

Gas Laws And Mole concept

- * Each gas contains numerous minute molecules.
- * The molecules of a gas are in a state of rapid random motion in all directions.
- * As a result of this random motion, the gas molecules collide with each other and also with the walls of the container in which it kept.
- * As the collisions of the molecules are perfectly elastic in nature, there is no loss of energy
- * There is no attraction between the gas molecules and with the walls of the vessel.
- * Volume of a gas:- is the volume of the vessel in which it kept
- * Pressure of a gas:- is the force exerted by it on unit area of the vessel
- * Temperature of a substance:- is the average kinetic energy of the molecules in it
- * Boyle's law:- At constant temperature, the volume of a definite mass of gas is inversely proportional to its pressure. If P is the pressure and V is the volume of a definite mass of gas, then P x V is a constant.
- * Charle's law :- At constant pressure the volume of a definite mass of gas is directly proportional to its temperature in Kelvin scale. If V is the volume and T the temperature in Kelvin Scale, then V/T is a constant.
- * Avogadro's law :- At constant temperature and pressure, the volume of gas is directly proportional to the number of molecules.
 - OR

At constant temperature and pressure, equal volumes of all gases contain equal number of molecules.

- * GAM :- The mass of an element in gram equal to its atomic mass is known as 1 Gram Atomic Mass (1GAM) or 1 Gram Atom of the element
- * 1 GAM of any element contain 6.022x10²³ atoms
- * 6.022×10^{23} atoms = 1GAM
- * GMM :- the mass of a substance in gram equal to its molecular mass is known as 1 Gram Molecular Mass (1 GMM) or a Gram mole of the substance.
- * 1 GMM of any substance contain 6.022x10²³ molecules.

- * 6.022×10^{23} molecules = 1 GMM
- * The number 6.022×10^{23} is known as Avogadro Number (N_A)
- * The amount of substance containing 6.022x10²³ particles is known as 1 mole (the particles may be atoms, ions, molecules etc) The symbol of mole is "mol"

6.022x10 ²³ atoms	= 1 mole atoms
6.022x10 ²³ molecules	= 1 mole molecules (1mol)
6.022x10 ²³ atoms	= 1 mole atoms = 1GAM
6.022x10 ²³ molecules	= 1 mole molecules (1mol)= 1GMM

For Atoms:-

Number of GAMs (or mole atoms) = given mass in gram

GAM

Mass in gram= Number of GAMs (or number of mole atoms) x GAMNumber of atoms=Number of GAMs (or number of mole atoms) x 6.022×10^{23}

For Molecules :-

Number of GMMs (or moles) = given mass in gram

GMMMass in gram = Number of GMMs (or number of moles) x GMM Number of molecules =Number of GMMs (or number of moles) x 6.022x10²³

For Gases:-

Volume of 1 mole of a gas is known as its molar volume At STP Molar volume= 22.4 L Number of moles = Volume in litre at STP 22.4 L Volume at STP = Number of moles x 22.4 L

QUESTIONS SECTION – A (Score- 1)

- 1. Which of the following is not a gas law
 - a. Boyle's Law
 - b. Joule's Law
 - c. Charle's Law
- 2. The mathematical form of Boyle's Las is
 - a. PV=a constant, b. V/T = a constant, c. P/v = a constant, TV = a constant.
- 3. The molecular mass of H₂O is (Hint- atomic mass: H-1, O-16)
- 4. The molecular mass of ammonia (NH_3) is 17. what will be the mass of 2 GMM ammonia
- 5. 1 mole of CO₂ contains 6.022×10^{23} molecules. How many molecules are there in 2 mole CO₂
- 6. The atomic mass of Chlorine is 35.5. What will be the mass of 1 GMM Chlorine
- 7. When an inflated balloon is kept in sunlight, it burst. Write the gas law behind it
- 8. The mass of 1/4 x 6.022 x 10²³ molecules of Oxygen is (Hint;- gram molecular mass of Oxygen is 32g)
- 9. Volume of 6.022 x 10^{23} molecules of NH₃ at STP is.....
- 10. Number of atoms in 12g carbon is.....
- 11. At STP the volume of 1 mole Hydrogen is 22.4 L. What will be the volume of 1 mole NH₃ at STP?
- 12. A gas kept in a 5L cylinder is completely transferred to another cylinder of 20L, what will be the new volume of the gas?
- 13. Which of the following is 1 mole Nitrogen ? (Hint:- Atomic mass of Nitrogen is 14)

