# 07

# p-Block Elements-II

Elements of group 15, 16, 17 and 18 are included in *p*-block elements-II. These have general electronic configuration  $ns^2np^{3.6}$ . The similarity among these elements is that most of them are non-metals. The *p*-block elements II can be described on a group-by-group basis as 15, the pnictogens; 16, the chalcogens; 17, the halogens; and 18, the helium group, composed of the noble gas (excluding helium) and oganesson.

## VA (15) Group Elements and their Compounds

Group VA contains 5 elements, namely, nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi). These elements are collectively called as **pnictogens** (taken from Greek word '*pniomigs*' meaning suffocating) and their compounds are called **pniconides**.

#### Occurrence

Nitrogen constitutes about 78% (by volume) of atmosphere. In combined state, it is found as nitrates or in proteins and amino acids. Phosphorus is the eleventh most abundant element in the earth's crust. It is usually found in its phosphate. From the rest of the elements occur as sulphides or oxides.

#### **General and Physical Properties**

Elements of this group exhibit as a regular trend in general and physical properties, which are discussed below.

- (i) **Electronic configuration** It is clear from the electronic configuration (given in table 7.1) that their *p*-orbitals of valence shell are half-filled. This is a stable configuration in accordance with Hund's rule. Thus, these elements are not so reactive (e.g. nitrogen behaves as almost inert element).
- (ii) **Atomic volumes and radii** It increases on moving down the group, however arsenic shows exceptionally low value of atomic volume.
- (iii) **Physical state** A gradual transition in physical state is seen among the elements under ordinary conditions, i.e. nitrogen is a gas which can be

#### IN THIS CHAPTER ....

- Group 15 Elements
- Nitrogen
- Phosphorus
- Group 16 Elements
- Ozone (O<sub>3</sub>)
- Sulphur
- Group 17 Elements
- Compounds of Elements of Group 17
- Group 18 Elements
- Compounds of Elements of Group 18

converted into a liquid at very low temperature; phosphorus exist as a solid but can pass readily into vapour state. Arsenic, antimony and bismuth are infact solids of varying boiling and melting points.

- (iv) Ionisation energy The ionisation enthalpy of these group elements are much higher than the corresponding elements of group 14. The values for succeeding elements decreases symmetrically as seen in s-block elements.
- (v) Metallic character It increases on moving down the group as, nitrogen and phosphorus are distinctly non-metals, succeeding two members are amphoteric in nature, i.e. As and Sb have metallic as well as non-metallic character while, the last element Bi is a metal.
- (vi) **Electronegativity** It decreases down the group as we move from N to Bi indicating a gradual change from non-metallic to metallic character.

These elements are more electronegative as compared to the elements of 14 group.

(vii) Melting and boiling points These elements do not show a regular trend of melting and boiling points. In this group, the melting point first increases from N to As and afterwards decreases. While boiling point first increases from N to Sb and then decreases. But Bi has low boiling point as compared to Sb.

We can write these order as;

$$N < P < As > Sb > Bi$$
 (melting point)

 $\rm N < P < As < Sb > Bi (boiling point)$ 

(viii) **Oxidation state** The normal oxidation states of these elements are +5 and +3. Out of which +3 stabilises on moving down the group due to **inert pair effect**. Nitrogen show all oxidation states from +5 to -3 as +5 in N<sub>2</sub>O<sub>5</sub>, +4 in N<sub>2</sub>O<sub>4</sub>, + 3 in N<sub>2</sub>O<sub>3</sub>, +2 in NO, +1 in

 $N_2O,0$  in  $N_2,\,-1$  in  $NH_2OH,\,\,-2$  in  $N_2H_4$  and -3 in  $NH_3.$ 

Nitrogen even shows oxidation state of  $-\frac{1}{3}$  in

hydrazoic acid, N<sub>3</sub>H.

Phosphorus show three different oxidation states +4 and +5 while, rest of the elements show only +5 and +3 oxidation states.

Nitrogen, have least tendency to form compounds in + 5 oxidation state because it does not have vacant d-orbitals.

All the elements in their tripositive state (+3 oxidation state) have the tendency to donate one **electron pair.** 

Nitrogen shows this tendency to maximum extent. All elements (except N) also show the tendency to accept electron pair. Nitrogen does not show such a property due to absence of vacant d-orbital in it.

The above described properties are summarised in the table given below

Physical Properties of Group 15 Elements

| Property                                           | Nitrogen                                 | Phosphorus               | Arsenic                          | Antimony                               | Bismuth                                                              |
|----------------------------------------------------|------------------------------------------|--------------------------|----------------------------------|----------------------------------------|----------------------------------------------------------------------|
| At. no.                                            | 7                                        | 15                       | 33                               | 51                                     | 83                                                                   |
| Electronic.<br>configuration                       | $[\mathrm{He}]2\mathrm{s}^{2}p^{3}$      | $[\mathrm{Ne}]\!3s^2p^3$ | $[{\rm Ar}]{3d^{10}} \\ 4s^2p^3$ | $\stackrel{\rm [Kr]}{5s^2p^3} 4d^{10}$ | $\begin{array}{c} [\mathrm{Xe}]4f^{14}5d^{10}\\ 6s^2p^3 \end{array}$ |
| At. mass<br>(amu)                                  | 14.007                                   | 30.970                   | 74.922                           | 121.750                                | 208.980                                                              |
| Density in<br>solid state<br>(g cm <sup>-3</sup> ) | 1.03                                     | 1.82                     | 5.73                             | 6.62                                   | 9.78                                                                 |
| Atomic<br>volume (cm <sup>3</sup> )                | 17.3                                     | 17.0                     | 13.1                             | 18.4                                   | 21.3                                                                 |
| Atomic<br>radius (Å)                               | 0.75                                     | 1.06                     | 1.19                             | 1.38                                   | 1.46                                                                 |
| Ionic radius<br>of trivalent<br>ion (Å)            | 1.71                                     | 2.12                     | 2.22                             | 2.45                                   | 1.20                                                                 |
| IE<br>(kJ mol <sup>-1</sup> )                      | 1402                                     | 1012                     | 946                              | 840                                    | 703                                                                  |
| Oxidation<br>state                                 | -3, -2,<br>-1, 0+1,<br>+2, +3,<br>+4, +5 | -3, +3,<br>+4, +5        | -3, +3, +5                       | -3, +3, +5                             | +3,+5                                                                |
| Electronega-<br>tivity                             | 3.0                                      | 2.1                      | 2.0                              | 1.8                                    | 1.7                                                                  |
| MP (°C)                                            | -210                                     | 44.1 (white phosphorus)  | 817<br>(at 36 atm)               | 630.5                                  | 271.3                                                                |
| BP (°C)                                            | -195.8                                   | 280                      | 615<br>(sublimes)                | 1587                                   | 1564                                                                 |
| Heat of fusion (kJ $mol^{-1}$ )                    | 0.36                                     | 0.63                     | 27.7                             | 19.9                                   | 10.9                                                                 |

(ix) **Nature of compounds** From stability point of view, it is not easy to gain three electrons to achieve stable configuration, therefore the formation of trinegative  $(A^{3-})$  ion is rare. Only N has the capability to form such a type of ion due to its **small size**.

However, covalent compounds of nitrogen are more common. The electronegativities of other elements are so lower that they would generally form covalent bonds even with highly electropositive elements. Bi compounds, although covalent, do give ions in polar solvents like water.

(x) **Catenation** All the elements of this group show property of catenation, (i.e. self linkage) to a very smaller extent (in comparison with carbon).

The catenation in stable nitrogen compounds is restricted generally upto two or three nitrogen atoms as, in  $N_2H_4,\,N_3^-$  etc.

The P atom has maximum tendency to catenate amongst group 15th elements. This can be explained on the basis of

P—P bond energy (200.8 kJ/mol) which is more closer to C—C bond energy (353.9 kJ/mol) in comparison to N—N or As—As bond energies (163.1 and 146.1 kJ/mol) respectively.

(xi) **Molecular state** Nitrogen have the tendency to form  $p\pi$ - $p\pi$  bonds with other atoms of similar type (N) or different type, e.g. carbon.

Thus, nitrogen usually exists as discrete diatomic gaseous molecule (N $\equiv$ N). Stable nitrogen compounds contain maximum two or three nitrogen atoms. Other members, however, do not have a tendency of  $p\pi$ - $p\pi$  bonding. However, they **have empty** *d*-orbitals. Thus, they exist as discrete **tetra atomic** molecules like P<sub>4</sub>, As<sub>4</sub>, Sb<sub>4</sub> in which, the atoms are linked together by single bonds.

- (xii)**Allotropy** All the elements of group 15 (except Bi) show allotropy as,
- N exists in two solid forms namely  $\alpha$ -nitrogen with cubic crystalline structure and  $\beta$ -nitrogen with hexagonal crystalline structure. The transition temperature is -238.5°C. It also has one gaseous allotropic form.
- Phosphorus exists in a number of allotropic forms, e.g. white phosphorus, red phosphorus, scarlet phosphorus, metallic or  $\alpha$ -black phosphorus,  $\beta$ -black phosphorus, violet phosphorus etc.
- Arsenic exists as grey, yellow and black arsenic.
- Similarly, Sb exists as **metallic**,  $\alpha$  or **yellow** and  $\beta$  or **black antimony**.

#### **Chemical Properties**

Elements of this group form mainly covalent compounds with other elements.

Chemical properties of these compounds are described below.

#### 1. Reactivity Toward Hydrogen or Formation of Hydrides

- These elements form  $AH_3$  type hydrides, e.g. ammonia (NH<sub>3</sub>), phosphine (PH<sub>3</sub>), arsine (AsH<sub>3</sub>), stibine (SbH<sub>3</sub>) and bismuthine (BiH<sub>3</sub>).
- These hydrides are prepared from binary metal compounds, e.g.
  - $(Mg_3N_2,Ca_3P_2,Zn_3As_2,Mg_3Sb_2,Mg_3Bi_2$  etc.) as

$$Mg_3N_2 + 6H_2O \longrightarrow 3Mg(OH)_2 + 2NH_3$$

$$C_2P + 6H_Q \longrightarrow 3C_2(OH) + 2PH_3$$

$$Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$$
  
 $Zn_2As_2 + 6HCl \longrightarrow 3ZnCl_2 + 2AsH_3$ 

$$2n_3As_2 + 6HCI \longrightarrow 3ZnCl_2 + 2AsH_3$$

- These can also be prepared by the reduction of trihalides of these elements with  ${\rm LiAlH_4}$  as,

$$MCl_3 + 3LiAlH_4 \longrightarrow MH_3 + 3LiCl + 3AlH_3$$

• The hydrides have pyramidal structure with  $sp^{3}$ -hybridisation .

Some physical properties of hydrides can be explained as,

(i) **Thermal stability** The decrease in thermal stability can also be explained by increase in size of central atom. Due to such increase, the tendency to form stable covalent bond with comparatively small H atom decreases.

In other words, the strength of M—H bond decreases resulting to decreased thermal stability. Thus, the thermal stability decreases in the order as,

$$NH_3 > PH_3 > ASH_3 > SbH_3 > BiH_3$$
.

 (ii) Reducing behaviour The increase in reducing behaviour can be explained on the basis of decrease in thermal stability.

In other words, we can say that, on moving down the group their tendency to liberate hydrogen increases and hence their reducing character increase. Thus, the order will be,  $\rm NH_3 < PH_3 < ASH_3 < SbH_3 < BiH_3$ .

(iii) **Bond angles** The variation in bond angles may be explained on the basis of size and electronegativity of central atom.

On moving down the group, the size of central atom increases and electronegativity decreases. So, the location of bond pairs of electrons shifts more and more away from the central atom as we go from  $\rm NH_3$  to  $\rm SbH_3$ .

Due to such a shifting, the repulsion between bond pair of electrons decreases owing to which bond angle also decreases.

Thus, the order will be,

$$\underset{107.8^{\circ}}{\mathrm{NH}_{3}} > \underset{93.6^{\circ}}{\mathrm{AsH}_{3}} > \underset{91.8^{\circ}}{\mathrm{AsH}_{3}} > \underset{91.3^{\circ}}{\mathrm{SbH}_{3}}$$

(iv) **Boiling point** The boiling point of these hydrides follows the trend as,

 $PH_3 < AsH_3 < NH_3 < SbH_3 < BiH_3$ 

The abnormally high boiling point of  $\rm NH_3$  is due to the presence of intermolecular H–bonding in  $\rm NH_3$ .

- (v) Solubility NH<sub>3</sub> is soluble in H<sub>2</sub>O while PH<sub>3</sub> and other hydrides are insoluble. This is because, NH<sub>3</sub> forms H-bonds with H<sub>2</sub>O while PH<sub>3</sub> and other hydrides do not.
- (vi) **Basic nature** All these hydride behaves as Lewis bases because the central atom possess a lone pair of electrons.

As the size of central atom increases, the electron density on central atom decreases and consequently its tendency to donate a pair of electrons decreases. Hence, the basis character decreases in order as

$$NH_3 < PH_3 < AsH_3 < SbH_3 < BiH_3$$

| Property                      | $\mathbf{NH}_3$                                           | $\mathrm{PH}_3$                         | $\mathbf{AsH}_3$                                        | $\mathbf{SbH}_{3}$                                           | $\mathbf{BiH}_3$                        |
|-------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| Thermal stability             | Highly stable                                             | Not stable, so<br>decomposes at 400°C   | Unstable 230°                                           | Unstable at room temperature                                 | Unstable, having<br>half-life of 20 mir |
| Reducing character            | Not good                                                  | Moderate                                | Good                                                    | Strong                                                       | Strong                                  |
| Basic character               | Base                                                      | Weak base                               | Neutral                                                 | Neutral                                                      | Feebly acidic                           |
| Reactions                     |                                                           |                                         |                                                         |                                                              |                                         |
| (i) with metal salt solutions | Precipitate as<br>hydroxides,<br>e.g. Fe(OH) <sub>3</sub> | Precipitate as phosphides, e.g. $Ag_3P$ | Precipitate as<br>arsenides,<br>e.g. Ag <sub>3</sub> As | Precipitate as<br>antimonides<br>e.g. $Ag_3Sb$<br>(unstable) | No such<br>reaction occur               |
| (ii) complexes                | Stable, complex e.g. $[Cu(NH_3)_4]^{2+}$                  | Non stable complexes                    | Non stable<br>complexes                                 | Non stable complexes                                         | Non-stable complexes                    |
| Structure<br>Bond angle       | Pyramidal<br>107.3°                                       | Pyramidal<br>93.5°                      | Pyramidal<br>91.8°                                      | Pyramidal<br>91.3°                                           | 90°                                     |
| Melting point                 | -78°C                                                     | −132°C                                  | -119°C                                                  | -88°C                                                        | _                                       |
| Boiling point                 | −34.5°C                                                   | −87.5°C                                 | -62.4°C                                                 | -18.4°C                                                      | + 16.8°C                                |
| Bond length                   | 1.02                                                      | 1.42                                    | 1.52                                                    | 1.71                                                         | _                                       |
| H-bonding                     | Present                                                   | Not present                             | Not present                                             | Not present                                                  | Not present                             |

#### **Comparative Study of the Properties of Hydrides**

#### 2. Reactivity Toward Halogens or **Formation of Halides**

These are form trihalides of  $AX_3$  type and pentahalides of  $AX_5$  type.

#### Trihalides

Some important characteristics of these trihalides are as follows

- (i) **Ionic character** These trihalides are mostly covalent and their ionic character increases on moving down the group, (i.e. trihalides of Bi are ionic in nature).
- (ii) Structure These halides have pyramidal structure in which central atom is  $sp^3$ -hybridisation.
- (iii) Hydrolysis The halides, particularly the chlorides, are readily hydrolysed. However, the products of hydrolysis differ in different cases. e.g.

If trihalides are completely hydrolysed

$$\begin{array}{rcl} \mathrm{PCl}_3 + 3\mathrm{H}_2\mathrm{O} & \longrightarrow & \mathrm{H}_3\mathrm{PO}_3 + 3\mathrm{HCl} \\ \mathrm{NCl}_3 + 3\mathrm{H}_2\mathrm{O} & \longrightarrow & \mathrm{NH}_3 + 3\mathrm{HClO} \\ \mathrm{2AsCl}_3 + 3\mathrm{H}_2\mathrm{O} & \longrightarrow & \mathrm{As}_2\mathrm{O}_3 + 6\mathrm{HCl} \end{array}$$

$$2AsCl_3 + 3H_2O \longrightarrow As_2O_3 +$$

If partially hydrolysed,

 $\mathrm{SbCl}_3 + \mathrm{H}_2\mathrm{O} \longrightarrow \ \mathrm{SbOCl} + 2\mathrm{HCl}$  $BiCl_3 + H_2O \longrightarrow BiOCl + 2HCl$ 

The ease of hydrolysis of trihalides (for same halogens) decreases in the order as

$$NCl_3 > PCl_3 > AsCl_3 > SbCl_3 > BiCl_3$$

Note NE<sub>3</sub> and PE<sub>3</sub> do not undergo hydrolysis.

- (iv) Stability Trihalides of N are least stable as compared to halide of this group elements. This is because their is a large difference in the size of N and X atoms. This result in the weaking of N-Xbond. However,  $BF_3$  is stable because size difference in N and F is small.
- (v) Acidic character The trihalides of P, As and Sb, especially fluorides and chlorides, are Lewis acids. Thus, the order will be

 $\mathrm{NH}_3 > \mathrm{PH}_3 > \mathrm{AsH}_3 > \mathrm{SbH}_3$  $PF_3 + F_2 \longrightarrow PF_5$  $\mathrm{SbF}_3 + 2\mathrm{F}^- \longrightarrow [\mathrm{SbF}_5]^{2-}$  $SbCl_3 + 2Cl^- \longrightarrow [SbCl_5]^{2-}$ 

(vi) Basic character The order of basic character of trihalides of nitrogen is

$$NI_3 > NBr_3 > NCl_3 > NF_3$$

Except NF<sub>3</sub>, all other trihalides of nitrogen are unstable. They decompose with explosive violence.

(vii)Bond angle The bond angle decreases while acidic strength increases as the electronegativity of central atom increases,

i.e. Bond angle  $\propto$  electronegativity of central atom

acid strength Thus, the order will be

$$\mathbf{NH}_3 > \mathbf{PH}_3 > \mathbf{AsH}_3 > \mathbf{SbH}_3.$$

#### Pentahalides

P, As and Sb have the ability to form pentahalides. However, Bi and N (due to the absence of vacant *d*-orbital) do not form such pentahalides. The pentahalides of P (except  $PCl_5$ ) are not stable due to inert pair effect. Thus, it decomposes to give  $PCl_3$  and  $Cl_2$ .

The other properties of pentahalides are as follows

- These pentahalides have  $sp^3d$ -hybridisation and trigonal bipyramidal structure.
- These are thermally less stable than the trihalides.
- $PCl_5$  is molecular in gaseous phase but exists as,  $[PCl_4]^+[PCl_6]^-$  in crystalline state, Similarly,  $PBr_5$ and  $PI_5$  also exist in ionic forms as,  $[PBr_4]^+[Br]^-$  and  $[PI_4]^+[I]^-$  respectively in solid state.

#### **Other Halides**

Some other halides are also known, e.g.  $N_2F_4$ ,  $N_2F_2$ ,  $N_3F$  etc. Besides this, several mixed halides of nitrogen are also known, e.g.  $NCl_2F$ ,  $NClF_2$ ,  $NBrF_2$ ,  $NF_2H$ ,  $NF_3H$ ,  $NCl_2H$  etc.

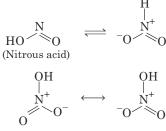
However, these are unstable and difficult to isolate. P also forms  $P_2Br_4$  and several mixed halides like  $PCl_4F$ ,  $PCl_4F$ ,  $PCl_2F_3$  etc. As and Sb also form mixed halides like  $AsF_2Cl$ ,  $AsCl_2$ ,  $AsClBr_2$ ,  $AsCl_2Br$ ,  $SbCl_4F$  etc.

#### 3. Reactivity Toward Oxygen or Formation of Oxides

All elements of this group form oxides of type  $R_2O_3$  and  $R_2O_5$ . Some of them also form dioxides of formula  $RO_2$ . N show all oxidation states from +1 to +5 in its oxides as shown below

| Oxidation<br>state | Ν        | Р           | As        | Sb                          | Bi                              |
|--------------------|----------|-------------|-----------|-----------------------------|---------------------------------|
| +1                 | $N_2O$   |             | _         | _                           |                                 |
| +2                 | NO       |             |           |                             |                                 |
| +3                 | $N_2O_3$ | $P_4O_6$    | $As_2O_3$ | $\mathrm{Sb}_2\mathrm{O}_3$ | $\mathrm{Bi}_{2}\mathrm{O}_{3}$ |
| +4                 | $N_2O_4$ | $P_4O_8$    | _         |                             |                                 |
| +5                 | $N_2O_5$ | $P_4O_{10}$ | $As_2O_5$ | $\rm Sb_2O_5$               | $\mathrm{Bi}_{2}\mathrm{O}_{5}$ |

**Different Oxides of V Group Elements** 


- The trioxides of nitrogen, phosphorus and arsenic are acidic; the trioxide of Sb is **amphoteric** while that of Bi is **basic** in nature. This is because on moving down the group, metallic character increases, and metal oxides are more basic than the non-metal oxides.
- However, the pentoxides are acidic in all the cases. Their acidic nature decreases down the group. All the pentoxides (except  $P_2O_5$ ) can readily lose oxygen to form lower oxides.
- Thus, they act as **strong oxidising agents**. The stability of pentaoxides follows the order

$$P_2O_5 > As_2O_5 > Sb_2O_5 > N_2O_5 > Bi_2O_5$$

#### 4. Oxyacids

All elements (except Bi) of this group form oxyacids.

