RACE # 11 SEQUENCE & SERIES MATHEMATICS

ARITHMETIC PROGRESSION - I

- 1. Show that the sequence log a, log(ab), log(ab²), log (ab³),..... is an A.P. Find its nth term.
- 2. Which term of the sequence 4, 9, 14, 19,..... is 124?
- Which term of the sequence 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$,..... is the first negative term? 3.
- If m times the m^{th} term of an A.P. is equal to n times its n^{th} term, show that the $(m + n)^{th}$ term of the A.P. is zero. 4.
- If the p^{th} term of an A.P. is q and the q^{th} term is p, prove that its n^{th} term is (p + q n). 5.
- If $a_1, a_2, a_3, \ldots, a_n$ be an A.P. of non-zero terms, prove that $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \ldots + \frac{1}{a_{n-1} a_n} = \frac{n-1}{a_n a_n}$. 6.
- 7. The sum of three numbers in A.P. is -3, and their product is 8. Find the numbers.
- 8. Divide 32 into four parts which are in A.P. such that the product of extremes is to the product of means is 7:15.
- 9. Find the sum of the series : $5 + 13 + 21 + \dots + 181$.
- 10. Find the sum of all three digit natural numbers, which are divisible by 7.
- Find the sum of first 20 terms of an A.P., in which 3rd term is 7 and 7th term is two more than thrice of its 3rd term. 11.
- If S_n denotes the sum of first n terms of A.P. and $\frac{S_{3n} S_{n-1}}{S_{2n} S_{2n-1}} = 31$, then n is equal to **12.**
- Find the number of terms in the series 20, $19\frac{1}{3}$, $18\frac{2}{3}$,.... of which the sum is 300, explain the double answer. **13.**
- The sum of the first p, q, r terms of an A.P. are a, b, c respectively. Show that $\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q) = 0$. 14.
- 15. The ratio of the sum of n terms of two A.P.'s is (7n + 1) : (4n + 27). Find the ratio of their mth terms.
- 16. If a, b, c are in A.P., prove that the following are also in A.P.

(i)
$$b + c$$
, $c + a$, $a + b$

(ii)
$$a\left(\frac{1}{b} + \frac{1}{c}\right)$$
, $b\left(\frac{1}{c} + \frac{1}{a}\right)$, $c\left(\frac{1}{a} + \frac{1}{b}\right)$

- If a^2 , b^2 , c^2 are in A.P., then prove that $\frac{1}{b+c'} \cdot \frac{1}{c+a'} \cdot \frac{1}{a+b}$ is also in A.P.
- 18. If $\log_{10} 2$, $\log_{10} (2^x - 1)$ and $\log_{10} (2^x + 3)$ are in A.P., then find the value of x.
- If S_n denotes the sum of n terms of A.P., then find $S_{n+3} 3S_{n+2} + 3S_{n+1} S_n$ is equal to 19.
- The digits of a positive integer, having three digits, are in A.P. and their sum is 15. The number obtained by 20. reversing the digits is 594 less than the original number. Find the number.
- The least value of 'a' for which $5^{1+x} + 5^{1-x}$, a/2, $25^x + 25^{-x}$ are three consecutive terms of an AP is 21.
 - (A) 1

(B) 5

- (C) 12
- (D) None of these
- If p,q, r in A.P. and are positive, the roots of the quadratic equation $px^2 + qx + r = 0$ are all real for 22.

(A)
$$\left| \frac{\mathbf{r}}{\mathbf{p}} - 7 \right| \ge 4\sqrt{3}$$
 (B) $\left| \frac{\mathbf{p}}{\mathbf{r}} - 7 \right| < 4\sqrt{3}$ (C) all \mathbf{p} and \mathbf{r}

