ARITHMETIC PROGRESSION

Section - 1

1.1 **Definition**

When the sequence of (or numbers) a_1 , a_2 , a_3 , a_4 ,.... increases or decreases by a fixed quantity, then the sequence is in arithmetic progression (A.P.). The fixed quantity is called as common difference. For an A.P., we define its first term as a and the common difference as d; the general expression for an A.P. is:

$$a, a + d, a + 2d, a + 3d, a + 4d \dots$$

If T_r represents the general term of an A.P. (or the r^{th} term), then

$$T_r = a + (r-1) d$$
 where $r \in \{1, 2, 3, \dots, n\}$

It is also denoted by a_r . If the total number of terms be n, then n^{th} term is also known as the last term of A.P. and is denoted by *l*, *i.e.*,

$$l = T_n = a + (n-1) d$$

In an A.P., the difference of any two consecutive terms is d and is given by:

$$d = T_r - T_{r-1}$$

1.2 Sum of *n* terms of an A.P

Consider n terms of an A.P. with first term as a and the common difference as d. Let S_n denotes the sum of the first n terms, then

$$S_n = a + (a+d) + (a+2d) + (a+3d) + \dots + (a+(n-1)d)$$

$$S_n = \frac{n}{2} \left[2a + (n - l) d \right]$$

or $S_n = \frac{n}{2}(a+l)$ as l = a + (n-l)d [where a be the first term and l be the last term]

Arithmetic mean (A) 1.3

When three quantities are in A.P, then the middle one is called as arithmetic mean of other two. If a and b are two numbers and A be the arithmetic mean of a and b, then a, A, b are in A.P.

$$\Rightarrow A - a = b - A \qquad \Rightarrow A = \frac{a + b}{2}$$

1.4 Inserting *n* arithmetic means between two numbers

 $A_1, A_2, A_3, \dots, A_n$ are called n arithmetic means between two numbers a and b, if the sequence $a, A_1, A_2, A_3, A_4, \dots, A_n$ in an A.P.

For this A.P., first term is a, number of terms is (n+2), & the last term is $= b = T_{n+2}$.

Let d be the common difference of this A.P., then

$$\Rightarrow T_{n+2} = b = a + \{(n+2) - 1\} d$$

$$\Rightarrow$$
 $b = a + (n+1) d$

$$\Rightarrow \quad d = \frac{b-a}{n+1} \qquad \Rightarrow \qquad A_1 = a+d = a + \frac{b-a}{n+1} \quad , \qquad A_2 = a+2d = a+2\left(\frac{b-a}{n+1}\right) \text{ and so on.}$$

In general k^{th} arithmetic mean is $\equiv A_k = a + kd = a + k\left(\frac{b-a}{n+1}\right)$

1.5 Important Points

(i) If
$$a, b, c$$
 are in A.P., then: ak, bk, ck are also in A.P. $(k \neq 0)$

$$a/k$$
, b/k , c/k are also in A.P. $(k \neq 0)$

$$a \pm k$$
, $b \pm k$, $c \pm k$ are also in A.P.

(ii) Three terms in an A.P. are taken as:
$$a-d$$
, a , $a+d$

(iii) Four terms in an A.P. are taken as:
$$a-3d$$
, $a-d$, $a+d$, $a+3d$

(iv) The sum of any two terms (of an A.P.) equidistant from beginning and end is equal to the sum of the first and the last term. Hence,
$$(a + md) + (\ell - md) = a + \ell$$

Illustrating the Concept :

The third term of an A.P. is 18 and 7th term is 30. Find the 17th term.

Let the first term of A.P. is *a* and the common difference be *d*.

$$T_r = a + (r-1) d$$

$$\Rightarrow T_3 = a + 2d = 18 \qquad \dots (i)$$

$$T_7 = a + 6d = 30$$
 ... (ii)

Solve (i) and (ii) to get: a = 12 and d = 3

$$T_{17} = a + 16d = 12 + 16 \times 3 = 60$$

$$\Rightarrow T_{17} = 60$$

Find the sum of n terms of a series whose 7th term is 30 and 13th term is 54. Hence or otherwise find the sum of r terms and 50 terms of the series. Assume the series is A.P.

Let the first term of A.P. is a and the common difference be d.

$$T_r = a + (r-1) d$$

$$T_7 = a + 6d = 30$$
 ... (i)

$$T_{13} = a + 12d = 54$$
 ... (ii)

On solving (i) and (ii) we get, a = 6 and d = 4

Now using:

$$S_n = \frac{n}{2} \left[2a + (n-1) d \right]$$

$$S_n = \frac{n}{2} [2 \times 6 + (n-1) \times 4] = 2n (n+2)$$

Now find the sum of r terms, S_r .

In
$$S_n = 2n (n + 2)$$
, we replace n by r to get S_r .

$$\Rightarrow$$
 $S_r = 2r(r+2)$

To find the sum of 50 terms, we can use

$$S_n = 2n(n+2).$$

$$\Rightarrow$$
 $S_{50} = 2 \times 50 (50 + 2) = 5200$

Illustration - 1 The sum of n 'terms of an A.P. whose first term is x, the last term is y and the common difference is 1, is:

(A)
$$\frac{1}{2}(x+y)(1-x+y)$$

$$(B) \qquad (x+y)(1-x+y)$$

(C)
$$\frac{1}{2}(x-y)(1-x+y)$$

(D)
$$(x-y)(1-x+y)$$

SOLUTION: (A)

$$S_n = \frac{n}{2} [a + \ell]$$

[where a is the first term and l is the last term]

$$\Rightarrow S_n = \frac{n}{2} [x + y] \qquad \dots (i)$$

Now in the required answer, note that term n is not there, so eliminate n.

Using:
$$l = a + (n - 1) d$$

 $\Rightarrow y = x + (n - 1) \times 1$
 $\Rightarrow n = 1 - x + y$

Substitute the value of n in (i), we get :

$$S_n = \frac{1}{2}(x+y)(1-x+y)$$

Illustration - 2 If x, y, z are in A.P., then (x + 2y - z)(2y + z - x)(z + x - y) is:

$$(A)$$
 xyz

SOLUTION: (B)

Since x, y and z are in A.P.

$$\Rightarrow$$
 2 $y = x + z$

Substituting for 2y in the given expression,

to get:

$$(x + x + z - z) (x + z + z - x) (2y - y)$$

= $(2x) (2z) (y) = 4xyz$

Illustration - 3 If a, b, c are the x^{th} , y^{th} and z^{th} terms of an A.P., then:

(i)
$$a(y-z) + b(z-x) + c(x-y)$$
 is:

$$(C)$$
 $a+b+c$

(D)
$$a(b+c)$$

(ii)
$$x(b-c) + y(c-a) + z(a-b)$$
 is:

(C)
$$a+b+c$$

$$(\mathbf{D})$$
 $a(b+c)$

SOLUTION: (i) - (A) (ii) - (B)

Let A be the first term and D be the common difference,

$$\Rightarrow T_x = A + (x - 1) D = a \qquad \qquad \dots \text{(i)}$$

$$T_y = A + (y - 1) D = b \qquad \qquad \dots \text{(ii)}$$

$$T_z = A + (z - 1) D = c \qquad \qquad \dots \text{(iii)}$$

Operating [(ii)-(iii)], [(iii)-(i)] and [(i)-(ii)] we get :

$$b-c = (y-z) D$$
, $c-a = (z-x) D$,
 $a-b = (x-y) D$

$$\Rightarrow y - z = \frac{b - c}{D}, \qquad z - x = \frac{c - a}{D},$$
$$x - y = \frac{a - b}{D}$$

(i) Now substituting the values of (y-z), (z-x) and (x-y) in part (i) of the question to get:

$$\frac{a(b-c)}{D} + \frac{b(a-c)}{D} + \frac{c(a-b)}{D} = 0$$

(ii) Now substitute the values of (b-c), (c-a) and (a-b) in part (ii) of the question to get:

$$x (y-z) D + y (z-x) D + z (x-y)D$$

= $\{xy - xz + yz - yx + zx - zy\}D = 0$

Illustration - 4 The sum of n terms of two series in A.P. are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 13^{th} terms.

(A)
$$\frac{129}{231}$$

(B)
$$\frac{12}{13}$$

(C)
$$\frac{131}{229}$$

(D)
$$\frac{13}{12}$$

SOLUTION: (A)

Let a_1 , a_2 be the first terms of two A.P.'s and d_1 , d_2 are their respective common differences.

Now
$$\frac{S_n}{S_n'} = \frac{5n+4}{9n+6}$$

$$\Rightarrow \frac{\frac{n}{2} \left[2a_1 + (n-1) d_1 \right]}{\frac{n}{2} \left[2a_2 + (n-1) d_2 \right]} = \frac{5n+4}{9n+6}$$

$$\Rightarrow \frac{a_1 + \frac{(n-1)}{2} d_1}{a_2 + \frac{(n-1)}{2} d_2} = \frac{5n+4}{9n+6} \dots (i)$$

Now the ratio of 13th terms = $\frac{a_1 + 12d_1}{a_2 + 12d_2}$

$$\Rightarrow$$
 Substitute $\frac{(n-1)}{2} = 12$

$$\Rightarrow n = 25 \text{ in (i)}$$

$$\Rightarrow \frac{a_1 + 12d_1}{a_2 + 12d_2} = \frac{5(25) + 4}{9(25) + 6} = \frac{129}{231}$$

If the sum of n terms of a series is $S_n = n (5n - 3)$, then find the n^{th} term. **Illustration - 5**

10n - 8 **(A)**

(B) 10n + 8 **(C)** 10n + 4

(D) 10n - 4

SOLUTION: (A)

Let
$$S_n = T_1 + T_2 + T_3 + T_4 + \dots + T_{n-1} + T_n$$

 $S_n = \{\text{sum of } (n-1) \text{ terms}\} + T_n$

 $\Rightarrow T_n = S_n - S_{n-1}$

[Learn it as standard result]

Now in the given problem:

$$S_n = n (5n - 3)$$

and
$$S_{n-1} = (n-1) [5 (n-1) - 3]$$

$$\Rightarrow$$
 $T_n = S_n - S_{n-1} = 10 n - 8$

Illustration - 6 If a, b, c are in A.P., then b + c, c + a, a + b are also in:

(A) A.P. **(B)** G.P. **(C)** H.P.