• Oxyacids of nitrogen are hyponitrous acid,  $(H_2N_2O_2)$ , nitrous acid (HNO<sub>2</sub>), nitric acid (HNO<sub>3</sub>), pernitrous acid (HOONO), pernitric acid (HOONO<sub>2</sub>). Out of these, the most important one is nitric acid. The structure of nitrous acid and nitric acid are given below





• Phosphorus form many oxyacids that are discussed latter in this chapter.

#### Anomalous Behaviour of Nitrogen

Nitrogen, shows many properties that are quite different from other members of the group. This is because of its small size, high electronegativity, high ionisation energy, non-availability of *d*-orbital and capacity of  $p\pi$ -  $p\pi$  multiple bond formation.

These properties are as follows

- It is found in a gas while other members are found in solid state.
- It exists in diatomic form while other elements like phosphorus, arsenic and antimony exist as tetra-atomic molecules (P<sub>4</sub>, As<sub>4</sub>, Sb<sub>4</sub>).
- It forms trinegative ion, i.e. N<sup>3-</sup>, while other members do not form.
- It is chemically inert under ordinary conditions due to high bond dissociation energy. While other members are quite reactive because of the presence of single bond in their molecules.
- It does not show pentacovalency due to non-availability of *d*-orbitals while it is shown by all other elements.
- The hydride of nitrogen (NH<sub>3</sub>) is highly basic in nature while the hydrides of other elements are slightly basic. Moreover, only hydrides of nitrogen shows H-bonding while other members do not.
- It forms oxides of five types (i.e.  $N_2O,NO,N_2O_3,N_2O_4$  and  $N_2O_5$ ) while other members of this family form oxides of only two types (i.e. tri and pentaoxides).
- Except  $NF_3$ , other halides of nitrogen i.e.  $NCl_3$ ,  $NBr_3$ and  $NI_3$  are unstable while the halides of other elements are fairly stable.
- It does not form complexes due to the non- availability of *d*-orbitals while other members have a tendency of complex formation, e.g.  $[PCl_6]^-$ ,  $[AsCl_6]^-$  etc.

#### Nitrogen (N)

N is fairly widely distributed in nature, both are present in free as well as in combined state. In combined state it occurs only as nitrates, e.g.  $NaNO_3$  (chile salt petre),  $KNO_3$  (salt petre). Coal containing compounds of nitrogen yield  $NH_3$  on distillation which is an important compound. N is also an essential constituent of all living cells as the protein part which contains about 16% of nitrogen. Some important compounds of nitrogen are discussed below.

#### 1. Dinitrogen (N<sub>2</sub>)

It is the molecular form of elemental nitrogen and is chemically inert.

Its methods of preparation are given below.

#### **Methods of Preparation**

• In laboratory, dinitrogen is obtained by heating ammonium chloride or ammonium dichromate.

 $NH_4Cl(aq) + NaNO_2(aq) \longrightarrow N_2(g) + 2H_2O(l) + NaCl(aq)$ 

$$(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \xrightarrow{\mathrm{Heat}} \mathrm{N}_2\uparrow + 4\mathrm{H}_2\mathrm{O} + \mathrm{Cr}_2\mathrm{O}_3$$

• Pure nitrogen in small amounts can be obtained by heating sodium or barium azides.

$$Ba(N_3)_2 \xrightarrow{\Delta} Ba + 3N_2$$

• On commercial scale, nitrogen is invariably obtained by liquifying air and then carrying out its fractional evaporation. It having a lower boiling point (77.2 K).

#### **Physical Properties**

The important physical properties of nitrogen are as follows

- It is a colourless, tasteless, odourless gas. It does not support combustion and non-poisonous in nature. However, animals die in this atmosphere for needs of oxygen.
- It is sparingly soluble in water.
- It boils at 195.8°C.
- · On rapid evaporation, it changes into an ice like solid.
- Naturally occurring nitrogen consists of two isotopes  $N^{14}$  and  $N^{15},\,N^{15}$  is often used as an isotopic tracer.

#### **Chemical Properties**

The heat of dissociation of  $N_2$  is extremely large (945 kJ). It has very strong  $N \equiv N$  bond which is principally responsible for the inactivity of free nitrogen.

Its structure is N = N.

However, nitrogen shows the following chemical reaction as,

• N<sub>2</sub> combines readily with **highly electropositive metals** (first group elements) even at room temperature and form ionic nitrides with N<sup>3-</sup> ion. These nitrides are crystalline compounds with high melting points. • N<sub>2</sub> combines with less electropositive elements like Mg, Ca, Sr, Ba etc., at red heat with B and Al at bright red heat and with Si at white heat, to form corresponding nitrides as,

$$\begin{array}{l} 3\mathrm{Mg} + \mathrm{N}_2 \longrightarrow \mathrm{Mg}_3\mathrm{N}_2 \\ 2\mathrm{Al} + \mathrm{N}_2 \longrightarrow 2\mathrm{AlN} \\ 3\mathrm{Si} + 2\mathrm{N}_2 \longrightarrow \mathrm{Si}_3\mathrm{N}_4 \end{array}$$

Out of these nitrides, the group 2nd elements are generally ionic, while those of group 3rd and 4th are covalent in nature.

The nitrides formed with transition metals like Fe, Mn, Mo, W are true interstitial compounds. In these compounds,  $N_2$  atoms occupy the interstices space in the metal structure. These nitrides are extremely hard with high melting point, metallic lustre and metallic conductivity.

• N<sub>2</sub> combines with H<sub>2</sub> to give NH<sub>3</sub> (Haber's process) as, N<sub>2</sub> + 3H<sub>2</sub>  $\rightleftharpoons$  2NH<sub>3</sub> ( $\Delta H = -92$  kJ)

The reaction is carried out in the presence of finely divided Fe with a little Mo. The pressure and temperature maintained for this process is 100-1000 atm and 400-550°C respectively.

• N<sub>2</sub> combines with O<sub>2</sub> to give NO as N<sub>2</sub> + O<sub>2</sub>  $\implies$  2NO

$$V_2 + O_2 \rightleftharpoons 2NO \quad (\Delta H = +180.7 \text{ kJ})$$

The reaction is highly endothermic and takes place at elevated temperatures (about  $3000^{\circ}$ C). However, even at such a high temperature, the yield is 5% maximum.

• When N<sub>2</sub> combines with CaCl<sub>2</sub>, the product is calcium cynamide, (CaNCN) as,

$$CaC_2 + N_2 \longrightarrow CaNCN + C$$

(The reaction takes place at 1000°C in the current of  $N_2$ .)

#### 2. Active Nitrogen

When we pass electric discharge in the atmosphere of nitrogen at low pressure, **active nitrogen** is produced. It is accompanied by a yellow glow which persists for several hours which indicates slow release of energy in the process. This nitrogen gets deactivated on collision with the walls of vessels.

It is highly reactive chemically on reacting with liquid Hg, Na vapours, As, P etc., their nitrides are produced.

#### Uses

Nitrogen is used

- for filling electric lamps.
- to dilute the action of oxygen in air.
- to provide inert atmosphere in certain metallurgical operations
- in the packets of foodstuffs.
- for the manufacture of certain chemicals like  $NH_3$ .  $HNO_3$ , calcium cyanamide and other nitrogen compound.

**Example 1.** The compound that does not produce nitrogen gas by the thermal decomposition is (JEE Main 2018)

(a) 
$$Ba(N_3)_2$$
 (b)  $(NH_4)_2Cr_2O_7$  (c)  $NH_4NO_2$  (d)  $(NH_4)_2SO_4$ 

**Sol.** (d) The thermal decomposition of given compounds is shown below

$$(\mathsf{NH}_4)_2 \operatorname{Cr}_2 \mathsf{O}_7 \xrightarrow{\Delta} \mathsf{N}_2 \uparrow + 4\mathsf{H}_2 \mathsf{O} + \mathsf{Cr}_2 \mathsf{O}_3$$
$$\mathsf{NH}_4 \mathsf{NO}_2 \xrightarrow{\Delta} \mathsf{N}_2 \uparrow + 2\mathsf{H}_2 \mathsf{O}$$
$$(\mathsf{NH}_4)_2 \mathsf{SO}_4 \xrightarrow{\Delta} 2\mathsf{NH}_3 + \mathsf{H}_2 \mathsf{SO}_4$$
$$\mathsf{Ba}(\mathsf{N}_3)_2 \longrightarrow \mathsf{Ba} + 3\mathsf{N}_2 \uparrow$$

Thus, only  $(NH_4)_2SO_4$  does not gives  $N_2$  on heating (It give  $NH_3$ ). While rest of the given compounds gives  $N_2$  on their thermal decomposition.

#### 3. Ammonia

It was first isolated by **Priestley (in 1774)**. It is a stable binary and simplest pnictogen hydride.

#### **Methods of Preparation**

Some following methods are employed to prepare  $\mathrm{NH}_3$  are

•  $NH_3$  is prepared on **industrial scale** by **Haber's** process involves the direct combination of  $N_2$  and  $H_2$  as,  $N_2 + 3H_2 \rightleftharpoons 2NH_3$  ( $\Delta H = -92.0$  kJ)

The reaction is reversible, exothermic and proceeds with a tremendous decrease in volume. Thus, it requires **low temperature** and **high pressure** (according to Le-Chatelier's principle) along with highly porous finely divided iron containing small amount of promotors (Mo or oxides of K and Al).

• It can also be prepared by decomposing ammonium salts with caustic alkalies (NaOH) or slaked lime (Ca(OH)<sub>2</sub>). In **laboratory**, it is prepared by heating with quick lime (CaO).

$$2NH_4Cl + CaO \longrightarrow CaCl_2 + H_2O + 2NH_3 \uparrow$$

Ammonia obtained, cannot be dried over concentrated sulphuric acid, calcium chloride or phosphorus pentoxide as the gas reacts with these substances. However, quicklime can be used.

• It is also prepared by the hydrolysis of calcium cyanamide with superheated steam at 450 K.

$$CaCN_2 + 3H_2O \xrightarrow{450 \text{ K}} CaCO_3 + 2NH_3$$

#### **Physical Properties**

 $NH_3$  is a colourless, pungent smelling gas, lighter than air and highly soluble in water. Because of **hydrogen bonding**, it has a higher boiling point (-33.4°C) than the expected value. Its aqueous solution is basic in nature.

$$NH_3 + H_2O \implies NH_4OH$$

#### **Chemical Properties**

Some important chemical properties are as follows

• Ammonia burns in oxygen with a greenish-yellow flame as,  $4NH_3 + 3O_2 \longrightarrow 2N_2 + 6H_2O$ 

• When electric spark is passed over a mixture of  $NH_3$ and  $O_2$ , it gets exploded. But if the temperature is 500°C and Pt guaze is present as catalyst, the reaction occurs as,

$$4NH_3 + 5O_2 \xrightarrow{500^{\circ}C} 4NO + 6H_2O$$

- It acts as reducing agent and reduces metallic oxides like CuO and PbO to metals and itself gets oxidised to N<sub>2</sub>.
   e.g. 3CuO + 2NH<sub>3</sub> → 3Cu + 3H<sub>2</sub>O + N<sub>2</sub> ↑
- With calcium, it forms calcium hydride and nitrogen.
- It reacts with conc. HCl and produces white fumes of the ammonium chloride.

$$\mathrm{NH}_3 \ \text{+}\ \mathrm{HCl} \longrightarrow \ \underset{(\mathrm{White\ fumes})}{\mathrm{NH}_4\mathrm{Cl}}$$

• When heated with alkali metals and barium, amides are obtained.

$$2Na + 2NH_3 \longrightarrow 2NaNH_2 + H_2$$

• With chlorine, it forms NH<sub>4</sub>Cl and nitrogen gas.

$$\underset{\rm Excess}{\rm 8NH}_3 + 3{\rm Cl}_2 \longrightarrow {\rm N}_2^\uparrow + 6{\rm NH}_4{\rm Cl}$$

However, if chlorine is in excess, the following reaction occurs

$$\operatorname{NH}_3 + \operatorname{3Cl}_2 \longrightarrow \operatorname{NCl}_3 + \operatorname{3HCl}_3$$
  
Excess Explosive

• Aqueous ammonia contains uncombined ammonia (46.2%), hydrated ammonia (H<sub>3</sub>N...HOH, 52.4%) and relatively few (1.4%) NH<sub>4</sub><sup>+</sup> and OH<sup>-</sup> ions. It precipitate many metallic hydroxides from their salt solutions. In some cases, the precipitated hydroxides dissolve in excess ammonia and form complex amines.

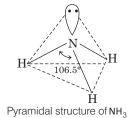
$$CuSO_4 + 2NH_4OH \longrightarrow Cu(OH)_2 \downarrow + (NH_4)_2SO_4$$
$$Cu(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4](OH)_2$$

• It gives yellow-brown colour precipitate with Nessler's reagent (i.e. alkaline K<sub>2</sub>HgI<sub>4</sub>) as ,

$$\underbrace{^{2}\text{K}_{2}\text{HgI}_{4} + 3\text{KOH}}_{\text{(Nessler's reagent)}} + \text{NH}_{3} \longrightarrow \underbrace{^{1}\text{H}_{2}\text{NHgOHgI}}_{\text{(Iodide of Millon's base)}}_{\text{(yellow-brown)}}$$

• It gives yellow precipitate of ammonium chloroplatinate with chloro-platinic acid.

$$2\mathrm{NH}_{4}\mathrm{Cl} + \mathrm{H}_{2}\mathrm{Pt}\mathrm{Cl}_{6} \rightleftharpoons (\mathrm{NH}_{4})_{2}\mathrm{Pt}\mathrm{Cl}_{6} + 2\mathrm{H}\mathrm{Cl}$$


Liquid ammonia is an excellent ionising solvent. It ionises as,

$$2NH_3 \rightleftharpoons NH_4^+ + NH_2^-$$

In this solvent, alkali metals and a lesser extent Ca, Sr and Ba are dissolves and by giving deep blue solutions. These deep blue solutions are excellent reducing agents and are electrical conductor due to the presence of solvated electrons.

#### Structure of Ammonia

Ammonia is covalent molecule, in which three H-atoms are linked to N by single covalent bonds.



#### Uses

Ammonia is used

- for the manufacture of other reagents like  $\rm HNO_3$  (Ostwald's process), NaHCO\_3 (Solvay process),  $\rm (NH_4)_2SO_4, etc.$
- as a cleansing agent for removing greese.
- as a refrigerant.
- for the synthesis of urea, an excellent fertilizer.

#### **Example 2.** When ammonia reacts with a solution of

| Cu <sup>2+</sup> , colour of solution becon | nes          | (NCERT Exemplar) |
|---------------------------------------------|--------------|------------------|
| (a) orange red                              | (b) deep gr  | reen             |
| (c) deep blue                               | (d) greenisl | h yellow         |

**Sol.** (c) When ammonia (in aqueous solution as ammonium hydroxide) reacts with a solution of  $Cu^{2+}$ , a deep blue solution is obtained due to the formation of tetraamine copper (II) ion.

$$\begin{array}{c} {\rm Cu}^{2+}(aq) + 4{\rm NH_4OH}(aq) & \stackrel{\Delta}{\longrightarrow} & [{\rm Cu}({\rm NH_3})_4]^{2+} & + & 4{\rm H_2O} \\ & {\rm Tetraamine\ copper} \\ & ({\rm II})\ {\rm ion} \\ & ({\rm deep\ blue\ solution}) \end{array}$$

#### Nitric Acid (HNO<sub>3</sub>)

It is the hydrate form of  $N_2O_5$ . It is also known as *aqua fortis* and **spirit of niter**. It is a highly corrosive mineral acid.

#### **Methods of Preparation**

Some following methods can be employed to prepare nitric acid are

• In the **laboratory**, it is prepared by heating NaNO<sub>3</sub> or KNO<sub>3</sub> with conc.  $H_2SO_4$ . Reddish brown vapours of HNO<sub>3</sub> so produced and condensed in a water-cooled receiver.

$$NaNO_3 + H_2SO_4(conc.) \longrightarrow NaHSO_4 + HNO_3$$

The acid produced is yellow in colour due to the presence of  $NO_2$  formed by the decomposition of  $HNO_3$ .

$$4HNO_3 \xrightarrow{\Delta} 4NO_2 \uparrow + 2H_2O + O_2 \uparrow$$

The acid is purified by redistillation and by passing a current of dry air or  $CO_2$  through the warm acid.

• On a large scale, the acid is generally prepared by Ostwald's process which consists of the following steps

**Step I** NH<sub>3</sub>(N = -3) obtained by Haber's process is oxidised to NO (N = +2) by atmospheric O<sub>2</sub> (free from dust) in the presence of platinum-guaze catalyst electrically heated at 750 – 900° C

$$4\mathrm{NH}_3 + 5\mathrm{O}_2 \xrightarrow{750.900^\circ\mathrm{C}} 4\mathrm{NO} + 6\mathrm{H}_2\mathrm{O};$$

 $(\Delta H = -90.0 \text{ kJ})$ 

Since, the reaction is exothermic, heat generated in the reaction maintains the temperature for the catalyst.

Step II NO produced as above is oxidised by atmospheric  $O_2$  to  $NO_2$  which is cooled to about 50°C and then absorbed in water (in the presence of air) to give HNO<sub>3</sub>.

$$2NO + O_2 \longrightarrow 2NO_2$$

$$4NO_2 + O_2 + 2H_2O \longrightarrow 4HNO_3$$

The usual concentrated nitric acid contains 98% HNO<sub>3</sub> and its specific gravity = 1.5.

#### **Physical Properties**

Some important physical properties of  $\mathrm{HNO}_3$  are as follows

- Pure HNO<sub>3</sub> is colourless fuming liquid of specific gravity 1.56 (at 0°C). It boils at 86°C and freezes to a colourless solid having melting point 41.3°C. It is soluble in water in all proportions.
- It is highly corrosive in nature. It causes painful blisters when it comes in contact with skin.
- It is colourless but often gradually turns yellow. This is because  $HNO_3$ , when exposed to light, undergoes decomposition to form  $NO_2$  which gets dissolved in  $HNO_3$  and gives it yellow colour.

$$4HNO_3 \longrightarrow 4NO_2 \uparrow + O_2 \uparrow + 2H_2O_2$$

The yellow colour of the acid can be removed by warming it to 60-80°C and bubbling dry air through it.

#### **Chemical Properties**

 $\rm HNO_3$  is a strong acid and also a very strong oxidising agent. Its important chemical reactions are as follows

• At room temperature, the pure acid undergoes dissociation to give  $N_2O_4$  and  $O_2$ .

$$\begin{array}{ccc} HNO_3 & \longrightarrow & N_2O_5 + H_2O \\ N_2O_5 & & & M_2O_4 + \frac{1}{2} O_2 \uparrow \end{array}$$

On heating,  $\mathrm{HNO}_3$  decomposes to give  $\mathrm{O}_2$  and brown fumes of  $\mathrm{NO}_2.$ 

$$4\text{HNO}_3 \longrightarrow 4\text{NO}_2 \uparrow + \text{O}_2 \uparrow + 2\text{H}_2\text{O}$$
(Brown fumes)

• HNO<sub>3</sub> being a very strong monobasic acid, reacts with basic oxides, carbonates, bicarbonates, sulphites and

hydroxides, forming corresponding nitrates.

e.g. 
$$CaO + 2HNO_3 \longrightarrow Ca(NO_3)_2 + H_2O_3$$

$$Na_2CO_3 + 2HNO_3 \longrightarrow 2NaNO_3 + H_2O + CO_2$$

- Being a strong acid, it is completely ionised in water as,  $HNO_3 \, \longrightarrow \, H^+ + NO_3^-$
- $HNO_3$  is a very strong oxidising agent, since it can easily give nascent oxygen both in the conc. and dil. forms.

$$2HNO_3 \longrightarrow H_2O + 2NO_2\uparrow + [O$$

In these reactions, HNO<sub>3</sub> is reduced to NO<sub>2</sub>, O<sub>2</sub>, NH<sub>4</sub>NO<sub>3</sub> (or NH<sup>+</sup><sub>4</sub> ions), N<sub>2</sub>O, NO, N<sub>2</sub> or NH<sub>2</sub>OH. Thus, the product obtained depend on the nature of the substance to be oxidised, concentration of HNO<sub>3</sub> and the temperature employed.

Non-metals and metalloids (e.g. C, Sn, P, As, Pb, S and I) are oxidised to their corresponding highest oxy-acids. But metals like Mg, Mn, Zn, Fe, Sn, Pb, Cu, Ag and Hg are oxidised to their corresponding nitrates.

Some examples of such type of reactions (i.e. the reactions in which  $HNO_3$  acts as an oxidising agent) are given below.

# I. HNO<sub>3</sub> oxidises non-metals and metalloids to their oxyacids as

(i) P is oxidised to  $H_3PO_4$ .

