2. POLYNOMIALS

1. From the given graph y = p(x). Find the number of zeroes of the

2. What will be the nature of the graph of the following polynomials

(i)
$$a x^2 + b x + c$$
 when $a > 0$

- (ii) $a x^2 + b x + c$ when a < 0
- **3.** What is the relation between *a* and *b*, if sum of the zeroes of the quadratic polynomial $a x^2 + b x + c$ ($a \neq 0$) is equal to the product of the zeroes.
- 4. What is the degree of the polynomial whose graph intersect the x axis at four points .
- **5.** If -1 is one of the zeroes of the quadratic polynomial $ax^2 + bx + c$ ($a \neq 0$), write at least one of its factor with justification.
- **6.** If p and q are the zeroes of the quadratic polynomial $ax^2 + bx + c$ ($a \neq 0$) , find the value of pq + (p+q)
- 7. Find the zeroes of the polynomial $2x^2 3\sqrt{3}x + 3$
- **8.** For what value of k, (-4) is a zero of the polynomial $x^2 2x (3k+3)$?
- **9.** If α and β are the zeroes of the polynomial $x^2 4x 12$, then find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2 \alpha \beta$ without finding actual zeroes.
- **10.** What should be subtracted from the polynomial of $p(x) = x^2 3ax + 3a 7$ so that , (x + 2) is a factor of the polynomial p(x) and hence also find the value of a
- **11.** If one of the zero of the polynomial $2x^2 4x 2k$ is reciprocal of the other ,Find the value of k.
- **12.** If α and β are the zeroes of the polynomial $2x^2 5x 10$, then find the Value of $\alpha^{-2} + \beta^{-2}$ (by using algebraic identity)
- **13.** Find the zeroes of the quadratic polynomial $2x^2 9 3x$ and verify the relationship between the zeroes and the coefficients
- **14.** If two zeroes of the polynomial $x^3 4x^2 3x + 12$ are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.
- **15.** If α and β are the zeroes of the polynomial f (x)= x² + px + q then form a polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- **16.** If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 5x 3$, Find the value of p and q.
- **17.** If α and β are the zeroes of the polynomial $f(x) = x^2 9x + a$, find the value of a if $5\alpha + 4\beta = 40$
- **18.** If -2 and the 3 are the zeroes of the polynomial $ax^2 + bx 6$, then find the value of a and b
- **19.** If the polynomial $f(x) = x^3 + 2x^2 5x + 1$ is divided by another polynomial x + 3, then the remainder comes out to be ax + b. Find the values of a and b (without doing actual division)
- **20.** If 2 and -3 are the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$, Then find the value of a and b.

ANSWER

1. 3 zeroes, Zeroes are -2, 0, 2
2. (i) a parabola opening upward (ii) a parabola opening downward
3.
$$\frac{-b}{a} = \frac{c}{a}$$
 i. le $b + c = 0$
4. Degree is 4 (since it has 4 zeroes)
5. By Factor theorem (x+1) will be one of its factors if $x + 1 = 0 \Rightarrow x = -1$
6. $pa + (p+q) = \frac{c}{a} + \frac{-b}{a} = \frac{c-b}{a}$
7. $2x^2 - 3\sqrt{3}x + 3 = (2x - \sqrt{3})(x - \sqrt{3})$
2zeroes $x = \sqrt{3}/2$ and $x = \sqrt{3}$
8. $p(x) = x^2 - 2x - (3k+3)$
 $\Rightarrow 0 = 21 - 3k$ So, $k = 7$
9. $p(x) = x^2 - 4x - 12$
 $\frac{1}{a} + \frac{1}{b} - 2 \alpha \beta = \frac{b+\alpha}{a} - 2 \alpha \beta = \frac{4-1}{-12} - 2(-12) = \frac{-4}{12} + 24 = \frac{-4+288}{12} = \frac{284}{12} = \frac{142}{12}$
10. If the polynomial $p(x) = x^2 - 3 \alpha x + 3 \alpha - 7$ is divided by $x + 2$, then by Remainder theorem, remainder is $p(-2)$.
 $p(2) = 9 \alpha - 3$
 $\therefore 9 \alpha - 3$ should be subtracted
If $x + 2$ is a factor of $p(x)$, then by Factor theorem $p(-2) = 0$
 $\Rightarrow 9 \alpha - 3 = 0$
So, $\alpha = \frac{1}{2}$
11. Let α and $\frac{1}{a}$ be the zeroes of the polynomial $p(x) = 2x^2 - 4x - 2k$
 $\therefore \alpha \times \frac{1}{a} = \frac{-2x}{2}$ so, $k = -1$
12. $p(x) = 2x^2 - 5x - 10$
 $\alpha^2 + \beta^2 = \frac{1}{\alpha + \frac{1}{\beta + 2}} = \frac{\beta^2 + \alpha^2}{(\alpha \beta)^2} = \frac{(\alpha + \beta)^2 - 2\alpha \beta}{(\alpha \beta)^2} = \frac{(\frac{\beta}{2})^2 - 2(\frac{-4\alpha}{2})}{(-\frac{3}{2})^2}$
 $\frac{\frac{25}{14} + 10}{\frac{1}{18}} = \frac{13}{20}$
13. $p(x) = 2x^2 - 3x - 9 = (2x + 3)(x - 3)$ [factorising by splitting of the middle term]
Now, $p(x) = 0$ so, $x = -\frac{3}{2}$ and 3
Sum of the zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes $= -\frac{3}{2} + 3 = -\frac{3}{2} = \frac{-\cos(fictent of x)}{\cos(fictent of x)^2}$
 $Product if zeroes f the polynomial if $A(y) = x^2 -$$$$$$$$