(D) None of these

SOLUTION: (A)

If a, b, c are in A.P., then

a - (a + b + c), b - (a + b + c), c - (a + b + c)are also in A.P. (subtracting a + b + c from

each term)

- (b+c), -(c+a), -(a+b) are also in A.P.

(b+c), (c+a), (a+b) are also in A.P.

Note: If a, b, c are in A.P., then $a \pm k$, $b \pm k$, $c \pm k$ are also in A.P. and -a, -b, -c are also in A.P.

If p times the p^{th} term of an A.P. be equal to q times the q^{th} term, then (p+q)th term **Illustration - 7** is:

(A) p+q **(B)** 0 **(C)** p-q **(D)** 2p + 3q

SOLUTION: (B)

Let a be the first term and d be the common difference of A.P.

$$\Rightarrow$$
 $T_p = a + (p-1) d$

and
$$T_{a} = a + (q - 1) d$$

Now to find $T_{(p+q)}$, we have

$$T_{(p+q)} = a + (p+q-1) d$$
 ... (i)

Since:
$$p(T_p) = q(T_a)$$
 (Given)

$$\Rightarrow$$
 $p[a+(p-1)d]=q[a+(q-1)d]$

$$\Rightarrow$$
 $pa + p(p-1)d = qa + q(q-1)d$

$$\Rightarrow$$
 $(p-q)a+(p^2-q^2)d-(p-q)d=0$

$$\Rightarrow$$
 $(p-q)[a+(p+q-1)d]=0$

$$\Rightarrow$$
 $a+(p+q-1)d=0$ (since $p \neq q$)

$$\Rightarrow T_{(n+q)} = 0$$
 [from (i)]

Illustration - 8 The sum of three consecutive terms of an A.P. is 15 and the sum of their squares is 83, find the terms.

SOLUTION: (C)

Three consecutive terms of an A.P are taken as:

$$(a-d), a, (a+d).$$

$$\Rightarrow$$
 $(a-d)+a+(a+d)=15$...(i)

$$(a-d)^2 + a^2 + (a+d)^2 = 83$$
 ... (ii)

From eqn (i), we get : a = 5.

Substituting for a = 5 in eqn (ii), we get:

$$d^2 = 4$$
. $\Rightarrow d = \pm 2$

Hence the terms are:

Illustration - 9

How many terms of the series: 24 + 20 + 16.... totals 72?

(B) 3

SOLUTION: (A)

$$S_n = \frac{n}{2} \left[2a + (n-1) \ d \right]$$

Now
$$a = 24$$
, $d = -4$ and $S_n = 72$.

$$\Rightarrow 72 = \frac{n}{2} \left[2 \times 24 + (n-1) \times (-4) \right]$$

On solving, we get,
$$n = 4$$
 or 9.

Note: Since the series is decreasing with d = -4, it contains some negative numbers, so the sum of first 4 terms is same as the sum of 9 terms.

Illustration - 10 If the sum of first p, q, r terms of an A.P. is a, b, c respectively, then:

$$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)$$
 is equal to:

SOLUTION: (B)

Let *A* be the first term and *D* be the common difference of the A.P.

$$\Rightarrow \quad a = \frac{p}{2} \left[2A + (p-1) D \right]$$

We can write

$$\frac{a}{p}(q-r) + \frac{b}{q}(r-p) + \frac{c}{r}(p-q)$$
$$= \sum_{p} \frac{a}{p}(q-r)$$

L.H.S.
$$= \sum \frac{a}{p} (q - r)$$

$$= \sum \frac{1}{2} (q - r) [2A + (p - 1) D]$$

$$= \frac{1}{2} \sum 2A (q - r) + \frac{1}{2} \sum (q - r) D (p - 1)$$

$$= A \sum (q - r) + \frac{D}{2} \sum [p (q - r)] - \frac{D}{2} \sum (q - r)$$

$$= 0 + 0 - 0 = 0$$

GEOMETRICAL PROGRESSION

Section - 2

If the sequence of numbers a_1, a_2, a_3, \ldots decrease or increase by a constant factor, they are said to be in *geometrical progression* (G.P.). The constant factor is called as *common ratio*. For a G.P., we define the first term as a and the common ratio as r; the general expression for a G.P. is a, ar, ar^2 , ar^3 ,

In G.P., the common ratio (r) is the ratio of any two consecutive terms. If T_k represents the general term (or

$$k^{\text{th}}$$
 term) of a G.P., then $r = \frac{T_k}{T_{k-1}}$ and $T_k = a r^{k-1}$ where $k \in \{1, 2, \dots, n\}$

2.2 Sum of *n* terms of a G.P.

Consider *n* terms of *a G.P*. with *a* as the first term and *r* as the common ratio. Let S_n denote the sum of *n* terms. Then $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$

$$S_n = \frac{a(1-r^n)}{1-r}, (r \neq 1)$$

2.3 Geometric Mean (G)

When three quantities are in G.P., the middle one is called as *geometric mean* between the other two. If *a* and *b* are two numbers, *G* is the geometric mean between the two, then *a*, *G*, *b* follows a G.P.

$$\Rightarrow \quad \frac{b}{G} = \frac{G}{a} \qquad \qquad \Rightarrow \qquad G^2 = ab \qquad \qquad \Rightarrow \qquad G = \sqrt{ab}$$

2.4 Inserting *n* geometric means between two numbers :

 $G_1, G_2, G_3, \dots, G_n$ are called *n* geometric means between two numbers *a* and *b*,

If the sequence $a, G_1, G_2, G_3, \ldots, G_n, b$ is a G.P.

For this G.P.: first term = a, total number of terms = n + 2,

Last term = $b = T_{n+2} = (n+2)^{th}$ term, let r be the common ratio of this G.P.

$$\Rightarrow T_{n+2} = b = ar^{n+1} \qquad \Rightarrow \frac{b}{a} = r^{n+1} \qquad \Rightarrow \qquad r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

Hence
$$G_1 = ar = a\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$
 and $G_2 = ar^2 = a\left(\frac{b}{a}\right)^{\frac{2}{n+1}}$

In general k^{th} geometric mean $G_k = ar^k = a\left(\frac{b}{a}\right)^{\frac{k}{n+1}}$

2.5 Infinite Geometric series:

If for G.P., the common ratio r lies between -1 and 1 i.e., -1 < r < 1, it is called as *decreasing geometric series*. The sum of the infinite terms of such a sequence (called as infinite geometric series) is denoted by S_{∞} and is given as :

$$S_{\infty} = \frac{a}{1-r}$$
 [where a is the first term and r is the common ratio]

Note:
$$S_n = \frac{a\left(1-r^n\right)}{1-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}$$
. If $n \to \infty$ then $r^n \to 0$ for $-1 < r < 1$ \Rightarrow $S_\infty = \frac{a}{1-r}$

2.6 Important Points

- (i) If a, b, c are in G.P., then: ak, bk, ck are also in G.P. $(k \ne 0)$ a/k. b/k, c/k are also on G.P. $(k \ne 0)$
- (ii) Three terms in a G.P. are taken as : ar, a, a/r
- (iii) Four terms in a G.P. are taken as: ar^3 , ar, a/r, a/r^3
- (iv) If a, b, c, d are in G.P., then: $\frac{a}{b} = \frac{b}{c} = \frac{c}{d}$ \Rightarrow $b^2 = ac$, $c^2 = bd$, ad = bcAlso b = ar, $c = ar^2$, $d = ar^3$ (where r is the common ratio)

Illustrating the Concept:

If 5th term of a G.P is 1/3 and the 9th term is 16/243, then find the 4th term. Also find the sum of first 10 terms of the G.P.

Let a be the first term and r be the common ratio.

$$T_5 = ar^4 = \frac{1}{3}$$
 ... (i)

$$T_9 = ar^8 = \frac{16}{243}$$
 ... (ii)

Divide (i) and (ii) to get $r = \pm \frac{2}{3}$

Substitute for r in eqn (i) to get $a = \frac{27}{16}$

$$\Rightarrow T_4 = ar^3 = \frac{27}{16} \left(\pm \frac{2}{3} \right)^3 = \pm \frac{1}{2}$$

We have,
$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{10} = \frac{\frac{27}{16} \left[1 - \left(\frac{2}{3}\right)^{10} \right]}{1 - \frac{2}{3}}, \frac{\frac{27}{16} \left[1 - \left(\frac{-2}{3}\right)^{10} \right]}{1 - \left(\frac{-2}{3}\right)}$$

$$=\frac{81}{16} \left(\frac{3^{10}-2^{10}}{3^{10}} \right), \frac{81}{80} \left(\frac{3^{10}-2^{10}}{3^{10}} \right)$$

Find the sum of the series:

$$3, \sqrt{3}, 1, \dots$$
 to infinity.

First term, a = 3 and the common ratio,

$$r = \frac{1}{\sqrt{3}} \qquad \left(\left| r \right| < 1 \right)$$

$$S_{\infty} = \frac{a}{1-r} \implies S_{\infty} = \frac{3}{1-\frac{1}{\sqrt{3}}} = \frac{3\sqrt{3}}{\sqrt{3}-1} = \frac{3(3+\sqrt{3})}{2}$$

Illustration - 11 How many terms of the series: $\sqrt{3}$, 3, $3\sqrt{3}$,.....amounts to $39+13\sqrt{3}$?

- **(A)** 8
- **(B)**
- **(C)**
- **(D)** 10

SOLUTION: (C)

Here, the first term a is $\sqrt{3}$ and the common ratio r is $\sqrt{3}$.