 $P + 5HNO_3 \longrightarrow H_3PO_4 + 5NO_2 + H_2O$ This reaction takes place through the following steps

$$\frac{2P + 5O}{(From HNO_3)} \longrightarrow P_2O_5$$

$$\frac{P_2O_5 + 3H_2O \longrightarrow 2H_3PO_2}{2P + 5O + 3H_2O \longrightarrow 2H_2PO_2}$$

(ii) Carbon is oxidised to 
$$H_2CO_3$$
.

$$C + 4HNO_3 \longrightarrow H_2CO_3 + 4NO_2 + H_2O_3$$

(iii) Tin is oxidised to metastannic acid, 
$$\rm H_2SnO_3$$

 $\text{Sn} + \text{Conc. } 4\text{HNO}_3 \longrightarrow \text{H}_2\text{SnO}_3 + 4\text{NO}_2 + \text{H}_2\text{O}$ 

(iv) P, As and Sb are oxidised to H<sub>3</sub>PO<sub>4</sub> (phosphoric acid), H<sub>3</sub>AsO<sub>4</sub> (arsenic acid) and H<sub>3</sub>SbO<sub>4</sub> (antimonic acid) respectively
 M + 5HNO<sub>2</sub> → H<sub>2</sub>MO<sub>4</sub> + 5NO<sub>2</sub> + H<sub>2</sub>O

$$(M = P, As, Sb)$$

(v) Sulphur is oxidised to  $H_2SO_4$ .

(vi)

$$\begin{array}{ccc} \mathrm{S} + \underset{(\mathrm{Conc. \ and \ hot)}}{\mathrm{6HNO}_3} & \longrightarrow & \mathrm{H_2SO}_4 + \mathrm{6NO}_2 + \mathrm{2H_2O} \end{array}$$

Iodine is oxidised to iodic acid, 
$$HIO_3$$
.

$$I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O_3$$

II. It converts, into reactive metals (present above hydrogen in electrochemical series) to metal nitrates. Here,  $HNO_3$  is reduced to  $H_2$  (in case of Mg and Mn) or to  $NH_4NO_3$ ,  $NO_2$ , NO and  $NO_2$  (with other metals). Actually in later case following two steps are involved.

Step 1 The metal (M) on being treated with HNO<sub>3</sub> is converted into metallic nitrate and nascent hydrogen is produced as,  $M + 2\text{HNO}_3 \longrightarrow M(\text{NO}_3)_2 + 2[\text{H}]$ 

Step 2 Nascent hydrogen, produced as above, reduces  

$$HNO_3$$
 to  $NH_4NO_3$  (or  $NH_4^+$  ion),  $N_2O$ ,  $NO$  or  $NO_2$   
 $2HNO_3 + 8[H] \longrightarrow NH_4NO_3 + 3H_2O$   
 $2HNO_3 + 8[H] \longrightarrow N_2O + 5H_2O$   
 $HNO_3 + [H] \longrightarrow NO_2 + H_2O$   
 $HNO_3 + 3[H] \longrightarrow NO + 2H_2O$ 

Some important examples of such reactions are as follows

#### (a) Zinc

- (i) Zn reacts with very dil. HNO<sub>3</sub> (6%) and is oxidised to Zn(NO<sub>3</sub>)<sub>2</sub>. Here, HNO<sub>3</sub> is reduced to NH<sub>4</sub>NO<sub>3</sub> as,
   4Zn + 10HNO<sub>3</sub> → 4Zn(NO<sub>3</sub>)<sub>2</sub> + NH<sub>4</sub>NO<sub>3</sub> + 3H<sub>2</sub>O (Very dilute)
- (ii) Zn reacts with cold and dil. HNO<sub>3</sub> (20%) and is oxidised to  $Zn(NO_3)_2$ . Here, HNO<sub>3</sub> is reduced to  $N_2O$  as,

$$\begin{array}{rcl} 4\text{Zn} + & 10\text{HNO}_3 & \longrightarrow & 4\text{Zn}(\text{NO}_3)_2 + \text{N}_2\text{O} + 5\text{H}_2\text{O} \\ & & (\text{Cold and} \\ & & \text{dilute)} & (20 \%) \end{array}$$

(iii) Zn reacts with cold and conc.  $\rm HNO_3$  (70%) and is oxidised to  $\rm Zn(\rm NO_3)_2.$  Here,  $\rm HNO_3$  is reduced to  $\rm NO_2$  as ,

$$\operatorname{Zn} + \operatorname{4HNO}_3 \longrightarrow \operatorname{Zn}(\operatorname{NO}_3)_2 + 2\operatorname{NO}_2 + 2\operatorname{H}_2\operatorname{O}_3$$

(iv) Zn reacts with cold and moderately conc.  $HNO_3$ (50%) and is oxidised to  $Zn(NO_3)_2$ . Here,  $HNO_3$  is reduced to  $NO_2$  as,

$$3\text{Zn} + 8\text{HNO}_3 \longrightarrow 3\text{Zn}(\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NC}$$

#### (b) **Iron**

(i) Fe reacts with very dil.  $HNO_3$  and is oxidised to  $Fe(NO_3)_2$ . Here,  $HNO_3$  is reduced to  $NH_4NO_3$  as

$$\begin{array}{ccc} \mathrm{4Fe} + 10\mathrm{HNO}_3 & \longrightarrow & \mathrm{4Fe}(\mathrm{NO}_3)_2 + \mathrm{NH}_4\mathrm{NO}_3 + 3\mathrm{H}_2\mathrm{O} \\ \mathrm{(Very\ dilute)} & \end{array}$$

(ii) Fe is oxidised to Fe(NO\_3)\_2 by dil. HNO\_3 and HNO\_3 is reduced to  $\rm N_2O$  as

$$\begin{array}{ccc} 4\mathrm{Fe} + 10\mathrm{HNO}_3 & \longrightarrow & 4\mathrm{Fe}(\mathrm{NO}_3)_2 + \mathrm{N}_2\mathrm{O} + 5\mathrm{H}_2\mathrm{O} \\ & & (\mathrm{Dilute}) \end{array}$$

(iii) Fe reacts with cold and conc. HNO<sub>3</sub> and is oxidised to Fe(NO<sub>3</sub>)<sub>3</sub>. Here, HNO<sub>3</sub> is reduced to NO<sub>2</sub> as

$$Fe + \underset{(Cold and conc.)}{6HNO_3} \longrightarrow Fe(NO_3)_3 + 3NO_2 + 3H_2O$$

(iv) With hot and conc.  $HNO_3$ , Fe is oxidised to  $Fe(NO_3)_3$  and  $HNO_3$  is reduced to NO as

$$\begin{array}{ccc} Fe + & 4HNO_3 & \longrightarrow & Fe(NO_3)_3 + 2H_2O + NO \\ & (Hot and conc.) & \end{array}$$

III. HNO3 also oxidises less reactive metals (present below hydrogen in the electrochemical series) Examples of such metals are Cu, Ag and Hg. These metals when treated with HNO3 are oxidised to their corresponding nitrates.

Here, HNO<sub>3</sub> is reduced to NO<sub>2</sub>, NO, NO<sub>2</sub> or N<sub>2</sub> depending on the nature of the metal, concentration of the acid and temperature employed. e.g.

$$M + 2HNO_3 \longrightarrow M(NO_3)_2 + N_2O, NO, NO_2 \text{ or } N_2 + H_2O$$
  
( $M = Cu, Ag, Hg$ )

N ITO

These reactions, are involve in the following two steps

M(NO)

(i) Since, Cu, Ag and Hg lie below hydrogen in the electrochemical series, they are not able to liberate hydrogen from HNO<sub>3</sub> as Zn, Fe, Sn and Pb can do. In case of these metals HNO3 acts as an oxidising agent, i.e. HNO<sub>3</sub> gives nascent oxygen and is itself reduced to  $N_2O$ , NO,  $NO_2$  or  $N_2$ .

$$\begin{array}{rcl} 2\mathrm{HNO}_3 & \longrightarrow & \mathrm{N_2O} + \mathrm{H_2O} + 4\mathrm{[O]} \\ 2\mathrm{HNO}_3 & \longrightarrow & 2\mathrm{NO} + \mathrm{H_2O} + 3\mathrm{[O]} \\ 2\mathrm{HNO}_3 & \longrightarrow & 2\mathrm{NO}_2 + \mathrm{H_2O} + \mathrm{[O]} \\ 2\mathrm{HNO}_3 & \longrightarrow & \mathrm{N_2} + \mathrm{H_2O} + 5\mathrm{[O]} \end{array}$$

(ii) Nascent oxygen obtained as above, oxidises the metal to its oxide which on reaction with HNO<sub>3</sub>, gives metallic nitrate.

$$M + [O] \longrightarrow MO$$
 (metallic oxide)

$$MO + 2HNO_3 \longrightarrow M(NO_3)_2 + H_2O$$

Some important examples of such reactions are

#### (a) Reaction with Copper

- (i) With cold and dil. HNO<sub>3</sub> evolves N<sub>2</sub>O as,
  - $10 \mathrm{HNO}_3 \quad + 4 \mathrm{Cu} \longrightarrow \mathrm{N_2O} \uparrow + 5 \mathrm{H_2O} + 4 \mathrm{Cu} \mathrm{(NO_3)_2}$ (Cold and dil.) (Copper nitra
- (ii) With cold and moderately conc. HNO<sub>3</sub> evolves NO as,
  - $\longrightarrow \begin{array}{c} 3\mathrm{Cu(\mathrm{NO}_3)_2}\uparrow + 2\mathrm{NO}\uparrow + 4\mathrm{H_2O} \\ & \text{(Copper nitrate)} \end{array} \end{array}$ 3Cu + 8HNO<sub>3</sub> (Cold and moderately conc.)
- (iii) With cold and conc.  $HNO_3$  evolves  $NO_2$  as, Cu + 4HNO<sub>3</sub>  $\longrightarrow$  Cu(NO<sub>3</sub>)<sub>2</sub> + 2NO<sub>2</sub>  $\uparrow$  + 2H<sub>2</sub>O (Cold and conc.)
- (iv) With hot and conc. HNO<sub>3</sub> evolves N<sub>2</sub> as,  $\begin{array}{c} 12HNO_3 \\ (Cold \ and \ conc.) \end{array} + 5Cu \longrightarrow N_2 \uparrow + 6H_2O + 5Cu(NO_3)_2 \end{array}$

#### (b) Reaction with Silver

- (i) With dil HNO<sub>3</sub>, AgNO<sub>3</sub> is obtained and NO is evolved as,
  - $\begin{array}{ccc} 3\mathrm{Ag}+ \ 4\mathrm{HNO}_3 & \longrightarrow & 3\mathrm{AgNO}_3 \\ \mathrm{(Dilute)} & & \mathrm{Silver\ nitrate} \end{array} + \mathrm{NO} \uparrow + 2\mathrm{H_2O} \end{array}$
- (ii) With conc. HNO<sub>3</sub>, NO<sub>2</sub> is evolved as,

$$\begin{array}{cc} \operatorname{Ag} + 2\operatorname{HNO}_3 & \longrightarrow & \operatorname{AgNO}_3 + \operatorname{NO}_2^{\uparrow} + \operatorname{H}_2 O \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

#### (c) Reaction with Mercury

- (i) With dil HNO<sub>3</sub>, Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> is formed and NO is evolved as,  $\begin{array}{ccc} 6\mathrm{Hg} + 8\mathrm{HNO}_3 & \longrightarrow & 3\mathrm{Hg}_2(\mathrm{NO}_3)_2 & + 2\mathrm{NO} \uparrow + 4\mathrm{H}_2\mathrm{O} \\ & & \mathrm{Mercurous\ nitrate} \end{array}$
- (ii) With conc.  $HNO_3$ , mercuric nitrate,  $Hg(NO_3)_2$  is obtained and  $NO_2$  is evolved as,  $Hg + 4HNO_3 \longrightarrow Hg(NO_3)_2 + 2NO_2^{\uparrow} + 2H_2O_3^{\circ}$ (Conc.)
- IV. HNO<sub>3</sub> (both dil. and conc.), It can also oxidise many compounds). In these reactions, dil. HNO<sub>3</sub> reduced to NO while conc. HNO<sub>3</sub> is reduced to NO<sub>2</sub>. When HNO<sub>3</sub> oxidises SnCl<sub>2</sub> in presence of HCl, it is reduced to NH<sub>2</sub>OH.

Some important examples of such reactions with HNO<sub>3</sub> are as follows

- (i)  $I_2$  is liberated from KI solution ( $I^- \longrightarrow I_2^0$ )
- e.g.  $8HNO_3 + 6KI \longrightarrow 2NO^{\uparrow} + 4H_2O + 6KNO_3 + 3I_2$
- (ii) CuS is oxidised to sulphur ( $S^{2-} \longrightarrow S$ )
- e.g.  $8HNO_3 + 3CuS \longrightarrow 2NO^{\uparrow} + 4H_2O + 3S + 3Cu(NO_3)_2$ (Dil.)
- (iii) H<sub>2</sub>S is oxidised to sulphur (by both dil. and conc.  $HNO_{2} (S^{2-} \longrightarrow S)$

$$2HNO_{3} + 3H_{2}S \longrightarrow 2NO^{\uparrow} + 4H_{2}O + 3S$$

$$(Dil.)$$

$$2HNO_{3} + H_{2}S \longrightarrow 2NO_{2}^{\uparrow} + S + 2H_{2}O$$

$$(Conc.)$$

(iv) FeS is oxidised to  $FeSO_4$  (S<sup>2-</sup>  $\longrightarrow$  SO<sub>4</sub><sup>2-</sup>)

$$\begin{array}{c} \operatorname{FeS} + 8\operatorname{HNO}_3 \longrightarrow \operatorname{FeSO}_4 + 8\operatorname{NO}_2 \uparrow + 4\operatorname{H}_2 O \\ (\operatorname{Conc.}) \end{array}$$

(v)  $SO_2$  is oxidised to  $H_2SO_4$  (by both dil. and conc.  $HNO_3)(SO_2 \longrightarrow SO_4^{2-})$ 

$$\begin{array}{ccc} \mathrm{SO}_2 + 2\mathrm{HNO}_3 & \longrightarrow & \mathrm{H}_2\mathrm{SO}_4 + 2\mathrm{NO}_2 \uparrow \\ & & (\mathrm{Conc.}) \end{array} \\ 2\mathrm{HNO}_3 + 2\mathrm{H}_2\mathrm{O} + 3\mathrm{SO}_2 & \longrightarrow & 2\mathrm{NO}\uparrow + 3\mathrm{H}_2\mathrm{SO}_4 \end{array}$$

(vi) Solution of  $FeSO_4$  is oxidised to  $Fe_2(SO_4)_3$ (by both dil. and conc. HNO<sub>3</sub>) in the presence of  $H_{2}SO_{4} (Fe^{2+} \longrightarrow Fe^{3+})$ 

$$\begin{array}{c} 6\mathrm{FeSO}_4 + 3\mathrm{H}_2\mathrm{SO}_4 + 2\mathrm{HNO}_3 & \longrightarrow 3\mathrm{Fe}_2(\mathrm{SO}_4)_3 \\ & \underset{\mathrm{Solution}}{\mathrm{Green}} & & \underset{\mathrm{Solution}}{\mathrm{Hil}} & & \underset{\mathrm{Solution}}{\mathrm{Yellow}} \\ & + 2\mathrm{NO}\uparrow + 4\mathrm{H}_2\mathrm{O} \\ 2\mathrm{FeSO}_4 + 2\mathrm{HNO}_3 + \mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Fe}_2(\mathrm{SO}_4)_3\uparrow + 2\mathrm{NO}_2 \\ & \underset{\mathrm{Conc.}}{\mathrm{Conc.}} & + 2\mathrm{H}_2\mathrm{O} \end{array}$$

(vii) HBr and HI are oxidised to Br2 and I2 respectively  $(Br^- \longrightarrow Br_2, I^- \longrightarrow I_2)$ 

 $\begin{array}{l} 2\mathrm{HNO}_3 + 6\mathrm{H}X \longrightarrow 2\mathrm{NO}^{\uparrow} + 4\mathrm{H}_2\mathrm{O} + 3X_2 \\ \mathrm{(Dil.)} \\ 2\mathrm{HNO}_3 + 2\mathrm{H}X \longrightarrow X_2 + 2\mathrm{NO}_2 + 2\mathrm{H}_2\mathrm{O} \\ \mathrm{(Conc.)} \end{array}$ 

(viii)  $As_2O_3$  is oxidised to  $H_3AsO_4(As^{3+} \longrightarrow AsO_4^{3-})$ 

$$2$$
HNO<sub>3</sub> + As<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>O  $\longrightarrow$  4NO<sub>2</sub>  $\uparrow$  + 2H<sub>3</sub>AsO<sub>4</sub>

- (ix) Cane sugar (sucrose),  $C_{12}H_{22}O_{11}$  is oxidised to oxalic acid,  $H_2C_2O_4$  by conc. HNO<sub>3</sub>
  - $\begin{array}{c} 36\mathrm{HNO}_3 + \mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11} \longrightarrow 23\mathrm{H}_2\mathrm{O} + 36\mathrm{NO}_2 + 6\mathrm{H}_2\mathrm{C}_2\mathrm{O}_4 \\ \mathrm{(Conc.)} \end{array}$
- (x) **Toluene**  $(C_6H_5CH_3)$  is oxidised to benzoic acid  $(C_6H_5COOH)$  by dil. HNO<sub>3</sub>
- $\underset{(\mathrm{Dil})}{^{2}\mathrm{HNO}_{3}} + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{CH}_{3} \longrightarrow 2\mathrm{NO}^{\uparrow} + 2\mathrm{H}_{2}\mathrm{O} + \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{COOH}$
- (xi)  $\operatorname{SnCl}_2$  is oxidised to  $\operatorname{SnCl}_4$  in presence of HCl ( $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+}$ )

$$3$$
SnCl<sub>2</sub> + 6HCl + HNO<sub>2</sub>  $\longrightarrow$  2H<sub>2</sub>O +  $3$ SnCl<sub>4</sub> + NH<sub>2</sub>OH

- V. Metals like Cr, Ni, Al, Fe become passive (inert) When treated with conc HNO<sub>3</sub>. For example, Fe displaces Cu from CuSO<sub>4</sub> solution but this property of Fe is lost when it is dipped in slightly conc HNO<sub>3</sub>. This is because, a thin oxide (iron oxide) layer is deposited over the metal surface, when it is treated with conc HNO<sub>3</sub>. This layer makes the iron passive or inert.
- VI. When 1st part of conc. HNO<sub>3</sub> It is mixed with 3rd parts of conc. HCl, we get *aqua-regia*. *Aqua-regia* produces nascent chlorine (Cl) along with nitrosyl chloride (NOCl) as,

 $HNO_3 + 3HCl \longrightarrow NOCl + 2H_2O + 2[Cl]$ 

Due to production of nascent chlorine, *aqua-regia* is very active. Noble metals like Au and Pt, which are not acted upon by  $HNO_3$  get dissolved in aqua-regia due to the formation of soluble complexes namely  $H[AuCl_4]$  and  $H_2[PtCl_6]$  respectively. e.g.

 $2Au + 3HNO_3 + 11HCl \longrightarrow H[AuCl_4] + 2NOCl + 6H_2O$ 

VII. **Conc. HNO**<sub>3</sub> It attacks on many aromatic organic compounds (e.g.  $C_6H_6$ ,  $C_6H_5CH_3$ ,  $C_6H_5OH$  etc.) in the presence of conc.  $H_2SO_4$ . In these reactions it substitutes one or more H-atoms by nitro group, producing nitro compounds (nitration). Here,  $H_2SO_4$  absorbs water, liberated in the reaction and also produces nitronium ion ( $NO_2^+$ ) by reacting with  $HNO_3$ . This  $NO_2^+$  ion makes the nitration of aromatic compounds.

e.g. 
$$HNO_3 + C_6H_6 \xrightarrow{H_2SO_4} C_6H_5NO_2 + H_2O$$
  
Benzene  $\xrightarrow{\text{Hirobenzene}}$  Nitrobenzene

VIII. With protein, HNO<sub>3</sub> gives yellow coloured xanthoprotein. That's why it produces yellow stain on skin and wood.

#### Uses

Nitric acid is used

- as a laboratory reagent and making aqua-regia.
- as strong oxidising agent.
- to clean noble metals such as Au, Ag, Pt.
- to make explosive materials such as TNT, picric acid, gun cotton etc.
- in making of colour, perfume, artificial fibre etc.
- for the manufacture of fertilizers.