a. 7g N₂ b. 14g N₂, 28g N₂

14. Find the odd one

a. $64g SO_2$, b. 2 X $6.022 \times 10^{23} H_2$ molecules, c. $64g O_2$, d. $44.8 L CO_2$ at STP (Hint:- atomic mass H-1, C-12, O- 16, S-32)

15. The mass of 4 GAM of an element is 80g, then the atomic mass of the element is

SECTION B (Score-2)

- 16. The size of a gas bubble raising from the bottom of an aquarium increase. Why? State the gas law behind it.
- 17. Write the gas laws related to the following statements.
 - a. The size of inflating balloon increase
 - b. Inflated balloon burst when kept in sunlight.
- 18. a. Complete the table

Temperature(T)K	Volume (V) L	V/T
100	200	2
300	(a)	2
(b)	800	2

b. Which is the gas law related to this?

- a. If the temperature of a fixed mass of gas taken in a cylinder with frictionless piston is increased, what will be the Changes to- a. Kinetic energy of the molecule b.Volume of the gas
- 20 Which of the following has more atoms (Atomic mass :- Hydrogen-1, Oxygen-16)
 - a. 16 g Oxygen
 - b. 16 g Hydrogen
- 21. Calculate the molecular mass of

a. H_2SO_4 , b. CaCO₃ (Atomic mass H-1, C-12, O-16, S-32 Ca-4O)

- 22. Calculate the number of GMM and number of molecules in 500g CaCO₃
- 23. Calculate the mass of 5 mole $H_{2}O$
- 24. Select the statements suitable to gases from those given below.
 - a) Intermolecular distance is very low.
 - b)The volume of gas depends on the volume of the container in which it is occupied.
 - c)The energy of gaseous molecules is very high.
 - d)The attractive force between gaseous molecules is very high.
- 25. a) How many moles are there in 140g Nitrogen?.
 - b) How many atoms are there in 140g Nitrogen? (Atomic mass : N-14)

- 26. Find out the molecular mass of the following compounds (Atomic Mass : Ca - 40 , N- 14 , C - 12 , O -16 , H- 1) a) Ca(NO₃)₂ , b) $C_{12}H_{22}O_{11}$
- 27. Which of the following have the same number of moles ? 4 GMM H_2 , 88g CO_2 , 89.6 L O_2 , at STP 4g He
- 28, Which one contains 2 x 6.022 x10²³ Molecules ? 28g N₂ , 2g H₂ , 32g O₂ , 44.8 L CO₂ at STP
- 29. 360 g glucose $[C_6H_{12}O_6]$ is given. (Hints: Molecular mass $C_6H_{12}O_6 = 180$)
 - a) How many molecules are there in the sample ?
 - b) What is the total number of atoms in the sample?
- 30. Choose the correct statements from those given below
 - a) 1GMM of any substance contains 6.022x10²³ molecules.
 - b) The mass of 6.022×10^{23} O₂ molecules is 16g.
 - c) The mass of 22.4L of oxygen at 273K and 1atm pressure is 32 g $\,$

SECTION-C (Score-3)

31.Complete the flow diagram:

- 32. The tyres of vehicles do not filled completely in summer.
 - a. What is the gas law behind it?
 - b. Write the mathematical form of this law
 - c. State the law
- 33. Calculate the volume of 90g steam (H_2O) at STP. How many molecules will it contain?
- 34. 1mL of oxygen at constant temperature and pressure contains X molecules.

write answer related to the following gases at same temperature and pressure.

a) Number of molecules in 1mL hydrogen

- b)Number of molecules in 5mL nitrogen
- c)Volume of 3X molecules of CO₂
- 35. If at a given temperature and pressure 2 L of a gas contain X molecules ,then complete the table:

Gas	Volume (L)	Number of molecules
Ammonia	2	Х
Carbon dioxide	4	(a)
Hydrogen	(b)	3X
Oxygen	1	(c)

- 36. Calculate the number of moles, mass and number of molecules in 67.2 L $\rm CO_2$ at STP
- 37. Match the following:

64 g O ₂	54 g H ₂ O
22.4 L At STP	2 x N _A atoms
$3 \times N_A$ molecules of H ₂ O	17 g NH ₃
	2 moles

38. Complete the flow chart

SECTION -D (Score -4)

- 40. Calculate the volume and number of molecules in 440g CO_2 kept at STP. Also calculate number of each atoms in it.
- 41. 1 GAM of any substance contain Avogadro Number of atoms.
 - a. Wtite Avogadro Number
 - b. Calculate the number of atoms in the following samples and arrange them in increasing order of number of atoms
- 1.) 32g Sulphur, 2.) 32g Oxygen, 3.) 60g Carbon

i) Find a,b and c

ii) How many grams of H_2O is required to get 20 x 6.022 x 10^{23} molecules ?

43. Complete the table.

Substance	Volume at STP	Number of moles	Mass(g)
CO2	44.8 L	2	88
CH ₄	(a)	(b)	4 g
NH ₃	11.2 L	(c)	(d)

44. Arrange the following samples in the increasing order of their mass.

a) 5 GMM CO₂ b) 10 GMM Oxygen c) 2 mol H₂O d) 3 mol N₂

45. Complete the table. (Hint : atomic mass : He = 4, N=14, O = 16, P = 31)

Substance	Atomic mass	Amount taken(g)	Number of molecules	Number of atoms
He	4	10	(a)	(b)
N ₂	14	(c)	6.022x10 ²³	(d)
Cl ₂	35.5	(e)	(f)	10 x 6.022x10 ²³
0 ₂	(g)	80	(h)	5 x 6.022x10 ²³

46, The data of an experiment conducted on a fixed mass of gas at constant temperature are given:

Pressure P(atm)	Volume V(L)	PV
1	10	(a)
2	(b)	10
(c)	2.5	10

- i) Complete the table and find out the speciality of PV.
- ii) What is the relation between pressure and volume?
- iii) Which gas law can be proved by this experiment?
- 47. Find a, b, c and d from the following flow diagram

SECTION -B

16.	As the gas bubble raising from the bottom, its pressure decreases and hence its size increases (Volume increases) Boyle's law. The law states that at constant temperature the volume of a given mass of gas is inversely proportional to its pressure.
17.	a. Avogadro's Law, b. Charle's Law
18.	a.(a) = 600, (b) = 400 b. Charle's Law
19.	a. Kinetic energy of the molecules increase b. Volume of the gas increase
20.	16g Oxygen = 16g / 16g = 1GAM = 6.022×10^{23} atoms 16g Hydrogen = 16g / 1g = 16GAM = $16 \times 6.022 \times 10^{23}$ atoms 16g Hydrogen have more number of atoms.
21.	a. 98, b. 100
22.	Number of GMM = $500g / 100g = 5$ Number of molecules = $5 \times 6.022 \times 10^{23}$
23.	Mass of 1mol H ₂ O =18g Mass of 5mol H ₂ O = 5 x 18g =90g
24.	b)The volume of gas depends on the volume of the container in which it is occupied. c)The energy of gaseous molecules is very high.
25.	a. 5 mol. (140g / 28g) b. 10 x 6.022 x 10 ²³ atoms
26.	a.164, b.342
27.	4 GMM $H_2 = 4 mol$ 88g $CO_2 = 88g/44g = 2 mol$ 89.6 L $O_2 = 89.6$ L / 22.4L=4 mol 4g He = 4g/4g = 1 mol 4GMM H2 and 89.6L O_2 have the same number of moles
28.	$28g N_2 = 1 mol = 6.022 \times 10^{23} molecules$ $2g H_2 = 1 mol = 6.022 \times 10^{23} molecules$ $32g O_2 = 1 mol = 6.022 \times 10^{23} molecules$ $44.8 L CO_2 at STP = 2 mol = 2 \times 6.022 \times 10^{23} molecules,$ $44.8 L CO_2 contain 2 \times 6.022 \times 10^{23} molecules$

