CHAPTER – 4 QUADRATIC EQUATIONS

FACTORISATION METHODS TO FIND THE SOLUTION OF QUADRATIC EQUATIONS

Steps to find the solution of given quadratic equation by factorisation

- Firstly, write the given quadratic equation in standard form $ax^2 + bx + c = 0$.
- Find two numbers α and β such that sum of α and β is equal to b and product of α and β is equal to ac.
- → Write the middle term bx as $\alpha x + \beta x$ and factorise it by splitting the middle term and let factors are (x + p) and (x + q) i.e. $ax^2 + bx + c = 0 \Rightarrow (x + p)(x + q) = 0$
- \blacktriangleright Now equate reach factor to zero and find the values of x.
- > These values of x are the required roots/solutions of the given quadratic equation.

IMPORTANT QUESTIONS

Solve the quadratic equation by using factorization method: $x^2 + 2x - 8 = 0$

Solution: $x^2 + 2x - 8 = 0$

 $\Rightarrow x^2 + 4x - 2x - 8 = 0 \Rightarrow x(x + 4) - 2(x + 4) = 0$

 $\Rightarrow (x+4)(x-2) = 0 \Rightarrow x+4 = 0, x-2 = 0 \Rightarrow x = -4, 2$

Questions for practice

- **1.** Solve the quadratic equation using factorization method: $x^2 + 7x 18 = 0$
- 2. Solve the quadratic equation using factorization method: $x^2 + 5x 6 = 0$
- 3. Solve the quadratic equation using factorization method: $y^2 4y + 3 = 0$
- 4. Solve the quadratic equation using factorization method: $x^2 21x + 108 = 0$
- 5. Solve the quadratic equation using factorization method: $x^2 11x 80 = 0$
- 6. Solve the quadratic equation using factorization method: $x^2 x 156 = 0$

7. Solve the following for x :
$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
.

8. Solve the following for x :
$$\frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}$$

NATURE OF ROOTS

The roots of the quadratic equation $ax^2 + bx + c = 0$ by quadratic formula are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a}$$

where $D = b^2 - 4ac$ is called discriminant. The nature of roots depends upon the value of discriminant D. There are three cases –

Case – I

When D > 0 i.e. $b^2 - 4ac > 0$, then the quadratic equation has two distinct roots.

i.e.
$$x = \frac{-b + \sqrt{D}}{2a}$$
 and $\frac{-b - \sqrt{D}}{2a}$

Case – II

When D = 0, then the quadratic equation has two equal real roots.

i.e.
$$x = \frac{-b}{2a}$$
 and $\frac{-b}{2a}$

Case – III

When D < 0 then there is no real roots exist.

IMPORTANT QUESTIONS

Find the discriminant of the quadratic equation $2x^2 - 4x + 3 = 0$, and hence find the nature of its roots.

Solution : The given equation is of the form $ax^2 + bx + c = 0$, where a = 2, b = -4 and c = 3. Therefore, the discriminant, $D = b^2 - 4ac = (-4)^2 - (4 \times 2 \times 3) = 16 - 24 = -8 < 0$ So, the given equation has no real roots.

Questions for Practice

- 1. Find the discriminant and the nature of the roots of quadratic equation: $3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$.
- 2. Find discriminant and the nature of the roots of quadratic equation: $4x^2 2x^2 + 3 = 0$.
- 3. Find discriminant and the nature of the roots of quadratic equation: $4x^2 12x + 9 = 0$.
- 4. Find discriminant and the nature of the roots of quadratic equation: $5x^2 + 5x + 6 = 0$.
- 5. Write the nature of roots of quadratic equation $4x^2 + 4\sqrt{3}x + 3 = 0$.
- 6. Write the nature of roots of the quadratic equation $9x^2 6x 2 = 0$.
- 7. Write the nature of roots of quadratic equation : $4x^2 + 6x + 3 = 0$
- 8. The roots of $ax^2 + bx + c = 0$, $a \neq 0$ are real and unequal. What is value of D?
- 9. If $ax^2 + bx + c = 0$ has equal roots, what is the value of c?