**Example 3.** Iodine reacts with concentrated HNO<sub>3</sub> to yield Y along with other products. The oxidation state of iodine in Y, is (JEE Main 2019)

**Sol.** (d) Iodine reacts with concentrated  $HNO_3$  to yield  $HIO_3$  along with  $NO_2$  and  $H_2O$ . The reaction involved in as follows

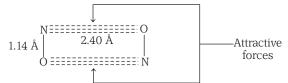
 $I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O$ The oxidation state of 'I' in HIO<sub>3</sub> is + 5 as calculated below 1 + x + 3(-2) = 0, x - 5 = 0, x = + 5

#### **Oxides of Nitrogen**

Nitrogen forms several oxides. The preparation and properties of these oxides can be summarised as,

Preparation and Properties of Various Oxides of Nitrogen

| Formula         | Name                                                                          | Preparation                                                                                                                                    | Properties                                                                                      |
|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $N_2O$          | Nitrous oxide<br>or laughing gas                                              | $\begin{array}{c} \mathrm{NH_4NO_3} \rightarrow \\ \mathrm{N_2O} + \mathrm{2H_2O} \end{array}$                                                 | Colourless gas,<br>rather unreactive.                                                           |
| NO              | Nitrogen<br>monoxide<br>(Nitric oxide)                                        | $\begin{array}{l} 3\mathrm{Cu}+8\mathrm{HNO}_3\rightarrow\\ 3\mathrm{Cu}(\mathrm{NO}_3)_2\\ +2\mathrm{NO}+4\mathrm{H}_2\mathrm{O} \end{array}$ | Colourless gas,<br>reactive,<br>paramagnetic.                                                   |
| $\mathrm{NO}_2$ | Nitrogen<br>dioxide                                                           | $Pb(NO_3)_2 \rightarrow$<br>2PbO + 4NO <sub>2</sub> + O <sub>2</sub>                                                                           | Brown gas,<br>reactive,<br>paramagnetic.                                                        |
| $N_2O_3$        | Dinitrogen<br>trioxide or<br>nitrous<br>anhydride                             | $\rm NO + NO_2 \rightarrow N_2O_3$                                                                                                             | Dark blue in the<br>liquid or solid<br>state, unstable<br>in the gas phase.                     |
| $N_2O_4$        | Dinitrogen<br>tetroxide<br>(mixed<br>anhydride of<br>N <sub>2</sub> O and NO) | $2NO_2 \rightleftharpoons N_2O_4$                                                                                                              | Colourless, exists<br>in equilibrium<br>with $NO_2$ both in<br>the gaseous and<br>liquid state. |
| $N_2O_5$        | Dinitrogen<br>pentoxide                                                       | $\begin{array}{l} 2\mathrm{HNO}_3 + \mathrm{P_2O_5} \rightarrow \\ 2\mathrm{HPO}_3 + \mathrm{N_2O_5} \end{array}$                              | Unstable as gas;<br>in the solid state<br>exists as<br>$[NO_2]^+[NO_3]^-$ .                     |


#### Some other Properties of Oxides of Nitrogen

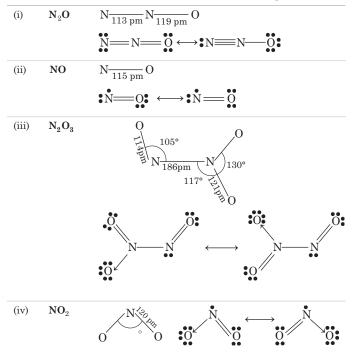
(i)  $N_2O$  (nitrous oxide) is a colourless gas, fairly soluble in cold water but practically insoluble in hot water. It is easily liquifiable at room temperature by applying pressure (critical temperature 35°C). It has a faint odour. When inhaled in moderate quantities, it produces hysterical laughter (that's why called **laughing gas**). Its higher quantity doses may make a person unconcious.

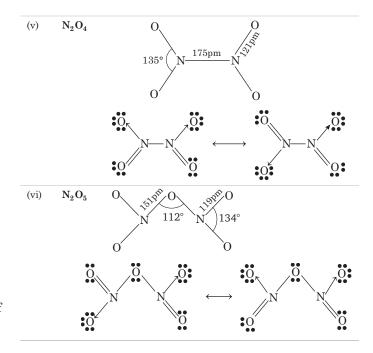
Chemically, it is relatively inert and does not reacts with halogens, alkali metals and even ozone at room temperature. However, it decomposes to  $N_2$  and  $O_2$  at 600°C and form metal azides with molten alkali metals as,

$$NaNH_2 + N_2O \xrightarrow{200^{\circ}C} NaN_3 + H_2O$$

(ii) NO (nitric oxide) is an odd electron molecule, due to the presence of an unpaired electron. It undergoes partial dimerisation in liquid state and exists as a dimer in solid state as,




It readily reacts with oxygen to give brown fumes of  $\mathrm{NO}_2$  as,


$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

(iii)  $NO_2$  (nitrogen dioxide) is also an odd electron molecule. In gaseous phase, exists in equilibrium with dimer  $N_2O_4$  which is colourless. e.g.

$$\begin{array}{ccc} 2\mathrm{NO}_2(g) & \mathchoice{\longrightarrow}{\leftarrow}{\leftarrow} & \mathrm{N}_2\mathrm{O}_4(g) \\ & & & \\ \mathrm{(paramagnetic)} & & & \\ \end{array}$$

(iv)  $N_2O_5$  (dinitrogen pentaoxides) is the strongest acid among all the pentoxides and a very strong oxidising agent.





**Example 4.** The correct order of the oxidation states of nitrogen in NO,  $NO_2$ ,  $N_2O$  and  $N_2O_3$  is (JEE Main 2019)

$$\begin{array}{ll} (a) & NO_2 < NO < N_2O_3 < N_2O \\ (b) & N_2O < NO < N_2O_3 < NO_2 \\ (c) & O_2 < N_2O_3 < NO < N_2O \\ (d) & N_2O < N_2O_3 < NO < NO_2 \end{array}$$

**Sol.** (b) Oxidation state of N in N<sub>2</sub>O is 2(x) - 2 = 0;  $x = +\frac{2}{2} = +1$ 

Oxidation state of N in NO is x-2 = 0; x = +2Oxidation state of N in N<sub>2</sub>O<sub>3</sub> is 2x + 3(-2) = 0;  $x = \frac{6}{2} = 3$ 

Oxidation state of N in NO<sub>2</sub> is x + 2(-2) = 0; x - 4 = 0; x = +4

The correct increasing order of oxidation state of nitrogen for nitrogen oxides is

$${\stackrel{+1}{N}}_{2}O < {\stackrel{+2}{N}}O < {\stackrel{+3}{N}}_{2}O_{3} < {\stackrel{+4}{N}}O_{2}$$

#### Phosphorus

It is the most reactive element in this group and found in the combined state as phosphates in the rocks and in the soil. It is an essential constituent of teeth, bones, blood and nervous tissues. Its important minerals are phosphorite  $[Ca_3(PO_4)_2]$ , chlorapatite  $[3Ca_3(PO_4)_2.CaCl_2]$ , fluorapatite or apatite  $[3Ca_3(PO_4)_2.CaF_2]$ . Its yellow form is always stored in water.

#### **Methods of Preparation**

Some following methods are employed to prepare phosphorus are

(i) It is prepared by using phosphorite (as main material). The reactions are involved

 $\begin{array}{ccc} {\rm Ca}_3({\rm PO}_4)_2 + 3{\rm H}_2{\rm SO}_4 & \longrightarrow & 2{\rm H}_3{\rm PO}_4 & + & 3{\rm CaSO}_4 \\ {\rm Phosphorite} & & {\rm Orthophosphoric} \end{array}$ 

$$H_3PO_4 \longrightarrow HPO_3 + H_2O$$
  
Metaphosphoric

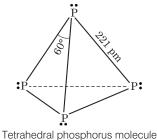
 $4\text{HPO}_3 + 10\text{C} \longrightarrow P_4 + 10\text{CO} + 2\text{H}_2\text{O}$ 

(ii) Phosphorus is obtained from direct reduction of mineral phosphorite by carbon in presence of silica.

$$2\operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + 6\operatorname{SiO}_{2} + 10\operatorname{C} \xrightarrow{1400-1500^{\circ}\operatorname{C}} \\ 6\operatorname{CaSiO}_{3} + \operatorname{P}_{4} + 10 \operatorname{CO}$$

(iii) It is manufactured by heating bone ash or phosphorite with sand  $({\rm SiO}_2)$  and coke (C) in an electric furnance as

 $2\mathrm{Ca}_3(\mathrm{PO}_4)_2 + 6\mathrm{SiO}_2 + 10\mathrm{C} \longrightarrow 6\mathrm{Ca}\mathrm{SiO}_3 + 10\mathrm{CO} + \mathrm{P}_4$ 

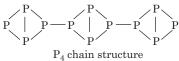

#### Allotropes of Phosphorus

Phosphorus exists in following allotropic forms, which are inter convertible process.

#### 1. White Phosphorus

$$\begin{array}{c} 2\text{Ca}_{3}(\text{PO}_{4})_{2} + 6 \text{ SiO}_{2} \xrightarrow{1773 \text{ K}} 6\text{CaSiO}_{3} + P_{4}\text{O}_{10} \\ P_{4}\text{O}_{10} + 10 \text{ C} \xrightarrow{1773 \text{ K}} P_{4} + 10\text{CO} \end{array}$$

**Structure** It exist in tetrahedra tetraatomic discrete  $P_4$  unit in which each P-atom is  $sp^3$ -hybridised and linked to each of three atoms by covalent bond. Its P—P—P angle is 60° and show high angular strain. That's why it is highly reactive.



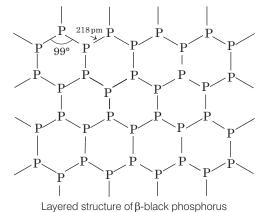

#### Properties

- It is a waxy transluscent solid, readily soluble in CS<sub>2</sub>.
- Below 800° C, it exists as  $P_4$  while above 800° C, it dissociates to  $P_2.$
- It melts at 44.1° C and boils at 280° C.
- Its ignition temperature is very low.
- When exposed to air, it undergoes oxidation which gradually raises its temperature. When temperature exceeds 30° C, it catches fire That's why, **it is always kept in water.**
- Being extremely poisonous, it proves fatal if taken internally.
- P glows in dark on account of its slow oxidation (phosphorescence).
- It is readily soluble in turpentine oil and ether.

#### 2. Red Phosphorus

- **Preparation** It is obtained by heating white  $P_4$  at 573 K in an inert atmospher for many days.
- Structure Its structure consist of chains of  $\mathrm{P}_4$  tetrahedra linked together through covalent bond as shown below




#### **Properties**

- It is non-poisonous, hard crystalline, odourless solid with grey lustre.
- It is stable at room temperature.
- Its ignition temperature is 543 K which is greater than that of white phosphorus.
- It is converted into red phosphorus by sublimation method.
- Its density is higher than white phosphorus.
- Due to presence of polymeric chain it is less reative than white phosphorus. However, reacts with halogen, sulphur alkali metals only when heated.
- It can be separated from red phosphorus (if mixed) with the help of caustic alkalies as it does not react with it.
- Metallic or α-black P It is a very stable allotrope of P and does not oxidise in air unless heated very strongly. It does not conduct electricity.

**Preparation** White phosphorus  $\xrightarrow[400012000 \text{ atm pressure}]{400012000 \text{ atm pressure}} \beta$ -black phosphorus

**Structure** It is the only form of phosphorus whose structure is definitely known. It is crystalline in nature and consists of corrugated sheets.

Here, each P-atom is covalently bonded to other three neighbouring atoms as shown in figure below



The atoms within a layer are more strongly bound than the atoms in adjacent layers. This gives rise to flaky crystals which resemble to graphite.

#### **Properties**

- Its melting point is 587° C and specific gravity is 2.69.
- It does not burn in air even up to 400° C.
- It is good conductor of electricity just like graphite.
- It is stable allotrope and does not oxidise in air until heated very strongly.

#### **Chemical Properties of Phosphorus**

White phosphorus is more reactive than other varieties and exhibits the following reactions

- · It burns in air forming its trioxide and pentoxide.
- White phosphorus combines with hot solutions of KOH or NaOH giving phosphene.

$$P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3$$

However, red phosphorus does not react with dilute alkalies. Thus, this property is helpful in separating red phosphorus form white phosphorus.

- Phosphorus forms trihalides and pentahalides with halogens. White phosphorus reacts more vigorously than red phosphorus.
- Phosphorus combines to S with explosive violence forming a number of sulphides, e.g.  $P_2S_3$ ,  $P_2S_5$ ,  $P_4S_3$  and  $P_4S_7$  etc.
- Phosphorus combines with metals to form phosphides as

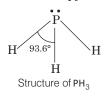
• Since, white phosphorus can be easily oxidised, it acts as strong reducing agent. It reduces  $HNO_3$  to nitrogen dioxide and  $H_2SO_4$  to  $SO_2$ . It also reduces solutions of Cu, Ag and Au salts to the corresponding metals, e.g.

 $P_4 + 8CuSO_4 + 14H_2O \longrightarrow 8Cu + 8H_2SO_4$ 

 $+ 2H_{3}PO_{4} + 2H_{3}PO_{3}$ 

#### Uses

Uses of phosphorus are


- Red phosphorus is used in match box industry.
- Radioactive phosphorus is used in the treatment of leukemia and other blood disorders.
- Yellow phosphhorus and zinc phosphide are used as a rat poison.

Some compounds of phosphorus are

#### Phosphine (PH<sub>3</sub>)

It is discovered by Gembre in 1783.

In phosphine, three H-atoms are attached with P-atom through covalent bonds and P has one lone pair of electrons, thus, its structure is pyramidal like NH<sub>3</sub>.



#### **Methods of Preparation**

Some following methods are used to prepare  $\mathrm{PH}_3$  (phosphine) are

• It is generally prepared by boiling the white phosphorus with a concentrated solution of NaOH in inert atmosphere of CO<sub>2</sub>, oil gas or hydrogen as

$$\underset{\text{White}}{\text{P}_4} + \underset{\text{Conc.}}{3\text{NaH}_2\text{PO}_2} + \underset{\text{Inert atmosphere}}{\longrightarrow} 3\text{NaH}_2\text{PO}_2 + \underset{\text{PH}_3}{\text{PH}_3} \uparrow$$

It is necessary to exclude air from the apparatus because, although pure  $PH_3$  will not burn unless ignited, it is often accompanied with  $P_2H_4$  and  $H_2$  which are spontaneously flammable.

$$2P + 2NaOH + 2H_2O \longrightarrow 2NaH_2PO_2 + H_2\uparrow$$

$$6\mathrm{P} + \mathrm{NaOH} + 4\mathrm{H}_2\mathrm{O} \longrightarrow 4\mathrm{NaH}_2\mathrm{PO}_2 + \mathrm{P}_2\mathrm{H}_4$$

Because of this reaction, phosphine is used in making **Holme's signals.** 

(Pure phosphine is obtained by using alcoholic KOH in place of aqueous NaOH solution).

• It can also be obtained by heating phosphorus acid.  $4HPO \rightarrow 3HPO + PH$ 

$$4H_3PO_3 \longrightarrow 3H_3PO_4 + PH_3$$

• Treatment of phosphonium iodide with 30% KOH solution also gives phosphine.

$$PH_4I + KOH \longrightarrow KI + H_2O + PH_3$$

The evolved gas is passed through HCl (which decomposes  $P_2H_4$ ) and then through NaOH (where HI is absorbed).

- It is also obtained by the hydrolysis of  $\rm Ca_3P_2$  with water or dilute HCl.

 $Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$ 

#### **Physical Properties**

It is colourless, highly reactive and extremely toxic gas with a slight smell of garlic or rotten fish. It liquefies at  $-89^{\circ}$ C and solidifies at  $-134^{\circ}$ C.

#### **Chemical Properties**

Some important chemical properties exhibited by phosphine are as follows

- $PH_3$ , unlike  $NH_3$ , is not very soluble in water. Its aqueous solution is neutral. It is more soluble in non-polar solvent like  $CS_2$  and other organic solvents.
- When heated in contact of air to 440°C or when electric sparks are passed, phosphine decompose to gives red phosphorus and hydrogen gas as,

$$PH_3 \longrightarrow P_4 + 6H_2 \uparrow$$

A pure sample of phosphine is not spontaneously inflammmable. It burns in air or oxygen when heated at 150°C. To give white smoke (vortex rings). This is because of the formation of vortex ring of  $P_2O_5$  due to impurity of  $P_2H_4$  (diphosphine).

$$2PH_3 + 4O_2 \xrightarrow{\Delta} P_2O_5 + 3H_2O_5$$

• In contact with nitric acid, phosphine begins to burn.  $2PH_3 + 16HNO_3 \longrightarrow P_2O_5 + 16NO_2 + 11H_2O$  - It forms addition compounds with an hydrous  $\mathrm{AlCl}_3$  and  $\mathrm{SnCl}_4.$ 

$$AlCl_3 + 2PH_3 \longrightarrow AlCl_3 \cdot 2PH_3$$

$$SnCl_4 + 2PH_3 \longrightarrow SnCl_4 \cdot 2PH_3$$

- Phosphine gives a black precipitate of cupric phosphide, when passed through  ${\rm CuSO}_4$  solution.

$$\operatorname{BCuSO}_4 + 2\operatorname{PH}_3 \longrightarrow \operatorname{Cu}_3\operatorname{P}_2 + 3\operatorname{H}_2\operatorname{SO}_4$$
  
(Black)

• It also gives a similar reaction with silver nitrate solution.

$$3$$
AgNO<sub>3</sub> + PH<sub>3</sub>  $\longrightarrow$  Ag<sub>3</sub>P + 3HNO<sub>3</sub>

- The mixture of  $PH_3$  and  $N_2O$  or  $PH_3$  and NO explodes in the presence of electric spark.

$$\mathrm{PH}_3 + 4\mathrm{N}_2\mathrm{O} \xrightarrow{\mathrm{electric \ spark}} \mathrm{H}_3\mathrm{PO}_4 + 4\mathrm{N}_2 \uparrow$$

\*  $PH_3$  is a better reducing agent than  $NH_3$ . It reduces (i)  $Ag^+$  to Ag metal as,

$$6Ag^{+} + PH_3 + 3H_2O \longrightarrow H_3PO_3 + 6Ag \downarrow + 6H^{+}$$

(ii)  $Cu^{2+}$  to Cu metal as,

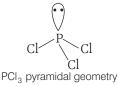
$$4Cu^{2+} + PH_3 + 4H_2O \longrightarrow H_3PO_4 + 4Cu \downarrow + 8H^+$$

• In liquid NH<sub>3</sub>, phosphine dissolves to give NH<sup>+</sup><sub>4</sub>PH<sup>-</sup><sub>2</sub>.

$$\begin{array}{ccc} \mathrm{NH}_3 \ \text{+}\mathrm{PH}_3 \\ \mathrm{Base} & \mathrm{Acid} \end{array} \longrightarrow \ \mathrm{NH}_4^+\mathrm{PH}_2^-$$

Uses

- $\mathrm{PH}_3$  is used
- for making smoke screens.
- for making metallic phosphides.
- for making **Holme's signals**.


#### Working of Holme's Signals

For Holme's signals a mixture of calcium carbide,  $CaC_2$  and calcium phosphide,  $Ca_3P_2$  is placed in metallic containers. Two holes are made and the container is thrown into the sea. Water enters in the container and produces acetylene and phosphine.

The gaseous mixture catches fire spontaneously because of the presence of  $P_2H_4$ . The acetylene gives a bright luminous flame which serves as a signal to the approaching ship.

#### 2. Phosphorus Trichloride, PCl<sub>3</sub>

Its structure is similar to ammonia, i.e. it has pyramidal geometry.



#### **Method of Preparation**

It is obtained when dry  $Cl_2$  is passed over red or white phosphorus heated gently in a retort over a water bath.

$$P_4 + 6Cl_2 \xrightarrow[(Dry)]{\text{Heated-water bath}} 4PCl_3$$

#### **Physical and Chemical Properties**

Some important properties of  $PCl_3$  are as follows

- It is a low boiling liquid (b.p. 74°C) with a pungent odour and fumes in moist air.
- It violently hydrolysed by water as,

$$PCl_3 + 3H_2O \longrightarrow 3HCl + H_3PO_3$$

• It reacts with chlorine and sulphur chloride as,

$$\begin{array}{ccc} \mathrm{PCl}_3 + \mathrm{Cl}_2 & \longrightarrow & \mathrm{PCl}_5 \\ \mathrm{3PCl}_3 + \mathrm{SCl}_2 & \longrightarrow & \mathrm{PCl}_5 + \mathrm{2PSCl}_3 \end{array}$$

• It reacts with oxygen and SO<sub>3</sub> as,

$$\begin{array}{ccc} 2PCl_3 + O_2 &\longrightarrow & 2POCl_3 \\ 3PCl_3 + SO_3 &\longrightarrow & POCl_3 + SO_2 \end{array}$$

$$PCl_3 + 3AgCN \longrightarrow P(CN)_3 + 3AgCl$$

$$PCl_3 \xrightarrow{PF_3} PCl_2F + PClF_3$$

• It forms adduct with BBr<sub>3</sub> as,

$$\begin{array}{cccc} & & & & Br & Cl \\ & & & | & | \\ PCl_3 + BBr_3 & \longrightarrow & Br & Bc & P & Cl \\ & & & | \\ & & Br & Cl \end{array}$$

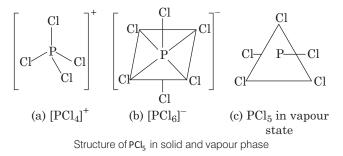
• It acts as reducing agent and reduces  $SO_2Cl_2$  and  $SO_3$  to  $SO_2$  and itself gets oxidised to  $PCl_5$  or  $POCl_3.$  It also reduces  $SOCl_2$  and  $SO_2Cl_2$  as :

$$\begin{array}{l} \operatorname{PCl}_3 + \operatorname{SO}_2\operatorname{Cl}_2 \longrightarrow \operatorname{PCl}_5 + \operatorname{SO}_2 \uparrow \\ \operatorname{3PCl}_3 + \operatorname{SOCl}_2 \longrightarrow \operatorname{POCl}_3 + \operatorname{PSCl}_3 + \operatorname{PCl}_5 \end{array}$$

• It reacts with finely divided metals when hot as

$$12Ag + 4PCl_3 \longrightarrow 12AgCl + P_2$$

 It reacts with concentrated H<sub>2</sub>SO<sub>4</sub> forming chlorosulphonic acid as,


$$\begin{array}{ccc} 4H_2SO_4 + 2PCl_3 & \longrightarrow & 2HSO_3Cl + P_2O_5 + 2SO_2 \\ & & Chlorosulphonic \\ & acid \\ & & + 4HCl + H_2O_2 \end{array}$$

• It reacts with organic compounds containing hydroxyl group to give H<sub>3</sub>PO<sub>3</sub>.

$$\begin{array}{ccc} 3C_2H_5OH + PCl_3 & \longrightarrow & 3C_2H_5Cl + H_3PO_3 \\ Ethyl \ alcohol & & & Ethyl \ chloride & & \\ 3CH_3COOH + PCl_3 & \longrightarrow & 3CH_3COCl + H_3PO_3 \\ Acetic \ acid & & & Acetyl \ chloride & & \\ \end{array}$$

#### 3. Phosphorus Pentachloride, PCl<sub>5</sub>

X-ray studies have revealed that solid  $PCl_5$  consists of ionic lattices, i.e. tetrahedral  $[PCl_4]^+$  cations and octahedral  $[PCl_6]^-$  anions. In vapour state, it has trigonal bipyramidal shape in which P has  $sp^3d$ -hybridisation.