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

$$\Rightarrow 39+13\sqrt{3} = \frac{\sqrt{3}\left[1-\left(\sqrt{3}\right)^n\right]}{1-\sqrt{3}}$$

$$\Rightarrow \frac{\left(39+13\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\sqrt{3}} = 1 - \left(\sqrt{3}\right)^n$$

$$\Rightarrow (\sqrt{3})^n - 1 = 26 \qquad \Rightarrow \qquad n = 6$$

Illustration - 12 *If a, b, c, d are in G.P., then find the following :*

(i)
$$(b-c)^2 + (c-a)^2 + (d-b)^2$$

- (A) $(a-d)^2$ (B) $(a-b)^2$ (C) $(c-d)^2$ (D) None of these
- $(a^2-b^2)(c^2-d^2)$ (ii)
 - (a² b²) (c² d²) (A) $(a^2 b^2)^2$ (B) $(b^2 c^2)^2$ (C) $(b^2 d^2)^2$ (D) $(a d)^2$

SOLUTION: (i) - (A) (ii) - (B):

(a)
$$a, b, c, d$$
 are in $G.P.$,
 $\Rightarrow b^2 = ac, c^2 = bd, bc = ad$...(i)

Now expanding the given terms, we get:

$$(b^{2} + c^{2} - 2bc) + (c^{2} + a^{2} - 2ac) + (d^{2} + b^{2} - 2bd)$$

$$= 2 (b^{2} - ac) + 2 (c^{2} - bd) + a^{2} + d^{2} - 2bc$$

$$= 2 (0) + 2(0) + a^{2} + d^{2} - 2ad \quad \text{[Using (i)]}$$

$$= (a - d)^{2}$$

(b) Now expanding the given terms:

$$(a^{2}-b^{2}) (c^{2}-d^{2}) = a^{2}c^{2} - b^{2}c^{2} - a^{2}d^{2} + b^{2}d^{2}$$

$$= b^{4} - b^{2}c^{2} - b^{2}c^{2} + c^{4}$$
 [Using (i)]
$$= (b^{2} - c^{2})^{2}$$

If a, b, c are in A.P. and x, y, z are in G.P., then find the value of $x^{b-c}y^{c-a}z^{a-b}$. Illustration - 13

- **(A)** 0
- **(B)**
- **(C)**
- **(D)**

SOLUTION: (B)

$$a, b, c$$
 are in A.P. $\Rightarrow a - b = b - c$

$$x, y, z$$
 are in G.P. \Rightarrow $y^2 = xz$

$$= y^{\{2(b-c)+(c-a)\}}$$

$$x^{b-c} z^{b-c} y^{c-a} \qquad (\because b-c=a-b)$$

Illustration - 14 The sum of infinite terms of a G.P is 15 and the sum of their squares is 45. Find the series.

- (A) $1, \frac{2}{3}, \frac{4}{9}, \dots$ (B) 5, 15, 45 (C) $15, \frac{15}{2}, \frac{45}{4}, \dots$ (D) $5, \frac{10}{3}, \frac{20}{9}, \dots$

= $(xz)^{b-c} y^{c-a} = y^{2(b-c)} y^{c-a}$ (: $xz = y^2$)

 $= y^{2b-a-c} = y^0 = 1$ $(\because 2b = a+c)$

SOLUTION: (D)

Let the first term of infinite series be a and the common ratio be r. Now for the series with squares of each term, the first term will be a^2 and the common ratio will be r^2 .

We have, $S_{\infty} = \frac{a}{1 - r}$ (where a is the

term and r is common ratio (|r| < 1)

$$\Rightarrow \frac{a}{1-r} = 15$$
 ...(i)

and $\frac{a^2}{1 + 2} = 45$... (ii)

On dividing equation (ii) by equation (i), we get:

$$\frac{a}{1+r} = 3 \qquad \dots \text{(iii)}$$

From eqn. (i) and eqn (iii), we get:

$$\frac{1+r}{1-r} = 5 \qquad r = \frac{2}{3} \quad \text{and} \quad a = 5$$

Hence the series is: $5, \frac{10}{3}, \frac{20}{9}, \dots$

Illustration - 15 Find the value of $x^{1/2}$, $x^{1/4}$, $x^{1/8}$, upto infinity.

- **(A)**
- (\mathbf{B}) x^2
- **(C)**
- **(D)** x^{-1}

SOLUTION: (C)

The given expression can be written as: $\frac{1}{x^2} + \frac{1}{4} + \frac{1}{8} + \dots \infty$

 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \infty$ is an infinite geometric series with $a = \frac{1}{2}$ and $r = \frac{1}{2}$. Now,

$$\Rightarrow \qquad x^{\left(\frac{1/2}{1-1/2}\right)} = x^1 = x$$

[Using
$$S_{\infty} = \frac{a}{1-r}$$
]

Illustration - 16/ If the continued product of three numbers in G.P. is 216 and the sum of the products taken in pairs is 156, then find the numbers.

(A) 2, 6, 18 **(B)**

18, 6, 4

(C) 3, 8, 9 **(D)** None of these

SOLUTION: (A)

Let $\frac{a}{r}$, a, ar be the three numbers.

$$\Rightarrow \frac{a}{r} \cdot a \cdot ar = 216 \Rightarrow a = 6$$

Also
$$\frac{a}{r}(a) + a(ar) + \frac{a}{r}(ar) = 156$$

 $\Rightarrow a^2 \left(\frac{1}{r} + r + 1\right) = 156$

$$\Rightarrow$$
 6² ($r^2 + r + 1$) = 156 r

$$\Rightarrow$$
 $3r^2 + 3r + 3 = 13r$ \Rightarrow $r = 3, \frac{1}{3}$

Hence the numbers are 2, 6, 18 or 18, 6, 2.

Illustration - 17 *If a, b, c are in G.P., then*

$$\frac{a^2 + ab + b^2}{bc + ca + ab}$$
 is:

$$(A) \qquad \frac{b+c}{a+b}$$

(B)
$$\frac{a+c}{a+b}$$

(C)
$$\frac{a+b}{b+c}$$

(D)
$$\frac{a-c}{a-b}$$

SOLUTION: (C)

As a, b, c are in G.P., let us consider b = arand $c = ar^2$ where r is common ratio

$$\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{a^2 + a^2r + a^2r^2}{a^2r^3 + a^2r^2 + a^2r}$$

$$= \frac{a^2(1+r+r^2)}{a^2r(r^2+r+1)} = \frac{1}{r}$$

$$=\frac{a+ar}{ar+ar^2} = \frac{a+b}{b+c}$$

Illustration - 18 If $a^x = b^y = c^z$ and x, y, z are in G.P., then:

(A)
$$log_b a = log_c b$$

$$log_b a = log_c b$$
 (B) $log_a a = log_c b$ (C)

$$(\mathbf{C}) \qquad \log_b a = \log_b c$$

SOLUTION: (A)

Given $a^x = b^y = c^z$. Operating log, we get:

$$x \log a = y \log b = z \log c$$

$$\Rightarrow \frac{x}{y} = \frac{\log b}{\log a}$$
 and $\frac{y}{z} = \frac{\log c}{\log b}$

As x, y, z are in G.P.,

$$\Rightarrow \quad \frac{x}{y} = \frac{y}{z} \qquad \Rightarrow \quad \frac{\log b}{\log a} = \frac{\log c}{\log b}$$

$$\Rightarrow \frac{\log a}{\log b} = \frac{\log b}{\log c} \Rightarrow \log_b a = \log_c b$$

Illustration - 19 If S_n is the sum of first n terms of a G.P.: $\{a_n\}$ and S_n' is the sum of another G.P.: $\{1/a_n\}$, then show that: $S_n = kS_n'$ where k is:

$$(\mathbf{A}) \qquad \frac{1}{a_1 a_n}$$

$$\frac{1}{a_1 a_n} \qquad \qquad \textbf{(B)} \qquad a_1 \ a_n \qquad \qquad \textbf{(C)} \qquad \frac{a_1}{a_n} \qquad \qquad \textbf{(D)} \qquad \frac{a_n}{a_1}$$

(C)
$$\frac{a_1}{a_n}$$

(D)
$$\frac{a_n}{a_1}$$

SOLUTION: (B)

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

$$S_{n'} = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

For the first $G.P.(a_n)$, $a_n = a_1 r^{n-1}$...(i)

$$S_n = \frac{a_1 (1 - r^n)}{1 - r} ,$$

[where *r* is the common ratio]

For the second G.P.
$$\left(\frac{1}{a_n}\right)$$
, common ratio = $\frac{1}{r}$

$$S'_{n} = \frac{1}{a_{1}} \frac{\left(1 - \frac{1}{r^{n}}\right)}{\left(1 - \frac{1}{r}\right)} = \frac{\left(r^{n} - 1\right)}{a_{1}\left(r - 1\right)r^{n-1}} = \frac{r^{n} - 1}{a_{n}\left(r - 1\right)}$$

$$\Rightarrow S'_n = \frac{1}{a_1 a_n} \times \frac{a_1 \left(r^n - 1\right)}{r - 1} \quad [using (i)]$$

$$\Rightarrow S'_n = \frac{1}{a_1 a_n} S_n \qquad \Rightarrow S_n = S'_n a_1 a_n.$$

HARMONICAL PROGRESSION

Section - 3

A sequence $a_1, a_2, a_3, a_4, \dots$ is said to be in *harmonic progression* (H.P.) if

$$\frac{1}{a_1}$$
, $\frac{1}{a_2}$, $\frac{1}{a_3}$, $\frac{1}{a_4}$ forms an arithmetic progression

i.e.,
$$\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = \frac{1}{a_4} - \frac{1}{a_3} = \dots$$

Three quantities a, b, c are said to be in H.P., when $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P.

$$\Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} \qquad \Rightarrow \frac{a - b}{ab} = \frac{b - c}{bc} \qquad \Rightarrow \frac{a}{c} = \frac{a - b}{b - c}$$

$$\Rightarrow \frac{a-b}{ab} = \frac{b-c}{bc}$$

$$\Rightarrow \frac{a}{c} = \frac{a-b}{b-c}$$

3.2 Harmonic mean(H)

When three quantities are in H.P., the middle one is called as the *harmonic mean* between the other two. If a and b are two numbers, H is harmonic mean between the two, then a, H, b must be in H.P.

$$\Rightarrow \frac{1}{a}, \frac{1}{H}, \frac{1}{b}$$
 must be in A.P. $\Rightarrow \frac{1}{H} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H}$

$$\frac{1}{H} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H}$$

$$\Rightarrow \quad \frac{2}{H} = \frac{1}{a} + \frac{1}{b} \qquad \Rightarrow \qquad H = \frac{2ab}{a+b}$$

3.3 Inserting *n* harmonic means between two numbers

 $H_1, H_2, H_3, \dots, H_n$ are called n harmonic means between two numbers a and b, if the sequence : $a, H_1, H_2, H_3, \dots, H_n$, b is an H.P.

$$\frac{1}{a}$$
, $\frac{1}{H_1}$, $\frac{1}{H_2}$, $\frac{1}{H_3}$, $\frac{1}{H_n}$, $\frac{1}{b}$ forms an A.P.