- 29. 360g glucose = 360g / 180g = 2 molNumber of molecules = $2 \times 6.022 \times 10^{23}$ Total number of atoms in 1 molecule $C_6 H_{12} O_6 = 24$ Total number of atoms in the sample = $2 \times 6.022 \times 10^{23} \times 24$
- a) 1GMM of any substance contains 6.022x10²³molecules.
 c) The mass of 22.4L of oxygen at 273K and 1atm pressure is 32 g

SECTION -C

- 31. a. 2 x 6.022 x 10²³ atoms b. 1 GMM
 - d. I Giviivi
 - c. 6.022×10^{23} molecules.
- 32. a. Charle's Law
 - b. V/T = a constant
 - c. At constant pressure the volume of a given mass of gas is directly proportional to its temperature in Kelvin Scale
- 33. $90g H_2O = 90g / 18g = 5 \text{ mol}$ Volume at STP = 5 x 22.4 L Number of molecules = 5 x 6.022 x 10²³
- 34. a. X
 - b. 5 X
 - c. 3ML
- 35. a. 2X b. 6
 - c. X/2
- 36. Number of moles in 67.2 L CO₂ at STP = 67.2 L / 22.4 L = 3 Mass of 3 mol CO₂ = 3 x 44 = 132g Number of molecules in 3 mol CO₂ = 3 x 6.022 x 10^{23}
- 37. 64 g O_2 2 moles 22.4 L At STP - 17 g NH₃ 3 x NA molecules of H₂O - 54 g H₂O
- 38. a. 36 g, b. 2 x 6.022 x 1023 , c. 2
- 39. a. 1 GMM, b. 44G, c. 22.4 L d, 6.022 x 10²³

SECTION – D $440 \text{ g CO}_{2} \text{ at STP} = 440 \text{ g} / 44 \text{ g} = 10 \text{ mol}$ 40. Volume at STP = 10 x 22.4 L Number of molecules = $10 \times 6.022 \times 10^{23}$ Number of Carbon atoms = $10 \times 6.022 \times 10^{23}$ Number of Oxygen atoms = $2 \times 10 \times 6.022 \times 10^{23}$ 41. a) 6.022 x 10²³ b) i) 32 g Sulphur = 1 GAM = 6.022×10^{23} atoms ii) 32 g Oxygen = 2 GAM = $2 \times 6.022 \times 10^{23}$ atoms iii) 60 g Carbon = 5 GAM = 5 x 6.022×10^{23} atoms Increasing order - 32 g Sulphur < 32 g Oxygen < 60 g Carbon 42. i). a = $10 \times 6.022 \times 10^{23}$ $b = 10 \times 22.4 L$ c. 10 GMM iii). Mass of H₂O required to get 20 x 6.022 x 10^{23} molecules = 20 x 18 g a = 22.4/4 = 5.6, b = 1/4, c = 1/2,43. d = 17/2 = 8.5 $5 \text{ GMM CO}_{2} = 5 \times 44 = 220 \text{g CO}_{2}$ 44. $10 \text{ GMM O}_{2} = 10 \times 32 = 320 \text{g O}_{2}$ $2 \mod H_2O = 2 \times 18 = 36g H_2O$ $3 \text{ mol } N_2 = 3 \times 28 = 84 \text{g } N_2$ Increasing order of mass is 2 mol $H_2O < 3 \text{ mol } N_2 < 5 \text{ GMM } CO_2 < 10 \text{ GMM } O_2$ a. $2.5 \times 6.022 \times 10^{23}$, b. $2.5 \times 6.022 \times 10^{23}$, c. 28, d. $2 \times 6.022 \times 10^{23}$ 45. e. 5 x 35.5 , f. 5 x 6.022 x 10^{23} , g. 16, h. 2.5 x 6.022 x 10^{23} a. 10, b. 5, c. 4 46. i) PV is a constant ii) V is inversely proportional to P iii) Boyle's Law

47. a. 6.022 x 10²³, , b. 22.4 L , c.1 GMM, d. 2 x 6.022 x 10²³