#### **Method of Preparation**

It is prepared either by passing dry  $Cl_2$  gas (in excess) over  $PCl_3$  or by the action of  $SO_2Cl_2$  on  $P_4$  or  $PCl_3$ .

$$\begin{array}{ccc} \operatorname{PCl}_3 + \operatorname{Cl}_2 & \longrightarrow & \operatorname{PCl}_5 \\ & & & \\ \operatorname{P}_4 + 10 \operatorname{SO}_2 \operatorname{Cl}_2 & \longrightarrow & \operatorname{4PCl}_5 + 10 \operatorname{SO}_2 \end{array}$$

#### **Physical and Chemical Properties**

Some important properties of PCl<sub>5</sub> are as follows

- It is yellowish white crystalline compound with a sharp odour. Its m.p. is -45 °C (under pressure) and sublimation temperature is 160 °C.
- It have the ability to dissociate as

$$\mathrm{PCl}_5 \rightleftharpoons \mathrm{PCl}_3 + \mathrm{Cl}_2^{\uparrow}$$

violently hydrolysed by water as  

$$PCl_{+} + H_{*}O \xrightarrow{Insufficient water} POCl_{*} + 2HCl_{*}$$

$$PCl_5 + 4H_2O \xrightarrow{Excess of water} H_3PO_4 + 5HCl$$

• It reacts with compounds containing —OH group as  $CH_3 COOH + PCl_5 \longrightarrow CH_3 COCl + POCl_3 + HCl$ 

$$\begin{array}{ccc} H_2SO_4 + PCl_5 & \longrightarrow & SO_2Cl_2 + 2POCl_3 + HCl \\ & Sulphuryl \\ & chloride \end{array}$$

- It reacts with  $P_4O_{10}$  as

$$3PCl_5 + P_4O_{10} \longrightarrow 10POCl_3$$

$$nPCl_5 + nNH_4Cl \xrightarrow{150^{\circ}C} (NPCl_2)_n + 4nHCl$$

• It reacts with Cl<sup>-</sup> acceptors as

$$\operatorname{PCl}_5 + \operatorname{BCl}_3 \longrightarrow [\operatorname{PCl}_4]^+ [\operatorname{BCl}_4]^-$$

- With hydrogen it forms PCl<sub>3</sub> as
- $\mathrm{PCl}_5 + \mathrm{H}_2 \longrightarrow \mathrm{PCl}_3 + 2\mathrm{HCl}$
- It reacts with KF as

$$PCl_5 + 6KF \longrightarrow KPF_6 + 5KCl$$

#### Uses

• It is

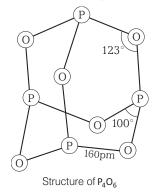
PCl<sub>5</sub> is used

- as chlorinating agent in organic chemistry.
- in parmaceutical industry for manufacturing penicillin.

- to produce acid chloride.
- as catalyst in many reactions.

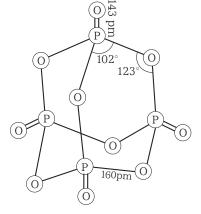
#### **Oxides of Phosphorus**

Phosphorus trioxide exists as a dimer and is formulated as  $\mathrm{P_4O_{6}}$ 


When white phosphorus is burnt in the limited supply of air both  $P_4O_6$  and  $P_4O_{10}$  are formed. The vapour of the mixture of oxides are passed through a condensor in which water at 50-60°C is circulated,  $P_4O_{10}$  being solid at 60°C separates out easily.

 $P_4O_{10}$  is obtained by burning phosphorus in a free supply of air or oxygen. The pentoxide formed is purified further by sublimation at 360°C.

#### **Properties and Uses**


Among the various pentoxides,  $P_2O_5$  has the strongest affinity for water. It can extract water from several inorganic and organic compounds, hence it acts as a strong **dehydrating agent**. It dehydrates  $H_2SO_4$  to  $SO_3$ , HNO<sub>3</sub> to  $N_2O_5$ , **cellulose** to **carbon** and **amides** to **nitriles**.

The tetrahedral structure of  $P_4O_6$  is



This structure has been confirmed by X-ray diffraction data. The oxides  $As_4O_6$ ,  $Sb_4O_6$  also have tetrahedral structures.

The structure assigned to  $P_4O_{10}$  molecule is



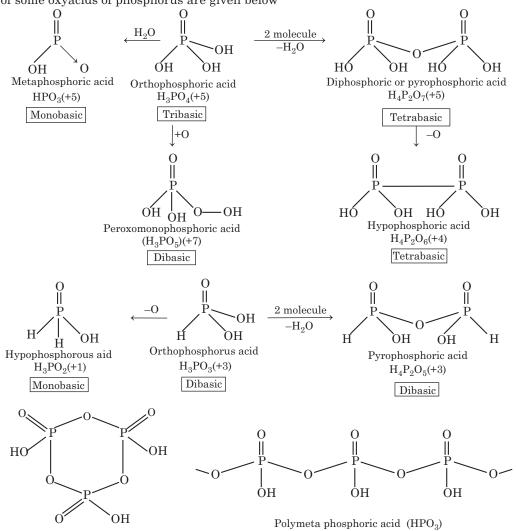
Structure of P<sub>4</sub>O<sub>10</sub>

#### **Oxyacids of Phosphorus**

The oxyacids of phosphorus can be grouped into following series are given below

- Phosphorous acid series which contains following acids

   (i) Hypophosphorus acid, H<sub>3</sub>PO<sub>2</sub>
  - (ii) Phosphorus acid, or orthophosphorus acid, H<sub>3</sub>PO<sub>3</sub>
  - (iii) Pyrophosphorus acid, H<sub>4</sub>P<sub>2</sub>O<sub>2</sub>
  - (iv) Metaphosphorus acid,  $\mathrm{HPO}_2$
- Phosphoric acid series, which contains following acids
  (i) Hypophosphoric acid, H<sub>4</sub>P<sub>2</sub>O<sub>6</sub>
  (ii) Pyrophosphoric acid, H<sub>4</sub>P<sub>2</sub>O<sub>5</sub>
- Polyphosphoric acid series with general formula  $H_{n-2} P_n O_{3n+1}$ 
  - (i) Diphosphoric acid or pyrophosphoric acid,  $H_4P_2O_7$
  - (ii) Triphosphoric acid,  $H_5P_3O_{10}$
  - (iii) Tetraphosphoric acid,  $H_6P_4O_{13}$


#### **Structures**

The structures of some oxyacids of phosphorus are given below

- (iv) Metaphosphoric acid, HPO<sub>3</sub>
- (v) Orthophosphoric acid,  $H_3PO_4$
- Peroxyphosphoric acid series, which contains following acids
  - (i) Peroxymonophosphoric acid, H<sub>3</sub>PO<sub>5</sub>
  - (ii) Peroxydiphosphoric acid,  $H_4P_2O_8$
- The strength and solubility of the oxyacids follow the order,  $HNO_3 > H_3PO_4 > H_3AsO_4 > H_3SbO_4$
- Some important facts related to oxyacids of phosphorus are (i) H<sub>3</sub>PO<sub>3</sub> is a strong reducing agent but weaker as compared to H<sub>2</sub>PO<sub>3</sub>.

(ii) 
$$4H_3PO_3 \xrightarrow{475 \text{ K}} 3H_3PO_4 \xrightarrow{520 \text{ K}} H_4P_2O_7 \xrightarrow{>520 \text{ K}} HPO_3$$

(iii) Aqueous solutions of both pyrophosphoric acid,  $H_4P_2O_7$  as well as metaphosphoric acid (HPO<sub>3</sub>) on heating give orthophosphoric acid.

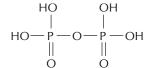


Cyclometaphosphoric acid (HPO<sub>3</sub>)<sub>3</sub>

**Example 5.** White phosphorus on reaction withu<br/>concentrated NaOH solution in an inert atmosphere of<br/>CO2 gives phosphine and compound (X). (X) on<br/>acidification with HCl gives compound (Y). The basicity of<br/>compound (Y) is(JEE Main 2020)(a) 4(b) 3(c) 2(d) 1

**Sol.** (d)

 $\begin{array}{c} P_4 \\ White \\ phosphorus \end{array} + 3 \underset{Conc.}{NaOH} + 3 H_2 O \xrightarrow[]{Inert atm. of CO_2} \\ \xrightarrow{PH_3} + 3 NaH_2 PO_2 \\ \xrightarrow{Phosphours} (X) \end{array}$ 


 $\begin{array}{c} & \downarrow + 3HCI\\ 3H_3PO_2 + 3NaCI\\ (Y)\\ H_3PO_2 \ (Y) \ is a monobasic acid. Here, the H-atom of OH group is ionisable and cause the basicity. \end{array}$ 

Only one such atom are present. Thus, basicity of compound (*Y*) is 1.

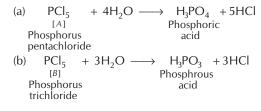
**Example 6.** In a molecule of pyrophosphoric acid, the number of P—OH, P=O and P—O—P bonds/moiety(ies) respectively are (JEE Main 2020)

| (a) 2, 4 and 1  | (b) 3, 3, and 3 |
|-----------------|-----------------|
| (c) 4, 2, and 0 | (d) 4, 2, and 1 |

**Sol.** (d) The structure of pyrophosphoric acid  $(H_4P_2O_7)$  molecule is



Number of P—OH moieties = 4, P = O bonds = 2 and P—O -P bond = 1.


**Example 7.** On reaction with Cl<sub>2</sub>, phosphorus forms two types of halides 'A' and 'B'. Halide 'A' is yellowish white powder but halide 'B' is colourless oily liquid. Which of the following is/are their hydrolysis products? **(NCERT Exemplar)** 

| (I) $H_3PO_2$   | (II) H <sub>3</sub> PO <sub>3</sub> |
|-----------------|-------------------------------------|
| (III) $H_3PO_4$ | (IV) H <sub>3</sub> PO <sub>4</sub> |
| (a) I and II    | (b) II and III                      |
| (c) III and IV  | (d) I and IV                        |

**Sol.** (a) 'A' is  $PCl_5$  and 'B' is  $PCl_3$ .

$$\begin{array}{ccc} \mathsf{P}_4 + 10\mathsf{Cl}_2 & \longrightarrow & 4\mathsf{PCl}_5 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \mathsf{P}_4 + 6\mathsf{Cl}_2 & \longrightarrow & 4\mathsf{PCl}_3 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

When 'A' and 'B' are hydrolysed as,



#### VIA (16) Group Elements and Their Compounds

This group contains 5 elements, i.e. **oxygen, sulphur**, **selenium, tellurium** and **polonium**. These are collectively called as **oxygen family**. The first four members are non-metals and collectively known as **chalcogens** (meaning ore forming) as metal ores normally occur in the form of oxides, sulphides etc.

#### Occurrence

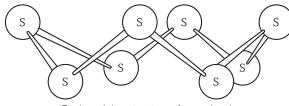
Oxygen is most abundant element on earth. It constitutes contains 50% by weight of earth crust and about 23.2% by weight of atmosphere. There are three naturally occurring isotopes of oxygen, i.e.  $_{8}O^{16}$  (99.762%),  $_{8}O^{17}$  (0.038%) and  $_{8}O^{18}$  (0.200%). Water contains 88.8% oxygen by weight.

Sulphur occurs in the earth crust to the extent of 0.05% mostly as metal sulphides and sulphates. It also occur (in elemental form) in large underground beds. Se and Te are less abundant than S. Polonium is radioactive and occurs in nature in radium minerals such as pitch blend to the extent of  $5 \times 10^{-9}$  %.

#### **General and Physical Properties**

Elements of group 16 shows following trends in their general and physical properties.

- (i) Electronic configuration General electronic configuration for the elements of this group is ns<sup>2</sup>np<sup>4</sup>. According to Hund's rule; the four *p*-electrons are arranged in *p*-orbitals as p<sub>x</sub><sup>2</sup> p<sub>y</sub><sup>1</sup> p<sub>z</sub><sup>1</sup>. (where, n = 2, 3, 4, 5,...)
- (ii) Atomic volume and atomic radii Both atomic volume and atomic radii increase on moving down the group.
- (iii) **Physical state** Oxygen is a gas while, all other elements exists in solid state.
- (iv) Ionisation energy On moving down the group, the ionisation energy decreases. These elements, have unexpectedly lower first ionisation energy than the corresponding elements of group 15. This is because of the stable electronic configuration of the elements of this group is as compared to group 16 elements. But their second ionisation enthalpy is higher than those of group 15 elements because after removal of one electron, the electronic configuration become more stable. So it is difficult to remove second electron from this stable configuration.


- (v) Electronegativity These elements are more electronegative as compared to the corresponding elements of group 15. There is seen a steep drop in electronegativity as the atomic size increases. Oxygen is the second most electronegative element of the periodic table. Hence, its all compounds (except with fluorine) are called oxides.
- (vi) Electron affinity These elements also decreases as the atomic size increases. However, electron affinity of O is lesser as compared to S. This is because of the small size and high charge density of O-atom.

Along the period these element have large electron affinity next only to the halogens.

- (vii) Nature of bonding Oxygen can form ionic as well as covalent compounds but other elements, because of their low electronegativity, form mainly covalent compounds. Compounds of oxygen with highly electropositive metals like Li, Mg etc., are ionic while with less electropositive metals and non-metals are covalent.
- (viii) **Oxidation state** Oxygen, being highly electronegative, exhibit +2, -2 and -1 oxidation states while other elements show +2, +4 and +6 oxidation states.

On moving down the group, the stability of +4 oxidation state increases while that of +6 state decreases due to **inert pair effect**.

- (ix) **Metallic character** The first four elements are non-metals. This non-metallic character is stronger in oxygen and sulphur. Po is distinctly a metal but it is radioactive and only short lived.
- (x) Melting and boiling points On moving down the group, as the atomic size increases the magnitude of van der Waals' interatomic forces increases. Thus, the melting and boiling point increase regularly in the same way.
- (xi) Molecular state Oxygen exists as  $O_2$  (diatomic gaseous molecule). S and Se occur as  $S_8$  and  $Se_8$  with Puckered ring structure as seen below



Puckered ring structure of  ${\rm S}_{\rm 8}$  molecule

The reason for such a difference is the tendency of O-atom to form multiple bonds ( $p\pi$ - $p\pi$  bonds) which is missing in the case of sulphur and selenium.

(xii) **Catenation** Sulphur has a high while oxygen has some tendency to catenate.

e.g. H—O—O—H  $(H_2O_2)$  H— S—S—S—H  $(H_2S_4)$ .

- (xiii) Allotropy Oxygen exist in two allotropic forms, i.e.  $O_2$  and  $O_3$ . Sulphur exists as-**rhombic** or  $\alpha$ -form, monoclinic or  $\beta$ -form, plastic or  $\gamma$ -form, colloidal or  $\delta$ -form,  $\lambda$ -sulphur and  $\mu$ -sulphur.
  - Selenium exists in two forms, i.e. **red form** and **grey form**.
  - Tellurium exists in two forms, one of which is metallic and other is non-metallic.
  - Polonium exists in two forms namely  $\alpha$  and  $\beta$ -forms. Both of them are metallic.

The above physical properties can be summarised in the following table below

#### **Physical Properties of 16 Group Elements**

| Property                                           | Oxygen                                                    | Sulphur                        | Selenium                                   | Tellurium                            | Polonium                                                           |
|----------------------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------------------------------------|
| Atomic<br>number                                   | 8                                                         | 16                             | 34                                         | 52                                   | 84                                                                 |
| Electronic configuration                           | $\begin{array}{c} [\mathrm{He}] 2s^2 \\ 2p^4 \end{array}$ | $\frac{[\text{Ne}]3s^2}{3p^4}$ | $[\operatorname{Ar}] 3d^{10} \\ 4s^2 4p^4$ | $\frac{[{\rm Kr}]4d^{10}}{5s^25p^4}$ | $\begin{array}{l} [{\rm Xe}]4f^{14}\\ 5d^{10}6s^26p^4 \end{array}$ |
| Atomic mass<br>(amu)                               | 15.999                                                    | 32.064                         | 78.96                                      | 127.60                               | 210                                                                |
| Density in<br>solid state<br>(g cm <sup>-3</sup> ) | 1.14                                                      | 2.07                           | 4.79                                       | 6.23                                 | 9.2                                                                |
| Atomic<br>radius (Å)                               | 0.73                                                      | 1.09                           | 1.16                                       | 1.35                                 | —                                                                  |
| Ionic radius<br>(Å) of<br>divalent ion             | 1.40                                                      | 1.84                           | 1.98                                       | 2.21                                 | _                                                                  |
| Atomic<br>volume (cc)                              | 14.0                                                      | 15.5                           | 16.5                                       | 20.5                                 | 22.7                                                               |
| Ionisation<br>energy<br>(kJ mol <sup>-1</sup> )    | 1313.7                                                    | 999.4                          | 940.9                                      | 869.5                                | 813.5                                                              |
| Oxidation<br>states                                | -2, -1, +2                                                | -2, +2, +4, +6                 | -2, +2, +4, +6                             | -2, +2, +4, +6                       | +2, +4                                                             |
| Electronegat<br>- ivity                            | 3.5                                                       | 2.5                            | 2.4                                        | 2.1                                  | 2.0                                                                |
| Melting<br>point (°C)                              | -218.8                                                    | 114.0                          | 217.0                                      | 449.5                                | 254.0                                                              |
| Boiling point<br>(°C)                              | -183.0                                                    | 444.6                          | 685.0                                      | 989.8                                | 962                                                                |
| Heat of fusion $(kJ mol^{-1})$                     | 0.22                                                      | 1.42                           | 5.3                                        | 17.7                                 | 11.0                                                               |
| Heat of<br>atomisation<br>(kJ mol <sup>-1</sup> )  | 250                                                       | 280                            | 207                                        | 197                                  | 145                                                                |

#### **Chemical Properties**

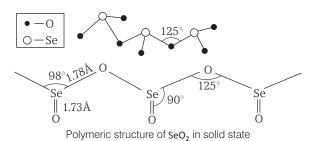
Some of the important chemical properties of element of group 16 are discussed below

#### 1. Reactivity Towards Oxygen or Formation of Oxides

- Among the compounds of group 16 elements the most important ones are **oxides**.
- In general, the oxides of metals are basic, that of non-metals are acidic and that of semi-metals are amphoteric in nature.
- The acidic character of oxides increases across a period from left to right and basic character of oxides increases down a group.
- The oxides are mainly **monoxides** (AO type), **dioxides** (AO<sub>2</sub>) type and trioxides (AO<sub>3</sub> type). However, sulphur forms heptoxide also with formula S<sub>2</sub>O<sub>7</sub>. Out of these the oxides of sulphur are most important commercially.
- The oxides formed by S, Se, Te and Po are tabulated below.

#### **Different Oxides of 16 Group Elements**

| Type of oxide | S        | Se               | Те            | Ро      |
|---------------|----------|------------------|---------------|---------|
| Monoxide      | SO       |                  | TeO           | PoO     |
| Dioxide       | $SO_2$   | $\mathrm{SeO}_2$ | ${\rm TeO}_2$ | $PoO_2$ |
| Trioxide      | $SO_3$   | $\mathrm{SeO}_3$ | $TeO_3$       | $PoO_3$ |
| Heptoxide     | $S_2O_7$ |                  | _             | _       |


Some important facts related to the oxides are given below

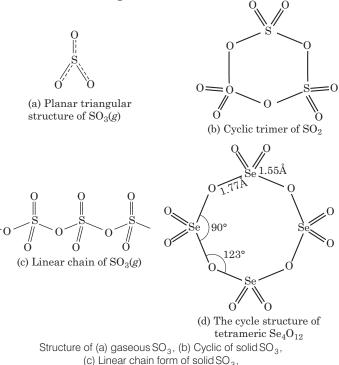
#### (i) Monoxides

All elements of this group (except Se) forms **monoxides** but all them are not so stable. Out of these, SO is formed by passing electric discharge through  $SO_2$  while TeO and PoO are formed by heating corresponding trioxides.

#### (ii) **Dioxides**

- Dioxides (MO<sub>2</sub>) are formed by all the members of this group by burning them in air (except oxygen of course). These dioxides differ from each other considerably. For example SO<sub>2</sub> and SeO<sub>2</sub> are acidic oxides with good solubility in water while TeO<sub>2</sub> and PoO<sub>2</sub> are amphoteric in nature and have poor solubility in water.
- $SO_2$  has angular structure. It exists as discrete molecule even in solid state. It is held together by weak van der Waals' forces of attraction. (It exist as gas at room temperature).  $SeO_2$  in gaseous phase has angular structure but in solid state (white volatile solid) it has polymeric structure comprising of infinite chains as




Dioxides of Te and Po are also non-volatile crystalline ionic solids, out of which  $\text{TeO}_2$  has a layer structure consisting of  $\text{TeO}_4$  units.