QUADRATIC FORMULA METHOD

Steps to find the solution of given quadratic equation by quadratic formula method:

- Firstly, write the given quadratic equation in standard form $ax^2 + bx + c = 0$.
- ➤ Write the values of a, b and c by comparing the given equation with standard form.
- Find discriminant $D = b^2 4ac$. If value of D is negative, then is no real solution i.e. solution does not exist. If value of $D \ge 0$, then solution exists follow the next step.
- > Put the value of a, b and D in quadratic formula $x = \frac{-b \pm \sqrt{D}}{2a}$ and get the required

roots/solutions.

IMPORTANT QUESTIONS

Solve the quadratic equation by using quadratic formula: $x^2 + x - 6 = 0$

Solution: Here, a = 1, b = 1, c = -6

$$\Rightarrow D = b^{2} - 4ac = 1 - 4(1)(-6) = 1 + 24 = 25 > 0$$

Now, $x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{25}}{2(1)} = \frac{-1 \pm 5}{2} \Rightarrow x = \frac{-1 - 5}{2} \text{ or } \frac{-1 + 5}{2} \Rightarrow x = \frac{-6}{2} \text{ or } \frac{4}{2} \Rightarrow x = -3 \text{ or } 2$

Questions for practice

- 1. Solve the quadratic equation by using quadratic formula: $x^2 7x + 18 = 0$
- 2. Solve the quadratic equation by using quadratic formula: $x^2 5x + 6 = 0$
- 3. Solve the quadratic equation by using quadratic formula: $y^2 + 4y + 3 = 0$
- 4. Solve the quadratic equation by using quadratic formula: $x^2 + 11x 80 = 0$
- 5. Solve the quadratic equation by using quadratic formula: $x^2 + x 156 = 0$
- 6. Solve for x by using quadratic formula: $9x^2 9(a + b)x + (2a^2 + 5ab + 2b^2) = 0$.

MCQ QUESTIONS (1 mark)

- 1. Which of the following is a quadratic equation?
 - (a) $x^{2} + 2x + 1 = (4 x)^{2} + 3$ (b) $-2x^{2} = (5 - x)(2x - \frac{2}{5})$ (c) $(k + 1)x^{2} + \frac{3}{2}x = 7$, where $k \neq 1$ (d) $x^{3} - x^{2} = (x - 1)^{3}$.
- 2. Which of the following is not a quadratic equation? (a) $2(x-1)^2 = 4x^2 - 2x + 1$ (b) $2x - x^2 = x^2 + 5$ (c) $(\sqrt{2}x - \sqrt{3})^2 + x^2 = 3x^2 - 5x$ (d) $(x^2 + 2x)^2 = x^4 + 3 + 4x^3$.
- 3. If is a root of the equation $x^2 + kx \frac{5}{4} = 0$, then the value of k is (a) 2 (b) - 2 (c) $\frac{1}{4}$ (d) $\frac{1}{2}$
- 4. Which of the following equations has the sum of its roots as 3? (a) $2x^2 - 3x + 6 = 0$ (b) $-x^2 + 3x - 3 = 0$

(c)
$$\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x + 1 = 0$$
 (d) $3x^2 - 3x + 3 = 0$

- 5. Values of k for which the quadratic equation $2x^2 kx + k = 0$ has equal roots is (a) 0 only (b) 4 (c) 8 only (d) 0, 8
- 6. Which constant must be added and subtracted to solve the quadratic equation

$$9x^{2} + \frac{3}{4}x - \sqrt{2} = 0$$
 by the method of completing the square?
(a) $\frac{1}{8}$ (b) $\frac{1}{64}$ (c) $\frac{1}{4}$ (d) $\frac{9}{64}$

- 7. The quadratic equation 2x² 5x + 1 = 0 has
 (a) two distinct real roots (b) two equal real roots
 (c) no real roots (d) more than 2 real roots
- 8. Which of the following equations has two distinct real roots?

(a)
$$2x^2 - 3\sqrt{2}x + \frac{9}{4} = 0$$
 (b) $x^2 + x - 5 = 0$
(c) $x^2 + 3x + 2\sqrt{2} = 0$ (d) $5x^2 - 3x + 1 = 0$

- 9. Which of the following equations has no real roots?
 - (a) $x^2 4x + 3\sqrt{2} = 0$ (b) $x^2 + 4x 3\sqrt{2} = 0$ (c) $x^2 - 4x - 3\sqrt{2} = 0$ (d) $3x^2 + 4\sqrt{3}x + 4 = 0$
- **10.** $(x^2 + 1)^2 x^2 = 0$ has
 - (a) four real roots (b) two real roots
 - (c) no real roots (d) one real root.