For this A.P., first term = 1/a, number of terms = n + 2 and the last term = $1/b = T_{n+2}$.

$$\Rightarrow T_{n+2} = \frac{1}{b} = \frac{1}{a} + \left[\left(n+2 \right) - 1 \right] d \Rightarrow d = \frac{\frac{1}{b} - \frac{1}{a}}{n} + \frac{\frac{1}{a}}{1} = \frac{a-b}{ab(n+1)}$$

$$\Rightarrow \frac{1}{H_1} = \frac{1}{a} + d = \frac{1}{a} + \frac{a - b}{ab(n+1)} \quad \text{and} \quad \frac{1}{H_2} = \frac{1}{a} + 2d = \frac{1}{a} + 2\frac{a - b}{ab(n+1)} \dots$$

If H_k be the k^{th} harmonic mean, then:

$$\frac{1}{H_k} = \frac{1}{a} + kd = \frac{1}{a} + k\frac{a-b}{ab(n+1)} \qquad \Rightarrow \qquad H_k = \frac{ab(n+1)}{b(n+1) + k(a-b)}$$

3.4 Relation among A, G, H

If *A*, *G*, *H* are arithmetic, geometric and harmonic means respectively between two positive numbers *a* and *b*, then

$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$ and $H = \frac{2ab}{a+b}$ \Rightarrow $AH = \left(\frac{a+b}{2}\right)\left(\frac{2ab}{a+b}\right) = ab = G^2$

 \Rightarrow $G^2 = AH$ i.e. G is the geometric mean between A and H.

Hence, G lies between A and H.

$$A - G = \frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2\sqrt{ab}}{2}$$

$$\Rightarrow A - G = \left(\frac{\sqrt{a} - \sqrt{b}}{\sqrt{2}}\right)^2 \text{ now R.H.S. is positive if } a \text{ and } b \text{ are positive}$$

$$\Rightarrow A - G > 0 \Rightarrow A > G$$

As G lies between A and H, this means A > G > H

Illustration - 20

The 10th term of the series: $8, \frac{8}{3}, \frac{8}{5}$

- (A) 8/17
- **(B)** 8/15
- (C) 8/19
- **(D)** 8/21

SOLUTION: (C)

The given series is an H.P.

$$\Rightarrow \frac{1}{8}, \frac{3}{8}, \frac{5}{8}$$
 is an A.P. with first term $a = \frac{1}{8}$

and common difference $d = \frac{1}{4}$.

Now *n*th term of the H.P.

=1/(n th term of the A.P)

$$\Rightarrow T_n (\text{H.P.}) = \frac{1}{T_n (\text{A.P.})}$$

$$= \frac{1}{\frac{1}{8} + \frac{n-1}{4}} = \frac{8}{2n-1}$$

$$\Rightarrow T_{10} = \frac{8}{2 \times 10 - 1} = \frac{8}{19}$$

Illustration - 21 The mth term of an H.P. is n and nth term is m. The ratio of $(m + n)^{th}$ and $(mn)^{th}$ terms of H.P. is:

- (A) $\frac{mn}{m+n}$
- (\mathbf{B}) $\frac{m+n}{mn}$
- **(C)** 1
- **(D)** 2

SOLUTION: (A)

Assume *a* and *d* be the first term and common difference of corresponding A.P. respectively.

Using
$$T_r$$
 (H.P.) = $\frac{1}{T_r$ (A.P.)

$$T_m = n = \frac{1}{a + (m-1) d}$$

$$\Rightarrow$$
 $a + (m-1) d = \frac{1}{n}$... (i)

$$T_n = m = \frac{1}{a + (n-1) d}$$

$$\Rightarrow a + (n-1) d = \frac{1}{m}$$
 ... (iii

Subtracting (ii) from (i), we get :

$$(n-m) d = \frac{n-m}{mn} \implies d = \frac{1}{mn}$$

Substituting for d in eqn (i), we get:

$$a = \frac{1}{mn}$$

$$T_{m+n} = \frac{1}{a + (m+n-1) d}$$

$$= \frac{1}{\frac{1}{m+n} + (m+n-1) \frac{1}{m+n}} = \frac{mn}{m+n}$$

Similarly,
$$T_{mn} = \frac{mn}{mn} = 1$$

Hence,
$$\frac{T_{m+n}}{T_{mn}} = \frac{mn}{m+n}$$

Illustration - 22 If the sum of three numbers in H.P. is 26 and the sum of their reciprocals is 3/8. then the number are:

- **(A)** 6, 8, 10
- **(B)** 6, 9, 12
- **(C)** 6, 8, 12
- **(D)** 8, 10, 12

SOLUTION: (C)

Three numbers in H.P. are taken as:

$$\frac{1}{a-d}, \frac{1}{a}, \frac{1}{a+d}$$

$$\Rightarrow \frac{1}{a-d} + \frac{1}{a} + \frac{1}{a+d} = 26 \quad \dots (i)$$

Also (a - d) + a + (a + d) = 3/8... (ii) From (i) and (ii)

$$a = \frac{1}{8}$$
 and $d = \pm \frac{1}{24}$

 \Rightarrow The numbers are 12, 8, 6 or 6, 8, 12.

Illustration - 23 In an H.P., the p^{th} term is qr and q^{th} term is rp. Show that the r^{th} term is pq.

- $\frac{p}{q}$
- **(B)** *pq*
- (C) $\frac{1}{pq}$
- (D) $\frac{q}{p}$

SOLUTION: (B)

Let A, D be the first term and the common difference of the A.P. formed by the reciprocals of given H.P.

 p^{th} term of A.P. is $\frac{1}{qr}$ and q^{th} term of A.P.

is
$$\frac{1}{rp}$$

$$\Rightarrow \frac{1}{qr} = A + (p-1)D$$
and $\frac{1}{rp} = A + (q-1)D$

We will solve these two equation to get

A and D.

Subtracting, we get,

$$\frac{p-q}{pqr} = (p-q)D \quad \Rightarrow \quad D = \frac{1}{pqr}$$

Hence,
$$\frac{1}{qr} = A + \frac{p-1}{pqr} \implies A = \frac{1}{pqr}$$

Now the r^{th} term of A.P. = $T_r = A + (r-1)D$

$$\Rightarrow$$
 $T_r = \frac{1}{pqr} + \frac{r-1}{pqr} = \frac{1}{pq}$

Hence r^{th} term of the given H.P. is pq.

If a, b, c are respectively p^{th} , q^{th} , and r^{th} terms of H.P., then: Illustration - 24

bc(q-r) + ca(r-p) + ab(p-q) is equal to:

(A) abc **(B)** 0 **(C)** par **(D)** None of these

SOLUTION: (B)

Let A and D be the first term and common difference of the A.P. formed by the reciprocals of the given H.P.

$$\Rightarrow \frac{1}{a} = A + (p-1)D \qquad \dots (i)$$

$$\frac{1}{b} = A + (q-1)D \qquad \dots (ii)$$

$$\frac{1}{c} = A + (r - 1) D \qquad \dots \text{(iii)}$$

Subtracting (iii) from (ii) we get:

$$\frac{c-b}{bc} = (q-r)D$$

$$\Rightarrow bc(q-r) = -\frac{(b-c)}{D}$$

Now,
$$\sum bc(q-r)$$
$$=-\sum \frac{b-c}{D} = -\frac{1}{D}\sum (b-c)$$
$$=-\frac{1}{D}[b-c+c-a+a-b] = 0$$

Illustration - 25 If $\frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} + \frac{1}{a} = 0$, then which of the following is (are) true?

(A)

(B) $\frac{1}{a} + \frac{1}{c} = \frac{2}{b}$ **(C)** $\frac{1}{a} - \frac{1}{c} = \frac{2}{b}$ **(D)** a - c = 2b

SOLUTION: (B)

$$\frac{1}{a} + \frac{1}{c} + \frac{1}{a - b} + \frac{1}{c - b} = 0$$

$$\Rightarrow \left(\frac{1}{a} + \frac{1}{c - b}\right) \left(\frac{1}{c} + \frac{1}{a - b}\right) = 0$$

$$\Rightarrow \frac{a+c-b}{a(c-b)} + \frac{c+a-b}{c(a-b)} = 0$$

$$\Rightarrow (a+c-b)\left\{\frac{1}{a(c-b)} + \frac{1}{c(a-b)}\right\} = 0 \Rightarrow a(c-b) = -c(a-b) \text{ or } a+c-b=0$$

$$a(c-b) = -c(a-b)$$
 or $a+c-b=0$

$$\Rightarrow$$
 $2ac = ab + bc$ or $a + c = b$

$$\Rightarrow \frac{2}{b} = \frac{1}{c} + \frac{1}{a}$$
 or $a+c=2b$

$$or a+c=2l$$

$$\Rightarrow$$
 a, b, c are in H.P. or $a + c = b$.

Illustration - 26 If $a_1, a_2, a_3, \dots, a_n$ are in H.P., then $a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n = k a_1 a_n$ where k is:

- **(A)** n-1
- **(B)** n
- **(C)**
- **(D)** 1/n

SOLUTION: (A)

Let *D* be the common difference of the A.P. corresponding to the given H.P.

$$\Rightarrow \frac{1}{a_n} = \frac{1}{a_1} + (n-1)D \qquad \dots (i)$$

Now
$$\frac{1}{a_1}$$
, $\frac{1}{a_2}$, $\frac{1}{a_3}$ are in A.P.

$$\Rightarrow \frac{1}{a_2} - \frac{1}{a_1} = D \Rightarrow a_1 a_2 = \frac{a_1 - a_2}{D}$$

and
$$a_2 a_3 = \frac{a_2 - a_3}{D}$$
 and so on.

$$\Rightarrow a_{n-1}a_n = \frac{a_{n-1} - a_n}{D}$$

Adding all such expressions we get:

$$\Rightarrow a_1a_2 + a_2a_3 + a_3a_4 +$$

.....
$$a_{n-1}a_n = \frac{a_1 - a_n}{D}$$

$$\Rightarrow a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n = \frac{a_1 - a_n}{D}$$

$$\Rightarrow a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n$$

$$= \frac{a_1 a_n}{D} \left[(n-1)D \right] \text{ [Using (i)]}$$

$$\Rightarrow a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n = (n-1) a_1 a_n$$

Hence,
$$k = n - 1$$

Illustration - 27 $|_{If A}$ and G are arithmetic mean (AM) and geometric mean (GM) between two numbers a and b, then roots of the equation : $x^2 - 2Ax + G^2 = 0$ are :

- **(A)** a, 2b
- **(B)** 2a, b
- **(C)** *a*, *b*
- **(D)** 2a, 2b

SOLUTION: (C)

Since A is the A.M. between a and b and G is G.M. between a and b.

$$\Rightarrow$$
 $A = \frac{a+b}{2}$ and $G = \sqrt{ab}$

$$G = \sqrt{ab}$$

Equation: $x^2 - 2Ax + G^2 = 0$

$$\Rightarrow x^2 - (a+b)x + ab = 0$$

$$\Rightarrow$$
 $(x-a)(x-b)=0$

Hence, roots are a and b.

