2 + \beta^2 + \gamma^2)^2 = \Sigma \alpha^4 + 2\Sigma \beta^2 \gamma^2$

$$= \sum \alpha^4 + 2\{(\sum \beta \gamma^2) - 2\alpha \beta \gamma \sum \alpha\}$$

$$(6)^{2} = \Sigma \alpha^{4} + 2 \left\{ 25 - 2 \cdot \frac{4}{3} \cdot 4 \right\}$$

$$\Sigma \alpha^4 = 36 - 50 + \frac{64}{3} = \frac{64}{3} - 14 = \frac{22}{3}$$

$$\therefore \quad [\alpha^4 + \beta^4 + \gamma^4] = \left\lceil \frac{22}{3} \right\rceil = 7$$

95. (3) Rewrite the given equation

$$\sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2\sqrt{x + 2x}}}}} = x \qquad \dots (i)$$

On replacing the last latter x on the LHS of equation (i) by the value of x expressed by equation (i) we obtain

$$x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2x}}}}$$
(2*n* radical signs)

Further, let us replace the last latter x by the same expression; again and again yields

$$\therefore x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2x}}}}$$
(3n radical signs)

$$x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{(x + 2x)}}}}$$
(4n radical signs)

We can write $x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots}}}$

$$= \lim_{N \to \infty} \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2x}}}}$$
 (*N* radical signs)

If follows that,

$$x = \sqrt{x + 2\sqrt{x + 2\sqrt{x + \dots}}} = \sqrt{x + 2\left(\sqrt{x + 2\sqrt{x + \dots}}\right)} = \sqrt{x + 2x}$$

Hence,
$$x^2 = x + 2x$$
 $\Rightarrow x^2 - 3x = 0$

Therefore, x = 0, 3 : Sum of roots = 0 + 3 = 3

96. (4177) Correct equation is
$$x^2 - 11x + q = 0$$
 ...(*i*)

Incorrect equation is $x^2 - 10x + q = 0$...(ii)

Given roots of equation (ii) are 4 and 6

 \therefore Product of roots of the incorrect equation is 4×6

i.e.,
$$q = 4 \times 6 = 24$$

From equation (i), correct equation is $x^2 - 11x + 24 = 0$

$$\therefore$$
 $x = 3, 8 \text{ i.e.}, \alpha = 3, \beta = 8$

$$\therefore \quad \alpha^4 + \beta^4 = 3^4 + 8^4 = 81 + 4096 = 4177$$

97. (1950)
$$\alpha, \beta$$
 are the roots of $x^2 + px + q = 0$

Then
$$\alpha + \beta = -p$$
, $\alpha\beta = q$...(i)

Also α, β are roots of $x^{3900} + p^{1950}x^{1950} + q^{1950} = 0$

$$\therefore \quad \alpha^{1950} + \beta^{1950} = -p^{1950} \text{ and } \alpha^{1950} \beta^{1950} = q^{1950} \qquad \dots (ii)$$

Now, α/β is a root of $x^n + 1 + (x+1)^n = 0$

Then
$$\left(\frac{\alpha}{\beta}\right)^n + 1 + \left(\frac{\alpha}{\beta} + 1\right)^n = 0 \implies \alpha^n + \beta^n + (\alpha + \beta)^n = 0$$

$$\Rightarrow \alpha^n + \beta^n + (-p)^n = 0 \ (\because \alpha + \beta = -p)$$

or
$$\alpha^n + \beta^n = -(-p)^n$$
 ...(iii)

From equation (ii) and (iii), we get n = 1950

98.
$$(k = 2)$$
 Given, $x^2 - 8kx + 16(k^2 - k + 1) = 0$

Now,
$$D = 64\{k^2 - (k^2 - k + 1)\} = 64(k - 01) > 0$$

$$-\frac{b}{2a} > 4 \Rightarrow \frac{8k}{2} > 4 \Rightarrow k > 1$$

$$f(4) \ge 0$$
 $16 - 32k + 16(k^2 - k + 1) \ge 0$

$$\Rightarrow$$
 $k^2 - 3k + 2 \ge 0 \Rightarrow (k-2)(k-1) \ge 0$

$$\Rightarrow$$
 $k \le 1$ or $k \ge 2$ Hence, $k = 2$.

99. (7) Given,
$$3x - y - z = 0$$
 ...(i)

$$-3x + 2y + z = 0 \qquad \qquad \dots (ii)$$

and
$$-3x + z = 0$$
 ...(iii)

On adding Equation (i) and (ii), we get y = 0

So,
$$3x = z$$

Now,
$$x^2 + y^2 + z^2 \le 100 \implies x^2 + (3x)^2 + 0 \le 100$$

$$\Rightarrow$$
 10 $x^2 \le 100 \Rightarrow x^2 \le 10 \ x = -3, -2, -1, 0, 1, 2, 3$

So, Number of such 7 points are possible.

100. (1) Let
$$A = \begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix}$$

Now,
$$A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and Tr $(A) = 0$, $|A| = 0$

$$\therefore A^3 = 0$$

$$\Rightarrow \begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = |A+zI| = 0$$

$$\rightarrow$$
 $\tau^3 - 0$

 \Rightarrow z = 0, the number of z satisfying the given equation is 1.