11. If 2 is the root of the equation $x^2 + bx + 12 = 0$ and the equation $x^2 + bx + q = 0$ has equal roots then q =(a) 8

(b) 16 (c) –8 (d) –16

12. If the equation $(a^2 + b^2)x^2 - 2(ac + bd)x + c^2 + d^2 = 0$ has equal roots then (c) ad = \sqrt{bc} (d) ab = \sqrt{cd} (a) ab = cd(b) ad = bc

13. If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form $ax^2 + bx + c =$ 0 having real roots is (c) 10 (d) 12 (a) 6 (b) 7

14. The number of quadratic equations having real roots and which do not change by squaring their roots is (a) 4 (b) 3 (c) 2 (d) 1

15. If one of the roots of the quadratic equation $(k^2 + 4)x^2 + 13x + 4k$ is reciprocal of the other then k =

(a) 2 (b) 1 (c) - 1(d) - 2

16. If α, β are the roots of the quadratic equation $4x^2 + 3x + 7 = 0$, then $\frac{1}{\alpha} + \frac{1}{\beta}$

(a) $\frac{7}{3}$ (b) $\frac{-7}{3}$ (c) $\frac{3}{7}$ (d) $\frac{-3}{7}$

17. If α, β are the roots of the quadratic equation $x^2 - p(x + 1) - c = 0$, then $(\alpha + 1)(\beta + 1) = 0$ (a) c – 1 (b) 1 - c(c) c (d) 1 + c

18. Find the values of k for which the quadratic equation $2x^2 + kx + 3 = 0$ has real equal roots. (a) $\pm 2\sqrt{6}$ (b) $2\sqrt{6}$ (c) 0(d) ±2

- **19.** Find the values of k for which the quadratic equation kx(x 3) + 9 = 0 has real equal roots. (a) k = 0 or k = 4(b) k = 1 or k = 4(c) k = -3 or k = 3(d) k = -4 or k = 4
- **20.** Find the values of k for which the quadratic equation $4x^2 3kx + 1 = 0$ has real and equal roots. (b) $\pm \frac{2}{3}$ (a) $\pm \frac{4}{2}$ (d) none of these (c) ±2

21. The value of k for which equation $9x^2 + 8xk + 8 = 0$ has equal roots is: (a) only 3 (b) only -3(c) ± 3 (d) 9

22. Which of the following is not a quadratic equation?

(a)
$$x - \frac{3}{x} = 4$$
 (b) $3x - \frac{5}{x} = x^2$ (c) $x + \frac{1}{x} = 3$ (d) $x^2 - 3 = 4x^2 - 4x$

23. Which of the following is a solution of the quadratic equation $2x^2 + x - 6 = 0$?

(a)
$$x = 2$$
 (b) $x = -12$ (c) $x = \frac{3}{2}$ (d) $x = -3$

24. The value of k for which x = -2 is a root of the quadratic equation $kx^2 + x - 6 = 0$

 $(d) - \frac{3}{2}$ (a) –1 (b) –2 (c) 2

25. The value of p so that the quadratics equation $x^2 + 5px + 16 = 0$ has no real root, is

(a)
$$p>8$$
 (b) $p<5$ (c) $\frac{-8}{5} < x < \frac{8}{5}$ (d) $\frac{-8}{5} \le x < 0$
26. If $px^2 + 3 \le q = 0$ has two roots $x = -1$ and $x = -2$, the value of $q - p$ is
(a) -1 (b) -2 (c) 1 (d) 2

27. The common root of the quadratic equation $x^2 - 3x + 2 = 0$ and $2x^2 - 5x + 2 = 0$ is:

(a)
$$x = 2$$
 (b) $x = -2$ (c) $x = \frac{1}{2}$ (d) $x = 1$
28. If $x^2 - 5x + 1 = 0$, the value of $\left(x + \frac{1}{x}\right)$ is:
(a) -5 (b) -2 (c) 5 (d) 3
29. If $a - 3 = \frac{10}{a}$, the value of a are
(a) $-5, 2$ (b) $5, -2$ (c) $5, 2$ (d) $5, 0$

30. If the roots of the quadratic equation $kx^2 + (a + b)x + ab = 0$ are (-1, -b), the value of k is: (a) -1 (b) -2 (c) 1 (d) 2