Illustration - 28 If a, b, c are in an A.P., x is the GM of a, b and y is GM of b, c, then the AM of x^2 and y^2 is:

- (A) a^2
- (B) b^2
- (C) c^2
- (D) None of these

SOLUTION: (B)

a, *b*, *c* are in A.P.

- \Rightarrow 2b = a + c
- ...(i)

x is G.M. of *a*, *b*

- $\Rightarrow x = \sqrt{ab}$
- ...(ii)

y is G.M. of b, c

- \Rightarrow $y = \sqrt{bc}$
- ...(iii)

Squaring (ii) and (iii) and adding, we get:

 \Rightarrow $x^2 + y^2 = ab + bc = b(a + c)$

From (i) a + c = 2b

 $\Rightarrow x^2 + y^2 = 2b^2 \Rightarrow b^2 = \frac{x^2 + y^2}{2}$

Hence b^2 is arithmetic mean (AM) of x^2 and y^2 .

SUMMATION OF SERIES

Section - 4

Sum of first *n* natural numbers 4.1

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n$$

$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

Sum of squares of first *n* natural numbers 4.2

$$\sum_{r=1}^{n} r^2 = 1^2 + 2^3 + 3^3 + \dots + n^2$$

$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum of cubes of first *n* natural numbers: 4.3

$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 \qquad \sum_{r=1}^{n} r^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

$$\sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2} \right]^2$$

Arithmetico-Geometric Series: 4.4

A series in which each term is the product of corresponding terms in an arithmetic and geometric series.

The general expression for such a series:

$$a, (a+d) r, (a+2d) r^2, (a+3d) r^3, \dots$$

Note: a: first term of A.P. d: common difference of A.P. r: common ratio of G.P.

 k^{th} term of such a series : $T_k = [a + (k-1) d] r^{k-1}$

Sum of n terms of arithmetico - geometric series :

Let S = sum of series.

$$S = a + (a + d) r + (a + 2d) r^2 + \dots + [a + (n-1) d] r^{n-1}$$
 ...(i)

Multiply each term by r (on both the sides) and write as follows.

$$rS = 0 + ar + (a + d) r^2 + (a + 2d) r^3 + \dots + [a + (n - 1) d] r^n$$
 ... (ii)

Operating (i) - (ii) we get:

$$\Rightarrow$$
 $S(1-r) = a + dr + dr^2 + dr^3 + \dots + dr^{n-1} - [a + (n-1)d]r^n$

$$\Rightarrow$$
 $S(1-r) = a + d(r + r^2 + r^3 + \dots + r^{n-1}) - [a + (n-1)d]r^n$

$$\Rightarrow S(1-r) = a + \frac{dr(1-r^{n-1})}{1-r} - [a + (n-1)d]r^n$$

$$\Rightarrow S = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{\left[a + (n-1)d\right]r^n}{1-r}$$

Sum of an infinite Arithmetico - Geometric series

If
$$|r| < 1$$
 i.e., $-1 < r < 1$ then, $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

Illustration - 29 The sum of the series: $1.2 + 2.3 + 3.4 + \dots$ upto n terms is:

(A)
$$\frac{n(n+2)(n+3)}{6}$$
 (B) $\frac{n(n+1)(n+2)}{3}$ (C) $\frac{n(n+1)(n+2)}{6}$ (D) $\frac{n(n+2)(n+3)}{3}$

SOLUTION: (B)

In such questions, find out n^{th} term and try to use the formulae for $\sum r$, $\sum r^2$, $\sum r^3$.

In the given problem, the n^{th} term is

$$n (n + 1) = n^2 + n$$

 $T_1 = 1^2 + 1, T_2 = 2^2 + 2$
 $T_3 = 3^2 + 3$ and so on.....

Let S_n denotes the sum of n terms.

$$S_n = T_1 + T_2 + T_3 + \dots + T_n$$

 $\Rightarrow S_n = (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + \dots + (n^2 + n)$

$$\Rightarrow S_n = (1^2 + 2^2 + 3^2 + \dots + n^2) + (1 + 2 + 3 + \dots + n)$$

$$\Rightarrow S_n = \sum_{r=1}^n r^2 + \sum_{r=1}^n r$$

$$S_n = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2}$$

$$S_n = \frac{n(n+1)}{2} \left\lceil \frac{2n+1}{3} + 1 \right\rceil = \frac{n(n+1)(n+2)}{3}$$

Illustration - 30 The sum of the series: $1^2 + 3^2 + 5^2 + \dots n$ terms is:

(A)
$$\frac{n}{3}(4n^2-1)$$

(B)
$$\frac{n^2}{3}(4n-1)$$

(C)
$$\frac{n^2}{3}(4n+1)$$

(A)
$$\frac{n}{3}(4n^2-1)$$
 (B) $\frac{n^2}{3}(4n-1)$ (C) $\frac{n^2}{3}(4n+1)$ (D) $\frac{n}{3}(4n^2+1)$

SOLUTION: (A)

First try to determine the n^{th} term of the given expression.

Note that each term of the series is equal to the square of the corresponding term of series,

So the n^{th} term of the given series should be the square of the n^{th} term of the series

The n^{th} term of the series 1, 3, 5, 7is (2n-1).

$$\Rightarrow$$
 $T_n = (2n-1)^2 = 4n^2 - 4n + 1$

Now
$$T_1 = 4(1^2) - 4(1) + 1$$

$$T_2 = 4(2^2) - 4(2) + 1$$

$$T_n = 4(n^2) - 4(n) + 1$$

On adding, we get:

$$S_n = T_1 + T_2 + T_3 + \dots + T_n$$

$$S_n = 4 (1^2 + 2^2 + 3^3 + \dots + n^2)$$

- $4 (1 + 2 + 3 + \dots + n)$

$$+(1+1+1+..... n \text{ times})$$

$$S_n = 4\sum_{n=1}^{n} n^2 - 4\sum_{n=1}^{n} r + n$$

$$S_n \frac{4n(n+1)(2n+1)}{6} - \frac{4n(n+1)}{2} + n$$

$$S_n = \frac{n}{3} \left(4n^2 - 1 \right)$$

Illustration - 31 The sum of the series: $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$ to n terms is:

(A)
$$\frac{n(n+1)(n+2)}{12}$$

(B)
$$\frac{n(n+1)(n+2)^2}{12}$$

(A)
$$\frac{n(n+1)(n+2)}{12}$$
 (B) $\frac{n(n+1)(n+2)^2}{12}$ (C) $\frac{n(n+1)^2(n+2)}{12}$ (D) $\frac{n^2(n+1)(n+2)}{12}$

(**D**)
$$\frac{n^2(n+1)(n+2)}{12}$$

SOLUTION: (C)

First determine the r^{th} term.

$$\Rightarrow T_r = (1^2 + 2^2 + 3^2 + \dots + r^2) \Rightarrow T_r = \sum_{r=1}^r r^2 = \frac{n(n+1)(2n+1)}{6} \Rightarrow T_r = \frac{1}{3}r^3 + \frac{1}{2}r^2 + \frac{1}{6}r$$

Now
$$S_n = \sum_{r=1}^n T_r = \frac{1}{3} \sum_{r=1}^n r^3 + \frac{1}{2} \sum_{r=1}^n r^2 + \frac{1}{6} \sum_{r=1}^n r = \frac{1}{3} \frac{n^2 (n+1)^2}{4} + \frac{1}{2} \frac{n (n+1) (2n+1)}{6} + \frac{1}{6} \frac{n (n+1)}{2}$$

Simplify to get:
$$S_n = \frac{n(n+1)^2(n+2)}{12}$$

The Sum the nth term of the series: $3.7 + 5.10 + 7.13 + \dots$ to n terms is: Illustration - 32

(A)
$$\frac{n}{2} \left(4n^2 + 17n + 21 \right)$$
 (B) $\frac{n^2}{4} \left(4n + 17n + 19 \right)$ (C) $\frac{n}{2} \left(4n^2 + 17n + 19 \right)$ (D) $\frac{n}{4} \left(4n^2 + 17n + 21 \right)$

SOLUTION: (A)

As usual, find the r^{th} term. Note that 3, 5, 7, . . . i.e., the first number of each term is in A.P. and 7, 10, 13,

 \dots i.e. second number of each term is also in A.P.

$$\Rightarrow$$
 $T_r = (2r+1)(3r+4)$

[product of r terms of two A.P.(s)]

$$\Rightarrow$$
 $T_r = 6r^2 + 11r + 4$

Taking summation of both sides,

$$S_n = \sum_{r=1}^{n} T_r = 6\sum_{r=1}^{n} r^2 + 11\sum_{r=1}^{n} r + 4\sum_{r=1}^{n} 1$$

$$\Rightarrow S_n = \frac{6n(n+1)(2n+1)}{6} + \frac{11n(n+1)}{2} + 4n$$

$$\Rightarrow S_n = \frac{n}{2} \left(4n^2 + 17n + 21 \right)$$

Sum the series: $1 + 3x + 5x^2 + 7x^3 + \dots$ Illustration - 33

(i) to n terms

(A)
$$\frac{1}{1-x} + \frac{2x(1-x^n)}{(1-x)^2} - \frac{(2n-1)x^n}{1-x}$$

(A)
$$\frac{1}{1-x} + \frac{2x(1-x^n)}{(1-x)^2} - \frac{(2n-1)x^n}{1-x}$$
 (B) $\frac{1}{1-x} + \frac{2x(1-x^{n-1})}{(1-x)^2} - \frac{(2n-1)x^n}{1-x}$