$$(B) \left| \frac{p}{r} - 7 \right| < 4\sqrt{3}$$

23.	Sum of first hundred nu	Sum of first hundred numbers common to the two A.P.'s 12, 15, 18, and 17, 21, 25, is											
	(A) 56100	(B) 65100	(C) 61500	(D) none of these									
	ARITHMETIC PROGRESSION - II												
1.	If S_r denotes the sum of r terms of an AP and $\frac{S_a}{a^2} = \frac{S_b}{b^2} = c$ then S_c is												
	(A) c^3	(B) c/ab	(C) abc	(D) $a + b + c$									
2.		a_2 , a_3 , a_{2n} are in AP t	hen $\frac{a_1 + a_{2n}}{\sqrt{a_1} + \sqrt{a_2}} + \frac{a_2 + a_{2n}}{\sqrt{a_2} + \sqrt{a_2}}$	$\frac{1}{a_3} + \frac{a_3 + a_{2n-2}}{\sqrt{a_3} + \sqrt{a_4}} + \dots + \frac{a_n + a_{n+1}}{\sqrt{a_n} + \sqrt{a_{n+1}}}$ is									
	equal to												
	(A) $n - 1$	(B) $\frac{n(a_1 + a_{2n})}{\sqrt{a_1} + \sqrt{a_{n+1}}}$	(C) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_{n+1}}}$	(D) none of these									
3.	If a_1, a_2, a_3,a_{2n+1} are	in AP then $\frac{a_{2n+1} - a_1}{a_{2n+1} + a_1} + \frac{a_{2n+1}}{a_{2n+1}}$	$\frac{a_{2n} - a_2}{a_{2n} + a_2} + \dots + \frac{a_{n+2} - a_n}{a_{n+2} + a_n}$	is equal to									
	(A) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_{n+1}}$	(B) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_n}$	(C) $(n + 1)(a_2 - a_1)$	(D) none of these									
4.	Let a_1, a_2, a_3, \dots be ten	rms of an A.P. If $\frac{a_1 + a_2}{a_1 + a_2}$	$\frac{++a_p}{++a_q} = \frac{p^2}{q^2}, p \neq q, tl$	nen $\frac{a_6}{a_{21}}$ equals									
	(A) 41/11	(B) 7/2	(C) 2/7	(D) 11/41									
5.	Let $\{a_n\}$ $(n \ge 1)$ be a sequence such that $a_1 = 1$, and $3a_{n+1} - 3a_n = 1$ for all $n \ge 1$. Then a_{2002} is equal to												
	(A) 666	(B) 667	(C) 668	(D) 669									
6.	If 4th term of an AP is	64 and its 54 th term is -6											
	(A) 5/2	(B) - 5/2	(C) 3/50	(D) - 3/50									
7.		end of the series 2 + 6 +											
_	(A) 6	(B) 18	(C) 14	(D) 10									
8.		1/3 (2n + 1), then the su		(D) 424									
0	(A) 131	(B) 132	(C) 133	(D) 134									
9.		of n terms of two AP's is											
10	(A) 15:8	(B) 8:13	(C) n: (n-1)	(D) 5: 17									
10.		an AP is $3n^2 + 5n$. Then											
	(A) 13	(B) 21	(C) 27	(D) 29									
11.	If the m th term of an A.	P. is $\frac{1}{n}$ and the n th term i	$s \frac{1}{m}$ then sum to mn ten	rms is									
	$(A) \frac{mn+1}{2}$	(B) $\frac{mn-1}{2}$	(C) $\frac{mn+1}{3}$	(D) $\frac{mn-1}{3}$									

	(A) $\frac{c+a}{2} + \frac{c^2 - b}{b}$	$\frac{a^2}{a}$	(B) $\frac{c+a}{2}$	$-\frac{c^2-a^2}{b-a}$	(C	$\frac{c+a}{2}$	$\frac{1}{1} + \frac{c}{1}$	$\frac{a^2 + a^2}{b - a}$	(I	$\frac{c+}{2}$	$\frac{a}{a} + \frac{a}{a}$	$\frac{c^2 + a^2}{b + a}$	-		
13.	If a_1 , a_2 , a_3 , are in A.P. and $a_1 + a_4 + a_7 + \dots + a_{16} = 147$ then $a_1 + a_6 + a_{11} + a_{16}$ is equal to														
	(A) 96		(B) 98	7 /							ne of				
14.	If a ₁ , a ₂ , a ₃ ,to	is an A	A.P. such tha	at $a_1 + a_5 + a_5$	a ₁₀ + a ₁	₅ + a ₂₀	+ a ₂₄	= 225	then a	hen $a_1 + a_2 + a_3 + \dots + a_{23} + a_{24}$ is equal					
	(A) 909		(B) 75		(C	750			(I	D) 900	C				
15.	The sum of all even positive integers less then 200 which are not divisible by 6 is														
	(A) 6534		(B) 6354	•	(C) 654.	3		(I	D) 645	54				
16.	If x, y, z are in AP, a is AM between x and y and b is AM between y and z; then AM between a and b will be							ill be							
	$(A) \frac{1}{3}(x+y+z)$)	(B) z		(C) x			(I	D) y					
17.	7. If n AM's are inserted between 1 and 31 and ratio of 7 th and (n-1) th A.M. is 5:9, then n equals														
	(A) 12		(B) 13) 14		,			ne of	_			
18.	Three numbers a	re in A	` ′	r sum is 33	and th	, neir pr	oduct	is 792		•			hese n	umber	s is
	(A) 14		(B) 11) 8				D) 4					
19.	If the angles of a quadrilateral are in A.P. whose common difference is 10°, then the angles of the quadrilateral are									lateral					
	(A) 65°, 85°, 95°	, 105°	o (B) 75°,	85°, 95°, 10)5° (C) 65°,	75°, 8	85°, 9	5° (I	O) 65°	, 95°,	105°,	115°		
20.	20 is divided into four parts which are in A.P., such that the product of the first and fourth is to the product of the second and third is 2:3, then the four parts are								of the						
	(A) 2, 4, 6, 8 (B) 3, 5, 7, 9 (C) 4, 6, 8, 10 (D) 6, 10, 17, 12														
21.	Insert three arith	metic	means bety	ween 3 and	19.										
Answers															
ARITHMETIC PROGRESSION - I															
1.	log(ab ⁿ⁻¹)	2.	25^{th}	3. 28 th	ı	7.	-4, -	-1, 2	2, -1	1, –4		8.	2, 6,	10, 1	4
9.	2139	10.	70336	11. 740)	12.	15	13.	25 o	r 36	15.	(14n	(n - 6)	: (8m	+ 23)
18.	$x = \log_2 5$	19.	0	20. 852		21.	(C)	22.	(A)	23.	(C)				
	ARITHMETIC PROGRESSION - II														
1.	(A) 2. (B)	3.	(A) 4.	(D) 5.	(C)	6.	(B)	7.	(C)	8.	(C)	9.	(A)	10.	(C)
11.	(A) 12. (A)	13.	(B) 14.	(D) 15.	(A)	16.	(D)	17.	(C)	18.	(D)	19.	(B)	20.	(A)
21.	7, 11,15														

12. If a,b,c be the 1st, 3rd and nth terms respectively of an A.P., then sum to n terms is