Dioxides show differences in their reaction with water as

- SO<sub>2</sub> dissolves in water giving H<sub>2</sub>SO<sub>3</sub> (known in solution only).
- ${\rm SeO}_2$  gives selenious acid with water which can be isolated in crystalline state.
- $\text{TeO}_2$  is almost insoluble in water. It however dissolves in alkalies (to form tellurites) and in acids (to form basic salts) showing its amphoteric nature.
- PoO<sub>2</sub> shows similar behaviour.

#### (iii) **Trioxides** (*MO*<sub>3</sub>)

- Generally, these oxides are acidic in nature, i.e. form acids with water. This acidic nature decreases on moving down the group.
- Among trioxides, SO<sub>3</sub> is the most important
- In gaseous phase, it exists as planar triangular geometry while in solid state, has linear cyclic trimer or a polymeric chain structure.
- SeO<sub>3</sub> on the other hand, exists as a cyclic tetramer (Se<sub>4</sub>O<sub>12</sub>) in the solid state TeO<sub>2</sub> exists in polymeric form.



(d) Cyclic tepramer of solid  $SeO_3$ 

#### 2. Reactivity Towards Hydrogen or Formation of Hydrides

- Group 16 elements form binary hydrides of type  $M_2A$ (where, A = O, S, Se, Te or Po). Unlike H<sub>2</sub>O, other hydrides are unpleasant foul smelling poisonous gases. The unique behaviour of H<sub>2</sub>O is due to extensive intermolecular H-bonding.
- Hydrides of S, Se and Te are prepared by the action of acids on metal sulphides, selenides and tellurides respectively. H<sub>2</sub>S, H<sub>2</sub>Se and H<sub>2</sub>Te are weak diprotic acids in aqueous solutions.

#### Structure

Hydrides of these group have angular shape involving  $sp^3$  hybridisation of central atom.

Their bond angle decreases in order as,

$$\begin{array}{c} {\rm H_2O} > {\rm H_2S} > {\rm H_2Se} > {\rm H_2Te} \\ {\rm ^{104.5^\circ \ 92.1^\circ \ 91^\circ \ 90^\circ}} \end{array}$$

On moving down the group, the size of the central atom increases and electronegativity decreases. Due to this the position of the two bond pair shift away from the central atom. As a result of this repulsion between the bond pairs decreases as we move down the group. Therefore, bond angle decrease in this order.

#### **Volatility and Boiling Point**

The volatility first increases from  $H_2O$  to  $H_2S$  and then decreases from  $H_2S$  to  $H_2Te$ , i.e boiling point first decreases and then increases.

- Due to strong intermolecular H-bonding  $H_2O$  has very high boiling point. The electronegativity of other element, (i.e. S, Se, Te) is much lower therefore, they do not show H-bonding. Thus, their boiling point is less.
- Now on moving down the group, size of central atom increases, therefore van der Waals' forces of attraction increases hence boiling point increases gradually from  $\rm H_2S$  to  $\rm H_2Se$ .

Thus, the order of voltality will be  $H_2S > H_2Se > H_2Te > H_2O$  and the order as boiling point will be

$$H_2O > H_2Fe > H_2Se > H_2S.$$

#### **Acidic Strength**

The acidity increases in the series as  $H_2S < H_2Se < H_2Te$ .  $H_2O$  is neutral in nature. Increase in acidic strength of hydrides can be easily explained on the basis of increase in the size of central atom from oxygen to Te.

As the result of such an increase, the length of R—H bond also increases gradually which is always inversely proportional to bond strength. Thus, bond strength decreases.

#### **Thermal Stability and Reducing Power**

As the size of central atom increases, the M—H (M = O to Po) bond becomes weaker and longer. Consequently, the thermal stability decreases. Since, reducing power varies inversely with bond strength, it increases as the bond strength decreases or bond length increases.

| $H_2O$ | $H_2S$ | $H_2Se$ | $H_2Te$ |
|--------|--------|---------|---------|
|--------|--------|---------|---------|

| Thermal stability decreases  |  |
|------------------------------|--|
|                              |  |
| Reducing character increases |  |

The properties of these hydrides are summarised given below

Properties of Hydrides of Group 16 Elements

| Property                                    | H <sub>2</sub> O      | H <sub>2</sub> S     | H,Se                  | H <sub>2</sub> Te    |
|---------------------------------------------|-----------------------|----------------------|-----------------------|----------------------|
| liopeity                                    | 1120                  | 1120                 | 11200                 | 11210                |
| Melting point (°C)                          | 0                     | -85.5                | -65.7                 | -51.1                |
| Boiling point (°C)                          | 100.0                 | -60.75               | -41.5                 | -1.8                 |
| Bond angle H— <i>X</i> —H                   | 104.5°                | 92.5°                | 90°                   | 89°                  |
| Bond length $H - X(Å)$                      | 0.95                  | 1.30                 | 1.45                  | 1.72                 |
| Dissociation constant<br>as an acid at 25°C | $1.0 \times 10^{-14}$ | $1.0 \times 10^{-7}$ | $1.7\!\times 10^{-4}$ | $2.3 \times 10^{-3}$ |

First two members of the family also form hydrides of the formula  $H_2R_2$  (i.e.  $H_2O_2$  and  $H_2S_2$ ). However, these two hydrides differ considerably from each other.

e.g.  $H_2O_2$  is fairly stable but  $H_2S_2$  is unstable. It decomposes readily to give S and  $H_2S$  as,

$$H_2S_2 \xrightarrow{OH^-} H_2S + S$$

Similarly,  $\rm H_2O_2$  on account of hydrogen bonding is highly associated while,  $\rm H_2S_2$  forms discrete molecules.

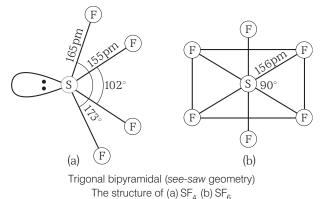
#### 3. Reactivity Towards Halogens or Formation of Halides

Oxygen forms halides only with fluorine  $(OF_2 \text{ or } F_2O\text{-}oxygen \text{ difluoride})$  and its compounds with rest of the halogens are called **oxides** (not halides) as its electronegativity is more than any other halogen. S and other chalcogens form a number of halides.

The general preparation routes for chalcogen halides involve the direct reaction of chalcogens with respective halogen, i.e.

$$\frac{1}{8} \operatorname{S}_8(s) + 3\operatorname{F}_2(g) \longrightarrow \operatorname{SF}_6(g)$$
  
Te (s) + 2Cl<sub>2</sub>(g)  $\longrightarrow \operatorname{TeCl}_4(s)$ 

Direct fluorination of elemental sulphur yields mainly  $SF_6$  along with traces of  $SF_4 \cdot SF_4$  is also prepared by the fluorination of  $SCl_2$  with NaF in acetonitrile at 350 K as,


$$3\mathrm{SCl}_2 + 4\mathrm{NaF} \xrightarrow{\mathrm{MeCOCN}, 350 \text{ K}} S_2\mathrm{Cl}_2 + \mathrm{SF}_4 + 4\mathrm{NaCl}$$

All the halides of these elements can be tabulated as,

|          | Halic                                                                                                   | les of Oxygen                                                                                                                               | Family                             |                                                                 |
|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|
| Elements | $\mathbf{F}$                                                                                            | Cl                                                                                                                                          | Br                                 | Ι                                                               |
| 0        | $OF_2$ , $F_2O_2$                                                                                       | $\begin{array}{c} \mathrm{Cl}_2\mathrm{O}_6,\mathrm{Cl}_2\mathrm{O}_7,\\ \mathrm{Cl}_2\mathrm{O},\mathrm{ClO}_2\\ \mathrm{etc} \end{array}$ |                                    | $\begin{matrix} I_{2}O, I_{2}O_{4}, \\ I_{2}O_{5} \end{matrix}$ |
| S        | $\substack{\mathbf{S}_2\mathbf{F}_2,\mathbf{SF}_4,\\\mathbf{SF}_6,\mathbf{S}_2\mathbf{F}_{10}}$         | $\begin{array}{c} \mathbf{S_2Cl_2,  SCl_2,}\\ \mathbf{SCl_4} \end{array}$                                                                   | $\mathbf{S}_{2}\mathbf{Br}_{2}$    |                                                                 |
| Se       | $\begin{array}{c} \mathrm{SeF}_2,\mathrm{SeF}_4\\ \mathrm{SeF}_6 \end{array}$                           | $\mathrm{Se}_{2}\mathrm{Cl}_{2},\mathrm{SeCl}_{4}$                                                                                          | $Se_2Br_2$ , $SeBr_4$              |                                                                 |
| Те       | $\begin{array}{l} \mathrm{TeF}_4,\mathrm{Te}_2\mathrm{F}_{10}\\ \mathrm{,}\ \mathrm{TeF}_6 \end{array}$ | ${\rm TeCl}_2,{\rm TeCl}_4$                                                                                                                 | ${\rm TeBr}_2,{\rm TeBr}_4$        | $\mathrm{TeI}_4$                                                |
| Ро       |                                                                                                         | $\operatorname{PoCl}_2, \operatorname{PoCl}_4$                                                                                              | $\mathrm{PoBr}_2, \mathrm{PoBr}_4$ | $\mathrm{PoI}_4$                                                |

Some important facts related to halides of 16 group elements are as follows

- The stability of halides decreases in the order
   F > Cl > Br > I. The highest oxidation state is found only with fluorides.
- $SF_6$  is an inert non-toxic gas at room temperature. It is inert due to sterically protected atom. In contrast, less sterically hindered  $SeF_6$  and  $SF_4$  undergo hydrolysis readily.



- Compared to sulphur halides, the halides of Se and especially Te adopt oligomeric or polymeric structures. In +4 oxidation state, SeCl<sub>4</sub>, SeBr<sub>4</sub>, TeCl<sub>4</sub>, TeBr<sub>4</sub> and TeI<sub>4</sub> exist as tetramer while, TeF<sub>4</sub> has polymeric structure.
- All hexafluorides have a high degree of covalency and low boiling points.
- The tetrahalides act as Lewis bases (electron donor) due to the presence of lone pair and also as Lewis acids (electron acceptors) due to the ability to extend their coordination number.
- All the member of this group form dihalides. They show  $sp^3$  hybridisation with bent structure.

• Known monohalides are dimer in nature which disproportionate.

e.g. 
$$2\operatorname{Se2}^{+1}\operatorname{Cl}_2 \longrightarrow \operatorname{SeCl}_4 + \operatorname{Se}^0$$

#### 4. Oxyacids

Among the group, only **oxy acids** of S, Se and Te are known. S forms many **oxy acids** while Se and Te forms two oxy acids each.

Some of these oxyacids are given in the following table below.

Oxyacids of S, Se and Te

| S                                                 | Se                         | Те                                                     |
|---------------------------------------------------|----------------------------|--------------------------------------------------------|
| $H_2SO_3$ (sulphurous acids)                      | $H_2SeO_3$ (selenous acid) | H <sub>2</sub> TeO <sub>3</sub><br>(tellurous<br>acid) |
| ${ m H_2SO_4}$ (sulphuric acid or oil of vitriol) | $H_2SeO_4$ (selenic acid)  | H <sub>6</sub> TeO <sub>6</sub><br>(telluric<br>acid)  |

H<sub>2</sub>SO<sub>5</sub> (peroxomono

sulphuric acid or Caro's acid) H<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (peroxodisulphuric

acid or Marshall's acid)

#### Anomalous Behaviour of Oxygen

Owing to its small size, high charge density and non-availability to *d*-orbitals, oxygen differs from rest of the members in following respects.

- Oxygen is a diatomic gas while all other members are solid.
- Most of the compounds of oxygen are ionic and polar covalent due to its high electronegativity.
- Maximum covalency that can be exhibited by oxygen in its compounds is two while rest of the members can show a maximum covalency is six.
- Oxygen forms  $p\pi$ - $p\pi$  multiple bond with elements of similar size while, S form  $d\pi$ - $p\pi$  bonds.
- Only the hydride of oxygen, i.e.  $H_2O$  is non-poisonous and is a liquid while, the hydrides of other members are poisonous gases.
- Oxygen is paramagnetic while, rest are not.
- Molecule of oxygen is diatomic  $(O_2)$  while the molecules of the other elements are more complex, e.g. sulphur  $(S_8)$  and selenium have octa-atomic molecules with puckered ring structure.
- Oxygen show oxidation state of 2 while other member show additional oxidation states of +4 and +6 due to the presence of vacant *d*-orbital

•  $H_2O$  shows hydrogen bonding due to the presence of electronegative oxygen atom. Other hydride does not show hydrogen bonding.

#### Ozone $(O_3)$

It is formed in the upper layer of atmosphere by the action of UV rays from sun on oxygen. It prevents the UV rays from entering the earth's atmosphere. CFCs, common refrigerants deplete the ozone layer.

#### **Method of Preparation**

It is prepared in ozoniser by subjecting dry and cold dioxygen to the action of silent electric discharge.

$$3O_2(g) \xrightarrow{\text{Silent electric discharge}} 2O_3(g)$$

#### **Physical Properties**

- It is a pale blue gas with a characteristic pungent odour.
- It condenses to a deep blue liquid (b.p. 161.2 K) and to a violet black solid (m.p. 80.6 K).
- It is diamagnetic in nature. It acts as a powerful oxidising agent due to liberation of  $O_2$ . The colour of  $O_3$  is due to intense absorption of red light.

#### **Chemical Properties**

Chemical properties of O<sub>3</sub> involves

- It is thermodynamically unstable and decomposes to O<sub>2</sub>.  $2O_3 \longrightarrow 3O_2; \qquad \Delta G = -163 \text{ kJ mol}^{-1}$
- It is an extremely powerful oxidising agent.

$$O_3 + 2H^+ + 2e^- \rightleftharpoons O_2 + H_2O$$
$$O_3 + H_2O + 2e^- \rightleftharpoons O_2 + 2OH$$

It oxidises as,

- (i)  $3PbS + 4O_3 \longrightarrow 3PbSO_4$
- (ii)  $6NO_2 + O_3 \longrightarrow 3N_2O_5$
- (iii)  $S + H_2O + O_3 \longrightarrow H_2SO_4$
- (iv)  $2\text{KOH} + 5\text{O}_3 \longrightarrow 2\text{KO}_3 + 5\text{O}_2 + \text{H}_2\text{O}$ (Potassium ozonide  $\text{KO}_3$  is an orange coloured solid and contains the paramagentic  $\text{O}_3^-$  ion)

(v) 
$$O_3 + 2KI + H_2O \longrightarrow I_2 + 2KOH + O_2$$

The amount of  $O_3$  in a gas mixture can be determined by passing the gas into a KI solution (at a constant pH 9.2 using borate buffer). By calculating iodine that is liberated is titrated with sodium thiosulphate solution.

$$O_3 + 2I^- + H_2O \longrightarrow I_2 + 2OH^- + O_2\uparrow$$

$$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$$

(vi)  $3SnCl_2 + 6HCl + O_3 \longrightarrow 3SnCl_4 + 3H_2O$ 

(vii)  $2[Fe(CN)_6]^{4-} + H_2O + O_3 \longrightarrow 2[Fe(CN)_6]^{3-} + O_2 \uparrow + 2OH^-$ 

-  $\mathrm{O}_3$  can also be decomposed catalytically and change in volume measured

$$\begin{array}{ccc} 2\mathrm{O}_3 & \longrightarrow & 3\mathrm{O}_2 \\ (2 \text{ volume}) & & (3 \text{ volume}) \end{array}$$

•  $O_3$  also adds to unsaturated organic compounds at room temperature forming ozonides which can be cleaved as aldehydes and ketones in solution.

$$CH_2 = CH_2 + O_3 \longrightarrow | \begin{matrix} H_2CH_2 & CH_2 \\ | & | \\ O \longrightarrow O \end{matrix} 2HCHO$$

#### Structure

Structure of  $O_3$  is best described as a resonance hybrid of following canonical forms

$$0 \xrightarrow{0} 0 \longleftrightarrow 0 \xrightarrow{0} 0$$

Both the O—O bond here are of equal length, i.e. 128 pm.

#### Uses

Some important uses of ozone are as follows

- It is used as a disinfectant.
- It is used to purify drinking water, since it can destroy bacteria and viruses.
- It is better than  $Cl_2$  since it avoids the unpleasant smell and taste of  $Cl_2$  and any excess  $O_3$  soon decomposes to  $O_2$ .
- It also absorbs UV light. This is particularly important since, there is a layer of  $O_3$  in the upper atmosphere which absorbs harmful UV radiation from the sun, thus, protecting people on the earth. The use of chlorofluorocarbons (CFC<sub>5</sub>) in aerosols and refrigerators, and their subsequent escape into the atmosphere, is blamed for making **holes in the ozone layer** over the Antarctic and Arctic. It is feared that this will allow an excessive amount of UV light to reach the earth. This UV light will cause melanoma (skin cancer) in humans. Oxides of nitrogen (from car exhausts) and the halogens can also damage the  $O_3$  layer.
- Ozone destroying reactions are as follows (a) Based on oxides of nitrogen.

$$\begin{split} & \mathrm{NO} + \mathrm{O}_3 \longrightarrow \mathrm{NO}_2 + \mathrm{O}_2 \\ & \mathrm{O}_3 + h\nu \longrightarrow \mathrm{O}_2 + [\mathrm{O}] \\ & \mathrm{NO}_2 + \mathrm{O} \longrightarrow \mathrm{NO} + \mathrm{O}_2 \end{split}$$
 Net reaction ; 2O<sub>3</sub> + hv  $\longrightarrow$  3O<sub>2</sub>

(b) Based on reactive chlorine species from CFC.

$$Cl + O_3 \longrightarrow ClO + O_2$$
$$O_3 + hv \longrightarrow O + O_2 \uparrow$$
$$ClO + O \longrightarrow Cl + O_2 \uparrow$$
Net reaction : 2O<sub>3</sub> + hy  $\longrightarrow$  3O<sub>2</sub>

↑

# Sulphur

It is found in free as well as in combined state. In combined state, it occurs as sulphides and sulphates in the form of galena (PbS), iron pyrites (FeS<sub>2</sub>), gypsum (CaSO<sub>4</sub>  $\cdot$  2H<sub>2</sub>O) barytes (BaSO<sub>4</sub>) etc.

#### Allotropes of sulphur

Sulphur exists in several allotropic forms. The properties of these forms are as follows

- 1. Rhombic or octahedral or  $\alpha$ -sulphur is the most common form of sulphur.
- **Preparation** It is prepared when a solution in  $CS_2$  is evaporated in a china dish.
- **Properties** It is stable at temperatures below 95.6°C. Its specific gravity is 2.06. It melts at 114°C. It is soluble in carbon disulphide.
- **Structure** Its crystal structure contains cyclic  $S_8$  rings, packed in a manner which leads to the formation of rhombic crystals.
- 2. Monoclinic or prismatic or  $\beta$ -sulphur is stable above 95.6°C.
- **Preparation** It is prepared by melting rhombic sulphur in a dish and allowing it to cool until a crust is formed at the surface. On removing the crust, small needle-like crystals of monoclinic sulphur become visible.
- **Properties** Its specific gravity is 1.96. It is dull yellow and soluble in carbon disulphide.

Rhombic sulphur  $\frac{> 369 \text{ K}}{< 369 \text{ K}}$  Monoclinic sulphur

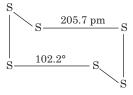
- Structure Like  $\alpha$ -sulphur, its crystal structure also contains cyclic S<sub>8</sub> rings but the mode of packing is different than that in  $\alpha$ -sulphur. The packing in this case is such that it leads to the formation of monoclinic crystals.
- 3. γ-sulphur is a tough elastic substance. It is also known as plastic sulphur.
- **Preparation** It is best obtained by decomposing ethylene xanthate of copper (I) in pyridine or by chilling hot solution of sulphur in carbon disulphide.
- **Properties** Its specific gravity is 2.18.  $\gamma$ -sulphur slowly changes into  $\alpha$  and  $\beta$ -forms of sulphur.

- Structure Its crystal structure also consists of cyclic  $S_8$  rings which are packed in lattice in a more compact manner than in the crystals of  $\alpha$  or  $\beta$ -sulphur.
- 4. Colloidal or  $\delta$ -sulphur Preparation It is obtained, when hydrogen sulphide is passed through an oxidising solution such as nitric acid, potassium permanganate, etc.

$$\begin{array}{c} 2\mathrm{HNO}_3 + \mathrm{H}_2\mathrm{S} \longrightarrow \underset{\substack{\mathrm{Colloidal}\\ \mathrm{sulphur}}}{\mathrm{S}} + 2\mathrm{NO}_2 + 2\mathrm{H}_2\mathrm{O} \end{array}$$

It is also obtained by passing hydrogen sulphide through water containing dissolved sulphur dioxide.

$$2H_2S + \underset{\substack{Dissolved \\ form}}{SO_2} \longrightarrow 2H_2O + 3S$$


#### 5. Plastic or χ-sulphur

- **Preparation** It is obtained, when molten sulphur heated to about 350°C is poured into cold water.
- **Properties** It is a soft rubber-like mass. It hardens on standing and changes gradually into rhombic sulphur.
  - (i) It is soluble in carbon disulphide and has no sharp melting point.
  - (ii) This form is a mixture of allotropes of sulphur containing cyclic  $S_8$  rings and long helical chains of a large number of S-atoms.
  - (iii) It can be converted into fibres when it is heated in an atmosphere of nitrogen at 300°C for a few minutes and then quenched in water. Their structure contains open polymeric helical chains of S-atoms.
  - (iv) It is also considered as **supercooled liquid**, i.e. the liquid which due to rapid cooling below its freezing point had no time to settle into a crystalline form.
- 6. **Cyclohexasulphur** Sulphur allotropes containing cyclic  $S_6$ ,  $S_7$ ,  $S_{10}$ ,  $S_{12}$ ,  $S_{18}$  and  $S_{20}$  rings are also found. These cyclosulphurs are quite unstable with the exception of  $S_{18}$  and  $S_{20}$ .