(C)
$$\frac{1}{1-x} + \frac{2x(1-x^n)}{(1-x)^2} + \frac{(2n-1)x^n}{1-x}$$

(C)
$$\frac{1}{1-x} + \frac{2x(1-x^n)}{(1-x)^2} + \frac{(2n-1)x^n}{1-x}$$
 (D) $\frac{1}{1-x} + \frac{2x(1-x^{n-1})}{(1-x)^2} + \frac{(2n-1)x^n}{1-x}$

- to infinity (ii)
- if (/x/<1)
- (A) $\frac{1+x}{1-x}$ (B) $\frac{1-x}{1+x}$
- (C) $\frac{1+x}{(1-x)^2}$ (D) $\frac{1-x}{(1-x)^2}$

SOLUTION: (i) - (B) (ii) - (C)

Note that the given series is an Arithmetico-Geometric series.

$$\Rightarrow T_r = 2r - 1$$

$$1, x, x^2, \dots$$
 are in G.P.

$$\Rightarrow T_r = x^{r-1}$$

This means that r^{th} term of A-G series $= (2r-1) x^{r-1}$

$$S_n = 1 + 3x + 5x^2 + \dots + (2n-3)x^{n-2} + (2n-1)x^{n-1} \dots (i)$$

$$xS_n = x + 3x^2 + 5x^3 + \dots + (2n-3)x^{n-1} + (2n-1)x^n \dots$$
 (ii)

$$+ (2n-3)x^{n-1} + (2n-1)x^{n} \dots (11)$$

$$\Rightarrow (1-x)S_{n} = 1 + 2x + 2x^{2} + \dots$$

$$+2x^{n-1}-(2n-1)x^n$$

$$\Rightarrow (1-x)S_n = 1 + \frac{2x(1-x^{n-1})}{1-x} - (2n-1)x^n$$

$$\Rightarrow S_n = \frac{1}{1-x} + \frac{2x(1-x^{n-1})}{(1-x^2)} - \frac{(2n-1)x^n}{1-x} \Rightarrow (1-x)S_{\infty} = 1 + 2x\left(\frac{1}{1-x}\right) = \frac{1+x}{1-x}$$

(b)
$$S_{\infty} = 1 + 3x + 5x^2 + \dots$$
 $to \infty$ $S_{\infty} = \frac{1 + x}{(1 - x)^2}$

$$\Rightarrow$$
 $(1-x) S_{\infty} = 1 + 2x + 2x^2 + \dots to \infty$

$$\Rightarrow$$
 $(1-x) S_{\infty} = 1 + 2x (1 + x + x^2 + \dots \text{ to } \infty)$

Illustration - 34 The sum of the series: $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ to ∞ terms is:

(A)
$$\frac{35}{4}$$
 (B) $\frac{5}{16}$ (C) $\frac{7}{16}$ (D) $\frac{35}{16}$

SOLUTION: (D)

The given series is arithmetico - geometric series.

Let
$$S = 1 + \frac{4}{5} + \frac{7}{5^2} + \dots + \frac{3n-2}{5^{n-1}}$$
 ... (i)
$$\frac{1}{5}S = \frac{1}{5} + \frac{4}{5^2} + \dots + \frac{3n-5}{5^{n-1}} + \frac{3n-2}{5^n}$$
 ... (ii) [:: Multiply both side $r = \frac{1}{5}$]

Subtracting (i) from (ii)

$$\Rightarrow \frac{4}{5}S_n = 1 + \left(\frac{3}{5} + \frac{3}{5^2} + \dots + \frac{3}{5^{n-1}}\right) - \left(\frac{3n-2}{5^n}\right)$$

$$\Rightarrow S_n = \frac{5}{4} + \frac{5}{4} \times \frac{3}{5} \left(\frac{1 - \frac{1}{5^{n-1}}}{1 - \frac{1}{5}} \right) - \left(\frac{3n - 2}{5^n} \times \frac{5}{4} \right)$$

$$\Rightarrow S_n = \frac{5}{4} + \frac{3}{4} \left(\frac{5^{n-1} - 1}{4} \right) \frac{1}{5^{n-2}} - \frac{3n - 2}{4 \cdot 5^{n-1}}$$

$$\Rightarrow S_n = \frac{5}{4} + \frac{15}{16} - \frac{3}{16.5^{n-2}} - \frac{3n-2}{20.5^{n-2}}$$

$$\Rightarrow S_n = \frac{35}{16} - \left(\frac{12n+7}{80\left(5^{n-2}\right)}\right)$$

Now
$$S_{\infty} = 1 + \frac{4}{5} + \frac{7}{5^2} + \dots \infty$$
;
 $\frac{1}{5}S_{\infty} = \frac{1}{5} + \frac{4}{5^2} + \dots \infty$
 $\Rightarrow \frac{4}{5}S_{\infty} = 1 + \frac{3}{5} + \frac{3}{5^2} + \dots \infty$
 $\Rightarrow \frac{4}{5}S_{\infty} = 1 + \frac{3/5}{1 - 1/5} \Rightarrow S_{\infty} = \frac{5}{4}\left(1 + \frac{3}{4}\right) = \frac{35}{16}$

Illustration - 35

The sum of the series: $\frac{1}{1}^3 + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ to n terms is:

(A)
$$\frac{n}{12} \left(2n^2 + 9n + 13 \right)$$
 (B) $\frac{n}{24} \left(2n^2 + 9n + 13 \right)$ (C) $\frac{n}{12} \left(2n^2 + 6n + 13 \right)$ (D) $\frac{n}{24} \left(n^2 + 6n + 13 \right)$

SOLUTION: (B)

$$T_r = \frac{1^3 + 2^3 + \dots r^3}{1 + 3 + 5 + \dots \text{to } r \text{ terms}}$$

$$T_r = \frac{\sum r^3}{\frac{r}{2} [2 + (r-1) 2]} = \frac{(r+1)^2}{4}$$

$$\Rightarrow T_r = \frac{r^2 + 2r + 1}{4}$$

$$S_n = \sum_{r=1}^{r=n} T_r = \frac{1}{4} \left[\sum_{r=1}^n r^2 + 2 \sum_{r=1}^n r + \sum_{r=1}^n 1 \right]$$
$$= \frac{1}{4} \left[\frac{n(n+1)(2n+1)}{6} + n(n+1) + n \right]$$
$$= \frac{n}{24} \left[2n^2 + 3n + 1 + 6n + 6 + 6 \right]$$

$$\Rightarrow S_n = \frac{n}{24} \left[2n^2 + 9n + 13 \right]$$

Illustration - 36 Find the sum of the products of every pair of the first n natural numbers.

(A)
$$\frac{n(n+1)^2(3n-2)}{24}$$

(B)
$$\frac{n(n+1)(3n-2)(n-1)}{24}$$

(C)
$$\frac{n(n+1)(3n+2)(n-1)}{24}$$

$$\frac{n(n+1)^2(3n+2)}{24}$$

SOLUTION: (C)

The required sum is given as follows.

$$S = 1.2 + 1.3 + 1.4 + \dots + 2.3 + 2.4 + \dots + 3.4 + 3.5 + \dots + (n-1) n$$

$$= \frac{n(n+1)}{24} \left[3n(n+1) - 2(2n+1) \right]$$
$$= \frac{n(n+1)}{24} \left[3n^2 - n - 2 \right]$$

Using:
$$S = \frac{\left(\sum n\right)^2 - \sum n^2}{2}$$
, we get:

$$S = \frac{1}{2} \left[\frac{n^2 (n+1)^2}{4} - \frac{n (n+1) (2n+1)}{6} \right]$$

$$\Rightarrow S_n = \frac{n(n+1)(3n+2)(n-1)}{24}$$

Illustration - 37 Sum the series to n terms : $4 + 44 + 444 + 4444 + \dots is$:

(A)
$$\frac{4}{81} \left[10(10^n - 1) - 9n \right]$$

(B)
$$\frac{4}{81} \left[10(10^n + 1) - 9n \right]$$

(C)
$$\frac{4}{81} \left[10(10^n - 1) + 9n \right]$$

(D)
$$\frac{4}{81} \left[10(10^n + 1) + 9n \right]$$

SOLUTION: (A)

Let
$$S_n = 4 + 44 + 444 + 4444$$

$$\Rightarrow S_n = 4/9 \{ (10 + 10^2 + 10^3 + \dots n \text{ terms}) \}$$

$$- (1 + 1 + 1 + \dots n \text{ terms}) \}$$

$$+ \dots$$
 to *n* terms.
 $\Rightarrow S_n = 4(1 + 11 + 111 + 1111)$

$$S_n = \frac{4}{9} \left(\frac{10(10^n - 1)}{10 - 1} - n \right)$$

$$\Rightarrow$$
 $S_n = 4/9 \{ (10-1) + (100-1) \}$

+ *n* terms)

$$+(1000-1)+....n$$
 terms}

$$\Rightarrow S_n = \frac{4}{81} \left[10 \left(10^n - 1 \right) - 9n \right]$$

Illustration - 38 If a, b, c are distinct such that $ab + bc + ca \neq 0$ and in A.P., then

$$a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$$
 are in:

(A) A.P.

(**B**) G.F

(C) H.P.

(D) None of these

SOLUTION: (A)

As a, b, c are in A.P., then a(ab+bc+ca), b(ab+bc+ca), c(ab+bc+ca) are in A.P.

$$\Rightarrow$$
 $a^2(b+c)+abc$, $b^2(a+c)+abc$, $c^2(a+b)+abc$ are in A.P.

$$\Rightarrow$$
 $a^2(b+c) + abc - abc$, $b^2(a+c) + abc - abc$, $c^2(a+b) + abc - abc$ are in A.P.

Hence, $a^{2}(b+c)$, $b^{2}(a+c)$, $c^{2}(a+b)$ are in A.P.