The required polynomial is $p(x) = k [x^2 - (\text{sum of zeroes})x + \text{product of zeroes}]$ $= k \left[x^{2} + \frac{p}{a} x + \frac{1}{a} \right]$ Taking k = q $p(x) = q x^{2} + p x + 1$ **16.** The zeroes of the polynomial $2x^2 - 5x - 3$ are given by $2x^{2}-5x-3=0$ (2x + 1)(x - 3) = 0 so, x = 3 and $\frac{-1}{2}$ The zeroes of the polynomial $x^2 + px + q$ are 6 and -1Sum of the zeroes = 6+(-1)-p = 5 : p = -5Product of the zeroes = $6 \times (-1)$:: q = -6**17.** α and β are the zeroes of the polynomial $f(x) = x^2 - 9x + a$ $\alpha + \beta = \frac{-(-9)}{1} = 9$ $5 \alpha + 4 \beta = 40 \implies \alpha + 4 \alpha + 4 \beta = 40$ $\Rightarrow \alpha + 4(\alpha + \beta) = 40$ $\Rightarrow \alpha + 4 \times 9 = 40 \Rightarrow \alpha = 4$ Putting the value of α in $5 \alpha + 4 \beta = 40$ we get $\beta = 5$ So, product of the zeroes $\alpha \times \beta = \frac{a}{1} \implies a = 4 \times 5 = 20$ **18.** Let , $p(x) = ax^2 + bx - 6$ -2 and the 3 are the zeroes of the polynomial Sum of the zeroes = -2 + 3 $\Rightarrow \frac{-b}{a} = 1 \qquad \Rightarrow a = -b$(i) Product of the zeroes = -2×3 $\Rightarrow \frac{c}{a} = -6 \qquad \Rightarrow \frac{-6}{a} = -6 \qquad \text{so}, a = 1$ From (i) we have b = -1**19.** If $f(x) = x^3 + 2x^2 - 5x + 1$ is divided by another polynomial x + 3So , by remainder theorem , remainder is f(-3) $f(-3)=(-3)^3+2(-3)^2-5(-3)+1$ Now. = -27 + 18 + 15 + 1 = - 27 + 34 Remainder = 7(i) But , remainder = ax + b (given)(ii) Comparing (i) and (ii) we have, ax + b = 0.x + 7 so, a = 0 and b = 7**20.** Let , $p(x) = x^2 + (a+1)x + b$ 2 and -3 are the zeroes of p(x)so, p(2) = 0 \Rightarrow 2²+ (a+1)×2 + b =0 $\Rightarrow 2a + b = -6$ (i) and p(-3) = 0 \Rightarrow (-3)²+ (a+1)×(-3) + b =0 $\Rightarrow -3a + b = -6$ (i) Solving equation (i) and (ii) we have a = 0 and b = -6