Cyclohexa<br/>sulphur (Engel's sulphur) containing cyclic  ${\rm S}_6$  rings and can be prepared by the following reaction as,

$$S_2Cl_2 + H_2S_4 \longrightarrow S_6 + 2HCl$$

The structure of cyclohexa sulphur consists of closely packed cyclic S<sub>6</sub> rings in chair form. As a result of this close packing the specific gravity (2.2 at  $-110^{\circ}$ C) of this form is higher than specific gravities of all the other forms. This form of sulphur is highly reactive. It structure is given below



#### **Properties and Uses**

- Sulphur is a yellow solid which is tasteless and odourless.
- It is freely soluble in  $CS_2$ , sparingly soluble in alcohol and ether and totally insoluble in water.
- Its vapours are poisonous for bacteria and fungi but not for other animals or human beings.

#### **Sulphuric Acid** (Oil of Vitriol, H<sub>2</sub>SO<sub>4</sub>)

In ancient days, it was called **oil of vitriol**, since it was prepared by distilling green vitriol (ferrous sulphate)  $FeSO_4 \cdot 7H_2O$ .

$$\begin{array}{c} 2[\text{FeSO}_4 \cdot 7\text{H}_2\text{O}] \xrightarrow{\text{Distillation}} \text{Fe}_2\text{O}_3 + \text{SO}_2 + 13\text{H}_2\text{O} + \text{H}_2\text{SO}_4 \\ \text{Green vitriol} & \text{Oil of} \\ & \text{vitriol} \end{array}$$

#### **Methods of Preparation**

Sulphur is burnt in air so that it is oxidised to  $SO_2$ .  $SO_2$ thus, obtained is oxidised to  $SO_3$  which, when dissolved in  $H_2O$ , gives  $H_2SO_4$ . The whole process can be summarised as :

$$S \xrightarrow{+O_2} SO_2 \xrightarrow{+\frac{1}{2}O_2} SO_3 \xrightarrow{+H_2O} H_2SO_4$$

#### Industrial Preparation of H<sub>2</sub>SO<sub>4</sub>

Sulphuric acid is manufactured these days by the following two processes are,

1. Lead chamber process In this process, a mixture containing SO<sub>2</sub>, air and NO is treated with steam (H<sub>2</sub>O). Here, NO acts as a catalyst.

$$2\mathrm{SO}_2 + \underset{(\mathrm{From \, air})}{\mathrm{O}_2} + \underset{(\mathrm{Steam})}{\mathrm{H}_2\mathrm{O}} + \underset{(\mathrm{Catalyst})}{\mathrm{[NO]}} \longrightarrow 2\mathrm{H}_2\mathrm{SO}_4 + \underset{(\mathrm{Catalyst})}{\mathrm{NO}_2}$$

The steps involved during this process are as follows **Step I Preparation of SO<sub>2</sub>** By heating sulphur or iron pyrites (FeS<sub>2</sub>) in the excess of air.

$$\begin{array}{ccc} \mathrm{S} + \mathrm{O}_2 & \longrightarrow & \mathrm{SO}_2 \uparrow \\ 4\mathrm{FeS}_2 + 11\mathrm{O}_2 & \longrightarrow & 2\mathrm{Fe}_2\mathrm{O}_3 + 8\mathrm{SO}_2 \uparrow \end{array}$$

Step II Oxidation of SO<sub>2</sub> to SO<sub>3</sub> by HNO<sub>3</sub> or by NO<sub>2</sub>

$$\begin{array}{rcl} 2\mathrm{HNO}_3 & +2\mathrm{SO}_2 & \longrightarrow & \mathrm{H}_2 + \mathrm{NO} \uparrow + \mathrm{NO}_2 \uparrow + 2\mathrm{SO}_3 \\ \mathrm{SO}_2 & + & \mathrm{NO}_2 & \longrightarrow & \mathrm{SO}_3 + \mathrm{NO} \uparrow \end{array}$$

Step III Preparation of  $H_2SO_4$  from  $SO_3$  By allowing  $SO_3$  obtained in step (II) to react with steam (H<sub>2</sub>O).

$$O_3 + H_2O \text{ (steam)} \longrightarrow H_2SO_4$$

2. **Contact process** It is the current process of producing sulphuric acid. This process involves the following steps

**Step I Preparation of SO**<sub>2</sub> By burning sulphur or iron pyrites (FeS<sub>2</sub>) in the excess of air.

$$\begin{array}{c} \mathrm{S} + \mathrm{O}_2 \stackrel{\Delta}{\longrightarrow} \mathrm{SO}_2 \uparrow \\ 4\mathrm{FeS}_2 + 11\mathrm{O}_2 \stackrel{\Delta}{\longrightarrow} 2\mathrm{Fe}_2\mathrm{O}_3 + 8\mathrm{SO}_2 \uparrow \end{array}$$

Step II Oxidation of SO<sub>2</sub> to SO<sub>3</sub> By the atmospheric O<sub>2</sub> in presence of a catalyst which may be **Pt-asbestos**,  $V_2O_5$  or a mixture of ferric and cupric oxide.

$$2\mathrm{SO}_2 + \mathrm{O}_2 \stackrel{\mathrm{V}_2\mathrm{O}_5}{\longleftarrow} 2\mathrm{SO}_3; \Delta H = -196.6 \text{ kJ}$$

The gases (i.e.  $SO_2$  and  $O_2$ ) must be purified before allowing them to combine to form  $SO_3$ . If they are not purified, the impurities will poison the catalyst used in the reaction. These days  $V_2O_5$  is used as catalyst, as it is cheaper and not poisoned by impurities.

The oxidation of  $SO_2$  to  $SO_3$  by atmospheric  $O_2$  as shown at step (II) is a reversible and exothermic process. According to Le Chatelier's principle, the favourable conditions for the maximum yield of  $SO_3$  are

- (i) **Low temperature,** since the forward reaction is exothermic, but a minimum temperature of 450°C, in needed called as optimum temperature and a suitable catalyst, is needed to get the maximum yield of  $SO_3$ .
- (ii) **Optimum pressure** favour the forward reaction since the volume of the gaseous product (i.e.  $SO_3$ ) is less than that of the gaseous reactants (i.e.  $SO_2$  and  $O_2$ ). But a very high pressure is likely to cause the corrosion of the vessel in which oxidation is carried out. Thus, a optimum pressure of 2-3 atmospheres is sufficient for oxidation.
- (iii) Excess of atmospheric  $O_2$ -Maximum yield of  $SO_3$  is obtained when  $SO_2$  and atmospheric  $O_2$  are taken in 2:3 ratio.

Step III Dissolution of SO<sub>3</sub> in 98%  $H_2SO_4$ , to get oleum,  $H_3S_2O_7$  (fuming sulphuric acid).

$$SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$$

- Fuming sulphuric acid is that acid which contains dissolved  $SO_3$  in it.
- It may be noted that SO<sub>3</sub> cannot be dissolved in water because it produces a dense fog which does not easily condense.

Step IV Dilution of oleum by water to get the  $\rm H_2SO_4$  of any desired concentration.

$$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$$

#### **Physical Properties**

(i) Pure  $H_2SO_4$  is a colourless, viscous, heavy and syrupy oily liquid of density 1.84 (at 15°C) which does not fume.

High boiling point and high viscosity of  $\rm H_2SO_4$  is due to the fact that  $\rm H_2SO_4$  molecules are associated together by H-bonding as shown below

$$\begin{array}{c} \overset{\delta_{+}}{\longrightarrow} & \overset{\delta_{-}}{\longrightarrow} \overset{\delta_{+}}{\longrightarrow} & \overset{\delta_{-}}{\longrightarrow} \overset{\delta_{+}}{\longrightarrow} & \overset{\delta_{-}}{\longrightarrow} & \overset{\delta_{+}}{\longrightarrow} & \overset{\delta_{-}}{\longrightarrow} & \overset{\delta_{-}}{\longrightarrow}$$

(ii) It is highly soluble in water. When water is added to the acid, a large amount of heat is produced and the temperature rises as high as 120°C. The heat produced is so large that the acid spirit out of the container. Therefore, *if the acid is to be diluted, the acid should* be added to water slowly with constant stirring and *not water to the acid.* The production of heat is due to the formation of hydrates like  $H_2SO_4$ · $H_2O$  (m.p. = 8.5°C) and  $H_2SO_4 \cdot 2H_2O$  (m.p. = 38°C).

$$\begin{array}{c} HO \\ HO \\ HO \end{array} \xrightarrow{O} + 2H_2O \xrightarrow{HO} \\ HO \\ HO \\ HO \\ \xrightarrow{O} - - H - O - H \\ O - - H - O - H \\ Dihydrate, H_2SO_4 \cdot 2H_2O \end{array}$$

(iii) It is a good conductor of heat and electricity.

#### **Chemical Properties**

 $\mathrm{H}_2\!\mathrm{SO}_4$  exhibits the following chemical reactions are

I. (i)  $H_2SO_4$ , when heated undergoes dissociation to give steam ( $H_2O$ ) and  $SO_3$  as,

$$H_2SO_4 \rightleftharpoons^{\Delta} H_2O \text{ (steam)} + SO_3$$

The dissociation is almost complete at 444°C. (ii) When the acid vapours are passed through a

strongly heated Pt or quartz tube, it gets decomposed into SO<sub>2</sub>, steam (H<sub>2</sub>O) and O<sub>2</sub>.

$$2H_2SO_4 \xrightarrow{\substack{\text{Heated Pt or} \\ \text{quartz tube}}} 2SO_2 + H_2O \text{ (steam)} + O_2$$

II. The aqueous solution of the acid behaves as a strong dibasic acid, since it ionises in two stages and gives two H<sup>+</sup> ions.

$$H_2SO_4 \iff H^+ + HSO_4^-$$
 (bisulphate ion)

$$HSO_4^- \rightleftharpoons H^+ + SO_4^{2-}$$
 (sulphate ion)

Thus,  $H_2SO_4$  forms two types of salts which are called **bisulphates** (e.g. NaHSO<sub>4</sub>) and sulphates (e.g.

Na<sub>2</sub>SO<sub>4</sub>). The acidic nature of H<sub>2</sub>SO<sub>4</sub> is confirmed by the following reactions or properties, shown by H<sub>2</sub>SO<sub>4</sub> (i) H<sub>2</sub>SO<sub>4</sub> is sour in taste and turns blue litmus red.

(ii) It neutralises alkalies and forms bisulphates (HSO<sub>4</sub><sup>-</sup>) and sulphates (SO<sub>4</sub><sup>2-</sup>). NaOH + H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  NaHSO<sub>4</sub> + H<sub>2</sub>O  $\uparrow$ 

2NaOH +  $H_2$ SO<sub>4</sub>  $\longrightarrow$  Na<sub>2</sub>SO<sub>4</sub> +  $2H_2$ O  $\uparrow$ 

(iii) It decomposes carbonates and bicarbonates into 
$$CO_2$$
  
Na<sub>2</sub>CO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  Na<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O + CO<sub>2</sub>  $\uparrow$   
2NaHCO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  Na<sub>2</sub>SO<sub>4</sub> + 2H<sub>2</sub>O + 2CO<sub>2</sub>  $\uparrow$ 

(iv) Dilute  $H_2SO_4$  usually reacts with all metals (except Pb) such as Al, Sn, Mn, Zn, Fe, Mg etc., evolve  $H_2$  gas.

$$M + H_2 SO_4 \longrightarrow M SO_4 + H_2 \uparrow$$

(M = Zn, Fe, Mg etc.)

Less reactive metals like Cu, Ag, Hg, Pb etc, are not attacked by dil  $H_2SO_4$ . However, these metals react with hot conc.  $H_2SO_4$  (oxidising properties).

III.  $H_2SO_4$  is a strong acid and it decomposes the salts of more volatile acids (e.g. chlorides, nitrates, sulphides, sulphites, carbonates etc.) to form their sulphate salt and more volatile acid.

Some examples are as follows

$$\begin{array}{cccc} 2\mathrm{NaCl} + \mathrm{H_2SO_4} & \longrightarrow & \mathrm{Na_2SO_4} + 2\mathrm{HCl} \\ 2\mathrm{KNO_3} + \mathrm{H_2SO_4} & \longrightarrow & \mathrm{K_2SO_4} + 2\mathrm{HNO_3} \\ \mathrm{FeS} + \mathrm{H_2SO_4} & \longrightarrow & \mathrm{FeSO_4} + \mathrm{H_2S} \\ \mathrm{Ca_3(PO_4)_2} + 3\mathrm{H_2SO_4} & \longrightarrow & 3\mathrm{CaSO_4} + 2\mathrm{H_3PO_4} \\ \mathrm{CaF_2} + \mathrm{H_2SO_4} & \longrightarrow & \mathrm{CaSO_4} + 2\mathrm{HF} \\ 2\mathrm{NaNO_2} + \mathrm{H_2SO_4} & \longrightarrow & \mathrm{Na_2SO_4} + 2\mathrm{HNO_2} \\ & & \downarrow \\ \mathrm{NO} + \mathrm{NO_2} + \mathrm{H_2O_4} & & \downarrow \end{array}$$

IV. Hot concentrated  $H_2SO_4$  acts as a **powerful** oxidising agent, since it can lose nascent oxygen quite readily. When  $H_2SO_4$  oxidises any of the substance, it itself reduced to  $SO_2$ .

$$\begin{array}{ccc} H_2SO_4 & \longrightarrow & H_2O + SO_2 \uparrow + [O] \\ (Hot and \\ concentrated) \end{array}$$

Occasionally,  $H_2SO_4$  is also reduced to sulphur, sulphide or  $H_2S$ .

$$SO_4^{2-} + 8H^+ + 6e^- \longrightarrow S + 4H_2O$$
  

$$SO_4^{2-} + 8H^+ + 8e^- \longrightarrow S^{2-} + 4H_2O$$
  

$$SO_4^{2-} + 10H^+ + 8e^- \longrightarrow H_2S + 4H_2O$$

(i)  $H_2SO_4$  oxidises non-metals like carbon and sulphur to their corresponding oxides *viz.*,  $CO_2$  and  $SO_2$ .

$$2\mathrm{H}_{2}\!\mathrm{SO}_{4} + \mathrm{C} \longrightarrow 2\mathrm{H}_{2}\!\mathrm{O} + 2\mathrm{SO}_{2}\!\uparrow + \mathrm{CO}_{2}\!\uparrow$$

$$2H_2SO_4 + S \longrightarrow 2H_2O + 3SO_2\uparrow$$

It oxidises phosphorus to  $\mathrm{H_{3}PO_{4}},$ 

$$2P + 5H_2SO_4 \longrightarrow 2H_3PO_4 + 5SO_2^{\uparrow}$$

(ii) Metals like Cu, Ag, Hg, Pb etc., react with hot conc. H<sub>2</sub>SO<sub>4</sub> and are oxidised to their oxides which get convert into sulphate. Here, H<sub>2</sub>SO<sub>4</sub> is reduced to SO<sub>2</sub>.

e.g. 
$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$$

Some other examples are given below

- $\begin{array}{l} 2\mathrm{Ag} + 2\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + 2\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2^{\uparrow} \\ \mathrm{Hg} + 2\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Hg}\mathrm{SO}_4 + \mathrm{SO}_2^{\uparrow} + 2\mathrm{H}_2\mathrm{O} \\ \mathrm{Pb} + 2\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Pb}\mathrm{SO}_4 + 2\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2^{\uparrow} \end{array}$
- Dil.  $H_2SO_4$  reacts with commercial Zn, evolving  $H_2$ . Hot and conc  $H_2SO_4$  attacks Zn, giving off  $SO_2$ .
- $Zn + H_2SO_4 \longrightarrow ZnSO_4 + SO_2\uparrow + H_2O$ Moderately conc acid (20%) when heated with Zn metal gives  $H_2S$  and precipitates a little sulphur.

$$\begin{array}{rcl} 4\mathrm{Zn}+5\mathrm{H}_{2}\mathrm{SO}_{4} & \longrightarrow & 4\mathrm{Zn}\mathrm{SO}_{4}+\mathrm{H}_{2}\mathrm{S}+4\mathrm{H}_{2}\mathrm{O} \\ 3\mathrm{Zn}+4\mathrm{H}_{2}\mathrm{SO}_{4} & \longrightarrow & 3\mathrm{Zn}\mathrm{SO}_{4}+\mathrm{S}+4\mathrm{H}_{2}\mathrm{O} \end{array}$$

(iii) H<sub>2</sub>SO<sub>4</sub> cannot oxidise HF (or CaF<sub>2</sub>) and HCl
(or NaCl, KCl etc.) but it can oxidise HBr (or NaBr, KBr) and HI (or NaI, KI) to Br<sub>2</sub> and I<sub>2</sub>
respectively. When H<sub>2</sub>SO<sub>4</sub> oxidises HBr (or NaBr or KBr), itself it is reduced to SO<sub>2</sub>.
However, when it oxidises HI (or NaI or KI), it is reduced to SO<sub>2</sub> or S or H<sub>2</sub>S depending on the amount of HI used in the reaction.

$$\begin{array}{rcl} \mathrm{H}_{2}\mathrm{SO}_{4} + 2\mathrm{HBr} &\longrightarrow & \mathrm{SO}_{2} \uparrow + 2\mathrm{H}_{2}\mathrm{O} + \mathrm{Br}_{2}\\ \mathrm{Similarly}, \mathrm{H}_{2}\mathrm{SO}_{4} + 2\mathrm{HI} &\longrightarrow & \mathrm{SO}_{2} \uparrow + 2\mathrm{H}_{2}\mathrm{O} + \mathrm{I}_{2}\\ \mathrm{H}_{2}\mathrm{SO}_{4} + 6\mathrm{HI} &\longrightarrow & \mathrm{S} + 4\mathrm{H}_{2}\mathrm{O} + 3\mathrm{I}_{2}\\ \mathrm{H}_{2}\mathrm{SO}_{4} + 8\mathrm{HI} &\longrightarrow & \mathrm{H}_{2}\mathrm{S} + 4\mathrm{H}_{2}\mathrm{O} + 4\mathrm{I}_{2}\end{array}$$

(iv) In presence of catalyst (Hg), naphthalene ( $C_{10}H_8$ ) is oxidised to phthalic acid ( $C_8H_6O_4$ ).

$$9\mathrm{H}_{2}\mathrm{SO}_{4} + \mathrm{C}_{10}\mathrm{H}_{8} \xrightarrow{\mathrm{Hg\,(catalyst)}} 10\mathrm{H}_{2}\mathrm{O} + 9\mathrm{SO}_{2}\uparrow + \mathrm{C}_{8}\mathrm{H}_{6}\mathrm{O}_{4} \\ + 2\mathrm{CO}_{2}\uparrow$$

(v)  $H_2SO_4$  oxidises  $H_2S$  to S $H_2SO_4 + H_2S \longrightarrow 2H_2O + SO_2\uparrow + S$ 

(vi) 
$$H_2SO_4$$
 oxidises  $H_2(H = 0)$  to  $H_2O(H = +1)$ .

$$H_2SO_4 + H_2 \longrightarrow 2H_2O + SO_2\uparrow$$

V. Conc. sulphuric acid is a strong dehydrating agent. It dissolves in water and forms sulphuric acid hydrates,  $H_2SO_4 \cdot nH_2O$ . Thus, it absorbs water from many organic compounds and dehydrates them. Absorption of water is highly exothermic.

# Some of its reaction in which it act as a strong dehydrating agent are as follows.

(i) Cane sugar, glucose and starch are dehydrated to carbon.

$$\begin{array}{c} \mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11} + \mathrm{H}_{2}\mathrm{SO}_{4} \longrightarrow \underbrace{12\mathrm{C}}_{\substack{\mathrm{Sugar}\\\mathrm{charcoal}}} + [\mathrm{H}_{2}\mathrm{SO}_{4} \cdot 11\mathrm{H}_{2}\mathrm{O}] \\ \end{array}$$

$$\begin{array}{ccc}(\mathrm{C_6H_{10}O_5})_n \ + \mathrm{H_2SO_4} \ \longrightarrow \ 6\mathrm{C} + [\mathrm{H_2SO_4} \cdot 5n\mathrm{H_2O}]\\ \mathrm{Starch}\end{array}$$

(ii) Oxalic acid,  $(COOH)_2$  is dehydrated to CO and  $CO_2$ and formic acid (HCOOH) gets dehydrated to CO only.

$$\begin{array}{rcl} (\text{COOH})_2 + \text{H}_2\text{SO}_4 & \longrightarrow & \text{CO} + \text{CO}_2 + [\text{H}_2\text{SO}_4 \cdot \text{H}_2\text{O}] \\ \\ \text{HCOOH} + \text{H}_2\text{SO}_4 & \longrightarrow & \text{CO} + [\text{H}_2\text{SO}_4 \cdot \text{H}_2\text{O}] \end{array}$$

(iii) Ethyl alcohol (C $_2\rm H_5\rm O\rm H)$  is dehydrated to diethyl ether.

$$2C_2H_5OH + H_2SO_4 \longrightarrow C_2H_5OC_2H_5 + [H_2SO_4 \cdot H_2O]$$
  
(iv) Dehydration of a mixture of chlorobenzene

 $(C_6H_5Cl)$  and trichloroacetaldehyde (CCl<sub>3</sub>CHO), also called **chloral**, gives DDT.