Alternate Approach:

As a, b, c are in A.P., we get: a-b=b-c ...(i)

Consider $a^2(b+c) - b^2(c+a) = (a^2b - b^2a) + (a^2c - b^2c) = (a-b)(ab+ac+bc)...$ (ii)

Also
$$b^2(c+a) - c^2(a+b) = (b^2c - c^2b) + (b^2a - c^2a) = (b-c)(bc+ba+ca)$$
 ... (iii)

Form (i), (ii), (iii) we get:

$$a^{2}(b+c)-b^{2}(c+a)=b^{2}(c+a)-c^{2}(a+b)$$

$$\Rightarrow$$
 $a^2(b+c), b^2(c+a), c^2(a+b)$ are in A.P.

*

Illustration - 39 If $\sqrt[x]{a} = \sqrt[y]{b} = \sqrt[z]{c}$ and if a, b, c are in G.P., then x, y, z are in:

(A) A.P.

(B) G.P.

(C) H.P.

(D) None of these

SOLUTION: (A)

Let
$$a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$$

$$\Rightarrow \frac{\log a}{x} = \frac{\log b}{y} = \frac{\log c}{z} = k$$

$$\Rightarrow \log a = kx, \log b = ky, \log c = kz \quad [\because b^2 = ac]$$

$$\Rightarrow 2 \log b = \log a + \log c \qquad [\because b^2 = ac]$$

We have 2 ky = kx + kz

$$\Rightarrow$$
 2y = x + z \Rightarrow x, y, z are in A.P.

Illustration - 40 At what values of parameter a are there values of x such that the numbers :

$$(5^{1+x}+5^{1-x}),(a/2),(25^x+25^{-x})$$
 form an A.P.?

(A)
$$a \ge 18$$

(B)
$$a \ge 12$$

(C)
$$a \ge 15$$

$$(\mathbf{D})$$
 $a \leq 3$

SOLUTION: (B)

For the given numbers to be in A.P.,

$$2\left(\frac{a}{2}\right) = 5^{1+x} + 5^{1-x} + 25^x + 25^{-x}$$

Let
$$5^x = k$$

$$\Rightarrow \quad a = 5k + \frac{5}{k} + k^2 + \frac{1}{k^2}$$

$$\Rightarrow a = 5\left(k + \frac{1}{k}\right) + \left(k^2 + \frac{1}{k^2}\right)$$

As the sum of a positive number and its reciprocal is always greater than or equal to 2,

$$k + \frac{1}{k} \ge 2$$
 and $k^2 + \frac{1}{k^2} \ge 2$

Hence $a \ge 5$ (2) + 2 $\Rightarrow a \ge 12$

Illustration - 41 The series of natural numbers is divided into groups: (1); (2, 3, 4); (5, 6, 7, 8, 9) and so on. The sum of the numbers in the nth group is:

(A)
$$n^3 + (n+1)^3$$

$$n^3 + (n+1)^3$$
 (B) $(n-1)^3$

$$(\mathbf{C})$$
 n^3

(D)
$$n^3 + (n-1)^3$$

SOLUTION: (C)

Note that the last term of each group is the square of a natural number.

Hence first term in the n^{th} group is = $(n-1)^2 + 1 = n^2 - 2n + 2$

There is 1 term in \mathbf{I}^{st} group, 3 terms in \mathbf{II}^{nd} , 5 terms in \mathbf{III}^{rd} , 7 terms in \mathbf{IV}^{th} ,.....

No. of terms in the n^{th} group = n^{th} term of (1, 3, 5, 7...) = 2n - 1

Common difference in the n^{th} group = 1

Sum =
$$\frac{2n-1}{2} \left[2 \left(n^2 - 2n + 2 \right) + \left(2n - 2 \right) 1 \right]$$

$$= \frac{2n-1}{2} \left[2n^2 - 2n + 2 \right]$$

$$= (2n-1)\left(n^2 - n + 1\right)$$

$$=2n^3-3n^2+3n-1=n^3+(n-1)^3$$

Illustration - 42 If a, b, c are in G.P., and the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root then d/a, e/b, f/c are in :

(A) A.P.

(B) G

(C) H.P.

(D) None of these

SOLUTION: (A)

a, b, c are in G.P. \Rightarrow

 $b^2 = ac$

Hence the first equation has equal roots because its discriminant = $4b^2 - 4ac = 0$.

The roots are $x = \frac{-2b}{2a} = -\frac{b}{a}$.

As the two equations have a common roots, -b/a is also a root of the second equation.

$$\Rightarrow d\left(-\frac{b}{a}\right)^2 + 2e\left(-\frac{b}{a}\right) + f = 0$$

$$\Rightarrow db^2 - 2abe + a^2f = 0$$

Dividing by ab^2

$$\Rightarrow \frac{d}{a} - \frac{2e}{b} + \frac{a^2f}{ab^2} = 0$$

$$\Rightarrow \frac{d}{a} - \frac{2e}{b} + \frac{a^2 f}{a(ac)} = 0$$

$$\Rightarrow \frac{d}{a} - \frac{2e}{b} + \frac{f}{c} = 0$$

$$\Rightarrow \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$$
 are in A.P.

Illustration - 43 If the first and the last term of an A.P., a G.P. and a H.P. are equal and their n^{th} terms are a, b and c respectively, then, find the correct choice(s): [Given: Total number of terms = 2n - 1]

(A) a = b = c

(B) $a \ge b \ge c$

(C) a + c = b

(D) $ac - b^2 = 0$

SOLUTION: (B D)

Let the first term = A

The last term = $[(2n-1)^{th} \text{ term}] = L$

No. of terms = 2n - 1 i.e. odd number

Middle term = $\frac{(2n-1)+1}{2}$ = n^{th} term

 \Rightarrow T_n is the middle term for all the three progressions. In an A.P. the middle term is the arithmetic mean of first and the last terms.

$$\Rightarrow a = \frac{A+L}{2}$$

In a G.P. the middle term is the geometric mean of first and last terms.

$$\Rightarrow b = \sqrt{AL}$$

In an H.P. the middle term is the harmonic mean of first and last terms.

$$\Rightarrow c = \frac{2AL}{A+L}$$

Hence a, b, c are AM, GM & HM between the numbers A and L.

$$As (GM)^2 = (AM) (HM)$$

We have $b^2 = ac$

Hence, (B) and (D) are the correct choices.

*

Illustration - 44 Find the sum of n terms of series: $(x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots$

(A)
$$\frac{1}{x+y} \left[\frac{x^2(1-x^n)}{1-x} \right] - \frac{1}{x+y} \left[\frac{y^2(1-y^n)}{1-y} \right]$$
 (B) $\frac{1}{x-y} \left[\frac{x(1-x^n)}{1-x} \right] - \frac{1}{x-y} \left[\frac{y(1-y^n)}{1-y} \right]$

(C)
$$\frac{1}{x+y} \left[\frac{x(1-x^n)}{1-x} \right] - \frac{1}{x+y} \left[\frac{y(1-y^n)}{1-y} \right]$$
 (D) $\frac{1}{x-y} \left[\frac{x^2(1-x^n)}{1-x} \right] - \frac{1}{x-y} \left[\frac{y^2(1-y^n)}{1-y} \right]$

SOLUTION: (D)

Let
$$S_n = (x+y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots$$

$$S_n = \frac{x^2 - y^2}{x - y} + \frac{x^3 - y^3}{x - y} + \frac{x^4 - y^4}{x - y} + \dots$$

$$= \frac{1}{x - y} \left(x^2 + x^3 + x^4 + \dots + n \text{ terms} \right) - \frac{1}{x - y} \left(y^2 + y^3 + y^4 + \dots + n \text{ terms} \right)$$

$$= \frac{1}{x - y} \left(\frac{x^2 \left(1 - x^n \right)}{1 - x} \right) - \frac{1}{x - y} \left(\frac{y^2 \left(1 - y^n \right)}{1 - y} \right)$$

Note: The following results can be very useful.

(i)
$$\frac{x^n - y^n}{x - y} = x^{n-1}y^0 + x^{n-2}y^1 + x^{n-3}y^2 + \dots + xy^{n-2} + x^0y^{n-1}$$
 (*n* is any natural number)

(ii)
$$\frac{x^n + y^n}{x + y} = x^{n-1}y^0 - x^{n-2}y^1 + x^{n-3}y^2 - x^{n-4}y^3 + \dots + x^0y^{n-1}$$
 (*n* is odd natural number)

Illustration - 45 Find the sum of first n terms of the series : $3 + 7 + 13 + 21 + 31 + \dots$

(A)
$$\frac{n}{2} \left(n^2 + 3n + 5 \right)$$

(A)
$$\frac{n}{2}(n^2+3n+5)$$
 (B) $\frac{n}{4}(n^2+3n+5)$ (C) $\frac{n}{3}(n^2+3n+5)$ (D) $\frac{n}{6}(n^2+3n+5)$

(C)
$$\frac{n}{3} \left(n^2 + 3n + 5 \right)$$

(D)
$$\frac{n}{6} \left(n^2 + 3n + 5 \right)$$

SOLUTION: (C)

The given series is neither an A.P. nor a G.P., but the differences of the successive terms are in A.P.

Series:

13 3 7 21 31......

Differences: 4 6 8

10.....

In such cases, we find the n^{th} term as follows:

Let S be the sum of the first n terms.

$$S = 3 + 7 + 13 + 21 + 31 + \dots + T_n$$

$$S = 3 + 7 + 13 + 21 + 31 + \dots + T_{n-1} + T_n$$

On subtracting, we get:

$$0 = 3 + \{4 + 6 + 8 + 10 + \dots\} - T_n$$

$$\Rightarrow$$
 $T_n = 3 + \{4 + 6 + 8 + 10 + \dots (n-1) \text{ terms} \}$

$$\Rightarrow T_n = 3 + \frac{n-1}{2} \left[2(4) + (n-2)2 \right]$$

$$\Rightarrow T_n = n^2 + n + 1$$

$$\Rightarrow S = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$$

$$\Rightarrow S = \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} + n$$

$$=\frac{n}{3}\left(n^2+3n+5\right)$$

Illustration - 46 *Find the series* : $1 + 4 + 10 + 22 + 46 + \dots$ to n terms.

(A)
$$3.2^n + 2n - 3$$

(B)
$$3. 2^n + 2n + 3$$

(C)
$$3.2^n - 2n + 3$$

3. $2^n - 2n - 3$

SOLUTION: (D)

The differences of successive terms are in G.P.:

Series:

1 4

10 22 46.....

Differences: 3 6

12 24.....

Let S = sum of first n terms.

$$\Rightarrow$$
 $S = 1 + 4 + 10 + 22 + 46 + \dots + T$

$$\Rightarrow S = 1 + 4 + 10 + 22 + 46 + \dots + T_{n-1} + T_n$$

On subtracting, we get:

$$0 = 1 + \{3 + 6 + 12 + 24 + \dots \} - T_n$$

$$T_n = 1 + \{3 + 6 + 12 + 24 + \dots + (n-1) \text{ terms} \}$$

$$\Rightarrow T_n = 1 + \frac{3(2^{n-1} - 1)}{2 - 1} = 3 \cdot 2^{n-1} - 2$$

$$\Rightarrow S = \sum_{k=1}^{n} T_k = \frac{3}{2} \sum_{k=1}^{n} 2^k - \sum_{k=1}^{n} 2^k$$

$$S = \frac{2}{3} \left(2 + 4 + 8 + \dots + 2^n \right) - 2n$$

$$= \frac{3}{2} \frac{2(2^{n} - 1)}{2 - 1} - 2n = 3 \cdot 2^{n} - 2^{n} - 3$$

Illustration - 47 Find the sum of the series:

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots$$
 to n terms.

(A)
$$\frac{1}{3n-1}$$

$$\frac{1}{3n-1}$$
 (B) $\frac{n}{3n+1}$ (C) $\frac{n}{3n-1}$ (D) $\frac{1}{3n+1}$

(C)
$$\frac{n}{3n-1}$$

(D)
$$\frac{1}{3n+1}$$

SOLUTION: (B)

Let
$$S = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)}$$

$$\Rightarrow 3S = \frac{3}{1.4} + \frac{3}{4.7} + \frac{3}{7.10} + \dots + \frac{3}{(3n-2)(3n+1)}$$

$$\Rightarrow 3S = \frac{4-1}{1.4} + \frac{7-4}{4.7} + \frac{10-7}{7.10} + \dots + \frac{(3n+1)-(3n-2)}{(3n-2)(3n+1)}$$

$$\Rightarrow 3S = \left(\frac{1}{1} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{10}\right) + \dots + \left(\frac{1}{(3n-2)} - \frac{1}{3n+1}\right)$$

$$\Rightarrow S = \frac{1}{1} - \frac{1}{3n+1} \qquad \Rightarrow S = \frac{n}{3n+1}$$

The above method works in the case when the n^{th} term of a series can be expressed as the difference of Note: the two quantities of the type: $T_n = f(n) - f(n-1)$ or $T_n = f(n) - f(n+1)$

In the above example,
$$T_n = \frac{1}{(3n-2)(3n+1)} = \frac{1}{3} \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right)$$

It is the form f(n) - f(n+1).

*

Illustration - 48 *Find the sum of first n terms of the series :*

$$(A)$$
 $n!-1$

(B)
$$(n+1)!+1$$

(C)
$$(n+1)!-1$$

$$(\mathbf{D})$$
 $n!+1$

SOLUTION: (C)

The n^{th} term, $T_n = n(n)$!

 T_n can be written as

$$T_n = (n+1-1)(n)!$$

$$\Rightarrow$$
 7

$$T_n = (n+1)! - (n)!$$
 ...(i)

This is in the form f(n) - f(n-1)

$$S = \sum_{n=1}^{n} T_n = T_1 + T_2 + T_3 + T_4 + \dots + T_n$$

Using (i),

$$S = (2! - 1!) + (3! - 2!) + (4! - 3!) + \dots + \{(n+1)! - n!\}$$

$$\Rightarrow$$
 $S = -1! + (n+1)!$

$$\Rightarrow$$
 $S = (n+1)! - 1.$

THINGS TO REMEMBER

1. If T_r represents the general term of an A.P. (or rth term), then

$$T_r = a + (n-1) d$$
 where $r \in \{1, 2, 3, \dots, n\}$

It is also denoted by a_r . If the total number of terms be n, then n^{th} term is also known as the last term of A.P. and is denoted by l, i.e., $l = T_n = a + (n-1) d$

In an A.P., the difference of any two consecutive terms is d and is given by:

$$d = T_r - T_{r-1}$$

2. Consider *n* terms of an *A*.*P*. with first term as a and the common difference as d. Let S_n denotes the sum

of the first *n* terms, then
$$S_n = \frac{n}{2} \left[2a + (n - l) d \right]$$

or
$$S_n = \frac{n}{2}(a+l)$$
 as $l = a + (n-l)d$

3. Arithmetic mean (A):

When three quantities are in A.P, then the middle one is called as *arithmetic mean* of other two. If a and b are two numbers and A be the arithmetic mean of a and b, then a, A, b are in A.P.

$$\Rightarrow A - a = b - A \qquad \Rightarrow \qquad A = \frac{a + b}{2}$$

4. Important Points

(i) If a, b, c are in A.P., then: ak, bk, ck are also in A.P. $(k \ne 0)$

$$a/k$$
, b/k , c/k are also in A.P. $(k \neq 0)$

$$a \pm k$$
, $b \pm k$, $c \pm k$ are also in A.P.

- (ii) Three terms in an A.P. are taken as: a-d, a, a+d
- (iii) Four terms in an A.P. are taken as: a-3d, a-d, a+d, a+3d
- (iv) The sum of any two terms (of an A.P.) equidistant from beginning and end is equal to the sum of the first and the last term.

$$(a+md)+(\ell-md)=a+\ell$$

5. \Box In G.P., the common ratio (r) is the ratio of any two consecutive terms. If T_k represents the general term

(or
$$k^{\text{th}}$$
 term) of a G.P., then $r = \frac{T_k}{T_{k-1}}$ and $T_k = a r^{k-1}$ where $k \in \{1, 2, \dots, n\}$

6. Sum of *n* terms of a G.P.

Consider n terms of a G.P. with a as the first term and r as the common ratio. Let S_n denote the sum of n terms.

Then $S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$

$$S_n = \frac{a\left(1 - r^n\right)}{1 - r}$$

7. Infinite Geometric series :

If for G.P., the common ratio r lies between -1 and 1 i.e., -1 < r < 1, it is called as *decreasing geometric series*. The sum of the infinite terms of such a series is denoted by S_{∞} and is given as

$$S_{\infty} = \frac{a}{1-r}$$
 [where a is the first term and r is the common ratio]

Note:
$$S_{\infty} = \frac{a(1-r^n)}{1-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}$$

If
$$n \to \infty$$
 then $r^n \to 0$ for $-1 < r < +1$ \Rightarrow $S_{\infty} = \frac{a}{1-r}$

8. Important Points

(i) If a, b, c are in G.P., then: ak, bk, ck are also in G.P. $(k \ne 0)$

$$a/k$$
, b/k , c/k are also on $G.P.$ $(k \neq 0)$

- (ii) Three terms in a G.P. are taken as : ar, a, a/r
- (iii) Four terms in a G.P. are taken as : ar^3 , ar, a/r, a/r^3

(iv) If
$$a, b, c, d$$
 are in $G.P.$, then: $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} \implies b^2 = ac$, $c^2 = bd$, $ad = bc$

Also,
$$b = ar$$
, $c = ar^2$, $d = ar^3$ where r is the common ratio

9. A series $a_1, a_2, a_3, a_4, \dots$ is said to be a *harmonical progression* (H.P.) if

$$\frac{1}{a_1}$$
, $\frac{1}{a_2}$, $\frac{1}{a_3}$, $\frac{1}{a_4}$ forms an arithmetical progression

i.e.,
$$\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = \frac{1}{a_4} - \frac{1}{a_3} = \dots$$

Three quantities a, b, c are said to be in H.P., when

$$\frac{1}{a}$$
, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. $\Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b} \Rightarrow \frac{a-b}{ab} = \frac{b-c}{bc} \Rightarrow \frac{a}{c} = \frac{a-b}{b-c}$

10. Harmonic mean(H)

When three quantities are in H.P., the middle one is called as the *harmonic mean* between the other two. If a and b are two numbers, H is the harmonic mean between the two, then a, H, b must be in H.P.

$$\Rightarrow \frac{1}{a}, \frac{1}{H}, \frac{1}{b}$$
 must be in A.P. $\Rightarrow \frac{1}{H} - \frac{1}{a} = \frac{1}{b} - \frac{1}{H}$

$$\Rightarrow \quad \frac{2}{H} = \frac{1}{a} + \frac{1}{b} \qquad \Rightarrow \qquad H = \frac{2ab}{a+b}$$

11. Relation among A, G, H

If A, G, H are arithmetic, geometric and harmonic means respectively between two positive numbers a and

b, then
$$A = \frac{a+b}{2}$$
, $G = \sqrt{ab}$, $H = \frac{2ab}{a+b}$ \Rightarrow $G^2 = AH$ i.e. G is the geometric mean between A and H .

Also G lies between A and H, such that A > G > H

12. Sum of first *n* natural numbers :

$$\sum_{r=1}^{n} r = 1 + 2 + 3 + \dots + n \qquad \Rightarrow \qquad \sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

13. Sum of squares of first *n* natural numbers

$$\sum_{r=1}^{n} r^2 = 1^2 + 2^3 + 3^3 + \dots + n^2 \implies \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

14. Sum of cubes of first *n* natural numbers

$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 \implies \sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2} \right]^2$$

15. Arithmetico-Geometric Series:

 $A \ series \ in \ which \ each \ term \ is \ the \ product \ of \ corresponding \ terms \ in \ an \ arithmetic \ and \ geometric \ series.$

The general expression for such a series : a, (a + d) r, $(a + 2d) r^2$, $(a + 3d) r^3$,

Note: a: first term of A.P. d: common difference of A.P. r: common ratio of G.P.

$$k^{th}$$
 term of such a series : $T_k = [a + (k-1) d] r^{k-1}$

Sum of n terms of arithmetico - geometric series:

$$S = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{\left[a + (n-1)d\right]r^n}{1-r}$$

Sum of an infinite Arithmetico - Geometric series

When
$$|r| < 1$$
 i.e., $-1 < r < 1$ \Rightarrow $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$