It is due to the dehydrating property of conc  $\rm H_2SO_4$  that cloth, wood, starch paper etc [which are largely cellulose  $(\rm C_6H_{10}O_5)_x$  materials] get charged in this acid, i.e. conc  $\rm H_2SO_4$  removes water from these substances and charge them. The dehydrating property of conc,  $\rm H_2SO_4$  is used

- (i) in drying the gases which do not react with the acid (e.g. Cl<sub>2</sub>, SO<sub>2</sub>, HCl etc.)
- (ii) in many reactions like esterification etc.
- (iii) in the manufacture of dyes and explosives.

 $\rm H_2SO_4$  has very corrosive action on skin because it acts as dehydrating agent and absorption of water is accompanied by the release of heat.

- VI. The molecule of  $H_2SO_4$  contains two OH groups. One or both these groups can be replaced by other groups or atoms by treating  $H_2SO_4$  with the appropriate compound. e.g.
  - (i) When conc.  $H_2SO_4$  is heated with  $C_6H_6$ , one OH group of  $H_2SO_4$  is replaced by phenyl group ( $C_6H_5$ ) and benzene sulphonic acid,  $C_6H_5$ (OH)SO<sub>2</sub> (also called benzene sulphuric acid) is obtained.

(ii) One or both the —OH groups of  $H_2SO_4$  can be replaced by Cl-atom when  $H_2SO_4$  is treated with  $PCl_5$ .

$$OH \qquad Cl \\ | \\ O = S = O + PCl_5 \longrightarrow O = S = O + POCl_3 + HCl \\OH \qquad OH \qquad OH \\Chlorosulphonic \\acid$$

$$O = S = O + 2PCl_5 \longrightarrow O = S = O + 2POCl_3 + HCl$$

$$OH$$

$$Cl$$

$$Sulphuryl$$

$$Cl$$

$$Sulphuryl$$

$$Cl$$

$$Sulphuryl$$

$$Cl$$

$$Sulphuryl$$

(iii) One Cl-atom can also be replaced by the action of  $\mathrm{POCl}_3$  on it by giving chlorosulphonic acid as formed

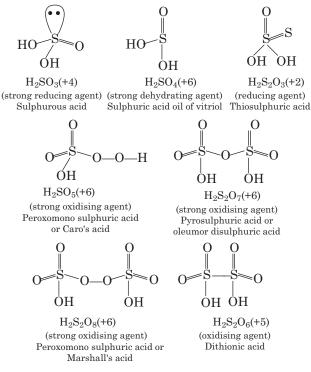
 $2O_2S(OH)_2 + POCl_3 \longrightarrow 2Cl \cdot SO_2 \cdot OH + HCl + HPO_3$ 

VII. On heating  $\rm KClO_3$  with conc.  $\rm H_2SO_4, ClO_2$  is evolved with explosion.

$$3\mathrm{KClO}_3 + 3\mathrm{H}_2\mathrm{SO}_4 \xrightarrow{\Delta} 3\mathrm{KHSO}_4 + \mathrm{HClO}_4 + 2\mathrm{ClO}_2 + \mathrm{H}_2\mathrm{O}$$

VIII.  $H_2SO_4$  when treated with  $P_2O_5$ , loses water which combines with  $P_2O_5$  and forms HPO<sub>2</sub>.

$$H_2SO_4 + P_2O_5 \longrightarrow SO_3 + 2HPO_3$$


#### Uses

Sulphuric acid is used

- as a laboratory reagent.
- for preparation of important acids such as HCl,  $\rm HNO_3$  ,  $\rm H_3PO_4.$
- for making of fertilizers.
- for sulphonation of organic compounds.
- · for making of lead storage batteries.
- in the purification of petroleum.

These are many oxoacids formed by the sulphur. Among the acids,  $H_2SO_3$  (sulphurous acid) and oil of vitriol, i.e.  $H_2SO_4$  are of commercial importance.

The structure of some of oxyacids of sulphur with their name and oxidation states are given below



# VIIA(17) Group Elements and their Compounds

This group consists of five elements namely **fluorine** (F), **chlorine** (Cl), **bromine** (Br), **iodine** (I) and **astatine** (At). These elements are also called **halogen** (means sea salts), i.e. their salts are abundantly present in sea water.

#### Occurrence

They do not occur free in nature but occur in combined state abundantly. Astatine is radioactive and occur in very infrequent way. These are mainly found as metal halides although iodine also occurs as iodate  $(IO_3^-)$ .

Chlorine is most abundant among halogen and its commercial source is NaCl (common salt).

#### Sources of Halogens

| Halogen  | Main sources                                                                                               |
|----------|------------------------------------------------------------------------------------------------------------|
| Fluorine | Fluorspar (CaF <sub>2</sub> ), Fluorapatite [Ca $_5$ (PO $_4$ ) $_3$ F], Cryolite (Na $_3$ AlF $_6$ ) etc. |
| Chlorine | Sea water, salt wells, salt beds (NaCl, KCl, ${\rm MgCl}_2,$ ${\rm CaCl}_2)$ etc.                          |
| Bromine  | Sea water, salt lakes (NaBr, KBr, $\mathrm{MgBr}_2)$ etc.                                                  |
| Iodine   | Brine wells, sea weeds (I^ ), chile salt petre (NaIO $_3$ present as impurity) etc.                        |

#### **General and Physical Properties**

Trends of general and physical properties exhibited by these elements are as follows

- (i) Electronic configuration The general electronic configuration of halogens is  $ns^2np^5$  (where, n = 2, 3, 4, ...). Due to the presence of 7 electrons in their valence shell, these elements have a high tendency to gain one electron and achieve nearest noble gas configuration.
- (ii) Atomic and Ionic radii Halogens have small atomic radii than the elements of group 16 due to high effective nuclear charge. On moving down the group, it increases as the number of shells increases by one.
- (iii) Physical state On moving down the group, the tendency to form condensed molecules increases. Thus, fluorine and chlorine are gases at ordinary temperature, bromine is a highly fuming liquid while iodine is a volatile solid.
- (iv) Melting and boiling points On moving down the group from F to At, there is an increase in melting and boiling points. This is because van der Waals' forces increase as the size increases.
- (v) Ionisation energy These all have high ionisation energy, i.e. have a little tendency to lose electrons. On moving down the group this tendency of ionisation energy decreases. Iodine because of the lowest IE, has some tendency to form I<sup>+</sup> ion as it forms compounds like ICl, ICN, etc, which in molten state conduct electricity showing the existence of I<sup>+</sup> cation.

- (vi) Electronegativity Halogens have the high values of electronegativities and it decreases on moving downward from F to I. Thus, fluorine has the maximum value of electronegativity. As a result of the decrease of electronegativity, the non-metallic character increases from F to I. Hence, somewhat metallic character is observed in iodine. e.g. In a few cases it forms a positive ion and has a metallic lustre.
- (vii) **Electron gain enthalpy** These elements have maximum electron gain enthalpies in their respective periods because they have only one electron less than noble gas configuration, i.e.  $ns^2np^6$ . On moving down the group the magnitude of electron gain enthalpy (i.e., electron affinity) usually decreases. But electron affinity of fluorine is unexpectedly lower than Cl. This is because of the smaller size of F. As a result of which the incoming electron does not feel much attraction but feels some repulsion. Chlorine has the highest electron affinity in the periodic table. Thus, the correct order will be Cl > F > Br > I.
- (viii) Molecular state Halogens exist as diatomic covalent molecules. In between their atoms weak van der Waals' forces exist. On account of which, the halogens are volatile in nature. With the increase in size, these forces increase and hence, change in physical state occurs from gas (F<sub>2</sub> and Cl<sub>2</sub>) to solid (I<sub>2</sub>).
- (ix) Oxidation state When a halogen atom combines with an element of lesser electronegativity, it shows -1 oxidation state. On the other hand, when it combines with an element having higher electronegativity, it exhibits +1 oxidation state. However, F being most electronegative atom which always shows -1 oxidation state. Other elements of this group also show +3, +5 and +7 oxidation states due to the presence of vacant *d*-orbitals in their valence shell.
- (x) Solubility Halogens, being non-polar molecules, do not dissolve to a considerable extent in a polar solvent like water. However, fluorine reacts with water readily and forms mixture of oxygen and ozone as,

$$2F_2 + 2H_2O \longrightarrow 4HF + O_2\uparrow$$

$$3F_2 + 3H_2O \longrightarrow 6HF + O_3$$

 $Cl_2$ ,  $Br_2$  and  $I_2$  are more soluble in non-polar solvents like  $CHCl_3$ , paraffins etc. In non-polar solvents, halogens exist as free molecules while in nucleophilic solvents like alcohols, liquid  $SO_2$  etc halogens produce brown solution due to the formation of complex.

 $I_2$  is more soluble in KI solution due to the formation of KI\_3 (  $I_3^-$  ion), which also increases its solubility in water.

(xi) Oxidising power Standard reduction potentials of halogens are positive and decrease on going down the group. Thus, halogens act as strong oxidising agents and their oxidising power decreases from fluorine to iodine. The strength of an oxidising agent depends on several energy terms as

$$E = \frac{1}{2} H_f + \frac{1}{2} H_{ev} + \frac{1}{2} H_d - EA - H_{hyd}$$

where,  $H_f$  = enthalpy of fusion

 $H_{\rm ev}$  = enthalpy of evaporation

 $H_{\rm diss}$  = enthalpy of dissociation

 $H_{\rm hyd}$  = enthalpy of hydration

EA = electron affinity

The value of E decreases from fluorine to iodine. Hence, fluorine is the **strongest oxidising agent**.

- (xii) **Nature of bonds** Halogens due to the presence of seven electrons in their valence shell, are highly reactive. They form ionic compounds with highly electropositive metals readily. However, with weakly electropositive metals and non-metals, they form covalent bonds.
- (xiii) Bond dissociation energy With the increase of size, the bond length increases from fluorine to iodine. Since, the bond length of fluorine is minimum, its bond dissociation energy should be highest. However, the bond dissociation energy of fluorine is less than Cl—Cl and Br—Br.

It is due to the high interelectronic repulsions between non-bonding electrons in the 2*p*-orbitals of fluorine. Consequently, F—F bond becomes weaker in comparison to Cl—Cl and Br—Br bonds.

(xiv) **Colour** All the halogens are coloured and as the atomic number increases, the colour get deepens. F Cl Br I

Light yellow Yellow green Reddish brown Deep violet The colour is due to absorption of energy from visible light by the halogen molecules for excitation of outer electrons to higher energy levels. Fluorine absorbs violet portion of the light and thus, appears yellow. Iodine absorbs yellow and green portions of the light and thus, appears violet.

Thus, it is clear that on moving down the group the colour changes. This is called **blue shift** or **bathchromic shift**.

The physical properties described above can be summarised as

**Physical Properties of Halogens** 

| Property                                         | Fluorine                                                 | Chlorine                          | Bromine                             | Iodine                          |
|--------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------------------------------------|---------------------------------|
| Atomic number                                    | 9                                                        | 17                                | 35                                  | 53                              |
| Electronic configuration                         | $\begin{matrix} [\mathrm{He}] \\ 2s^2 2p^5 \end{matrix}$ | $\frac{[\mathrm{Ne}]}{3s^2 3p^5}$ | $[{\rm Ar}] \\ 3d^{10}\!4s^2\!4p^5$ | $[{\rm Kr}] \\ 4d^{10}5s^25p^5$ |
| Atomic mass (u)                                  | 18.998                                                   | 35.453                            | 79.909                              | 126.904                         |
| Physical state                                   | Gas                                                      | Gas                               | Liquid                              | Solid                           |
| M.P. (°C)                                        | -218.6                                                   | -101.0                            | -7.2                                | 113.9                           |
| B.P. (°C)                                        | -188.1                                                   | -34.6                             | 59.5                                | 185.2                           |
| Density in liquid<br>state (g cm <sup>-3</sup> ) | 1.108                                                    | 1.1557                            | 2.948                               | 3.76<br>(in solid<br>state)     |

| Property                                     | Fluorine        | Chlorine                   | Bromine                | Iodine                     |
|----------------------------------------------|-----------------|----------------------------|------------------------|----------------------------|
| Colour of vapour                             | Pale<br>yellow  | Greenish<br>yellow         | Orange<br>red          | Violet                     |
| Colour of liquid                             | Clear<br>yellow | Amber<br>yellow            | Reddish<br>brown       | Shining<br>dark solid      |
| Atomic radius (Å)                            | 0.72            | 0.99                       | 1.14                   | 1.33                       |
| Ionic radius of $X^-$ ion (Å)                | 1.33            | 1.84                       | 1.96                   | 2.20                       |
| Atomic volume (cc)                           | 17.1            | 18.7                       | 23.5                   | 25.7                       |
| Electronegativity                            | 4.0             | 3.0                        | 2.8                    | 2.5                        |
| Electron affinity<br>(kJ mol <sup>-1</sup> ) | 332.6           | 348.6                      | 324.5                  | 295.5                      |
| Ionisation energy<br>(kJ mol <sup>-1</sup> ) | 1680.8          | 1255.5                     | 1142.8                 | 1008.3                     |
| Oxidation states                             | -1              | -1, +1, +3, +4, +5, +6, +7 | -1, +1, +3, +4, +5, +6 | -1, +1, +3, +4, +5, +6, +7 |
| Bond energy<br>(kJ mol <sup>-1</sup> )       | 158.8           | 242.6                      | 192.8                  | 151.1                      |
| Standard electrode<br>potential (volt)       | +2.8            | +1.36                      | +1.08                  | +0.54                      |

#### **Chemical Properties**

Halogens are most reactive non-metals and their reactivity decreases on moving down the group. The important factors that are responsible for the low reactivity of fluorine are

(i) the small size and

(ii) the highest electronegativity.

#### 1. Reaction with Water

Fluorine decomposes water very readily even at low temperaure and in dark forming mixture of  $O_2$  and  $O_3$ .  $Cl_2$  decomposes water in the presence of sunlight while bromine decomposes water very slowly in presence of sunlight. Iodine, however, does not decompose water.

#### 2. Reaction with Hydrogen or Formation of Halogen Acids

All the halogens react with hydrogen to form volatile covalent hydrides, of formula HX. Since, H-atom has less electronegativity than each of the halogens therefore the oxidation state of H in these compounds is +1 and that of halogen is -1. It is the positive oxidation state of H and negative oxidation state of halogens due to which these compounds are called **hydrogen halides** (H<sup>+</sup>X<sup>-</sup>). Since, these compounds ionise in aqueous solution to produce H<sup>+</sup> (or H<sub>3</sub>O<sup>+</sup>) these are also called **'halogen acids'**.

$$HX + H_2O \longrightarrow H_3O^+ + X^-$$

These compounds are also known by other names like **hydroacids** or **hydrohalic acid** etc. The reactivity of halogens towards hydrogen decreases from fluorine to

iodine. These are colourless, irritating gases at room temperature.

As we move down the group, *boiling point* increases with increase in size of halogen. However, boiling point of HF is abnormally high due to H-bonding.

Acidic character and reducing character of these hydrides increase on moving from F to I.

#### 3. Reaction with Metals and Non-metals

Halogens combine with metals and non-metals to form halides such as  $MgBr_2$ ,  $XeF_6$ ,  $PCl_3$ ,  $PCl_5$ ,  $SF_6$  etc. The ionic character of M—X bond decreases as the size of halogen atom increases.

$$M \longrightarrow F > M \longrightarrow Cl > M \longrightarrow Br > M \longrightarrow I$$

#### 4. Reaction with Oxygen

Halogens form binary compounds with oxygen but most of them are unstable. Fluorine forms only two binary compounds, i.e.  $OF_2$  and  $O_2F_2$  (called **oxygen fluorides**). Chlorine, bromine and iodine form oxides in which the oxidation state of halogen varies from +1 to +7.

e.g.  $Cl_2O(+1)$ ,  $ClO_2(+4)$ ,  $Cl_2O_6(+6)$ ,  $ClO_3(+6)$ ,  $Cl_2O_7(+7)$ ;  $Br_2O(+1)$ ,  $BoO_2(+4)$ ;  $I_2O_4(+4)$ ,  $I_2O_5(+5)$  etc.

#### **Anomalous Behaviour of Fluorine**

Fluorine, because of its small size, high charge density, non-availability of d-orbitals and low bond dissociation energy differs from the rest of the halogens in following ways

- Fluorine shows only -1 oxidation state due to its maximum electronegativity, whereas the other halogens can show negative as well as positive oxidation state, i.e. between -1 and +7.
- Maximum covalency of fluorine is one as there is no *d*-orbital in its valence shell. Other members can have maximum covalency of 7 because of vacant *d* orbitals.
- Fluorine because of its low bond dissociation energy is very reactive. However, in  $Cl_2$  and  $Br_2$ , *X*—*X* bond is stronger.
- HF has a high tendency to form H-bond, thus, it is a liquid (b.p. 19°C) while HCl, HBr and HI due to lack of such a tendency, are gases under ordinary conditions.
- Hydrofluoric acid being a dibasic acid  $(H_2F_2)$ , forms two series of salt such as NaHF<sub>2</sub> and Na<sub>2</sub>F<sub>2</sub> while HCl, HBr and HI are monobasic in nature.
- Mostly fluorides are ionic and contain  $F^-$  ion while other halides have frequently molecular lattices.
- Fluorine when combines with sulphur, forms  $\mathrm{SF}_6$  while no other halogen forms the hexabalide with sulphur.

- Fluorine does not form any **oxo acid** but other halogens form a number of oxyacids specially Cl.
- Fluorides are more stable than corresponding chlorine compounds.
- Fluorine does not form polyhalides like  $F_3^-$  but other halogens do so, e.g.  $I_3^-, Br_3^-$  etc.

### **Compounds of Group 17 Elements**

Being highly reactive, halogens form several compounds but we will study some of them which are important from exam point of view.

Some important compounds of group17 are given below

#### **Halogen Acids**

Now, we study their methods of preparation physical and chemical properties in detail.

#### **Methods of Preparation**

Halogen acids are prepared by the following methods are

- I. By the direct combination of  $H_2$  and
- $X_2$  (X = Cl, Br, I) under different conditions,
- (i) HCl is produced by burning  $Cl_2$  in the excess of  $H_2$  or by the action of  $H_2$  on  $Cl_2$  in presence of sunlight.

$$\begin{array}{c} \operatorname{Cl}_2 + \underset{(\operatorname{excess})}{\operatorname{H}_2} \xrightarrow{\operatorname{Burn}} & 2\operatorname{HCl} \\ \\ \operatorname{Cl}_2 + \underset{2}{\operatorname{H}_2} \xrightarrow{\operatorname{Sunlight}} & 2\operatorname{HCl} + \operatorname{heat} \end{array}$$

(ii) HBr can be prepared by passing a mixture of  $H_2$ and  $Br_2$  over a platinum spiral heated to redness by an electric current.

$$H_2 + Br_2 \xrightarrow{Heat} 2HBt$$

(iii) HI can be prepared in small quantities by passing  $H_2$  and  $I_2$  vapours over red hot fine platinum.

$$H_2 + I_2 \xrightarrow{\text{Heat} (450^{\circ}\text{C})} 2\text{HI}$$

- II. By heating an appropriate halide with conc.  $\rm H_2SO_4$  or conc.  $\rm H_3PO_4.$ 
  - (i) HF and HCl can be prepared by heating  $CaF_2$  and NaCl respectively with conc  $H_2SO_4$ .

$$CaF_{2} + H_{2}SO_{4} \xrightarrow{\Delta} CaSO_{4} + 2HF$$
$$2NaCl + H_{2}SO_{4} \xrightarrow{\Delta} Na_{2}SO_{4} + 2HCl$$

(ii) When NaBr (or KBr) and NaI (or KI) are heated with conc.  $H_2SO_4$ , HBr and HI are produced respectively.

$$\begin{split} & 2M \text{Br}(M = \text{Na}, \text{ K}) + \text{H}_2 \text{SO}_4 \xrightarrow{\Delta} \text{M}_2 \text{SO}_4 + 2\text{HBr} \\ & 2M \text{I}(M = \text{Na}, \text{ K}) + \text{H}_2 \text{SO}_4 \xrightarrow{\Delta} \text{M}_2 \text{SO}_4 + 2\text{HI} \end{split}$$

The HBr and HI are formed react with conc.  $\rm H_2SO_4$  and are oxidised to  $\rm Br_2$  and  $\rm I_2$  respectively.

 $\begin{array}{rcl} 2\mathrm{HBr} + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O} + \mathrm{Br}_2\\ 2\mathrm{HI} + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O} + \mathrm{I}_2\\ 6\mathrm{HI} + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{S} + 4\mathrm{H}_2\mathrm{O} + 3\mathrm{I}_2\\ 8\mathrm{HI} + \mathrm{H}_2\mathrm{SO}_4 & \longrightarrow & \mathrm{H}_2\mathrm{S} + 4\mathrm{H}_2\mathrm{O} + 4\mathrm{I}_2 \end{array}$ 

Now as, HBr and HI are not able to reduce conc  $H_3PO_4$ , these acids are obtained by heating NaBr and NaI respectively with conc.  $H_3PO_4$ .

$$3NaBr + H_3PO_4 \xrightarrow{\Delta} Na_3PO_4 + 3HBr$$

$$3NaI + H_3PO_4 \xrightarrow{\Delta} Na_3PO_4 + 3HI$$

#### III. By the action of water on a mixture of red

**phosphorus and Br**<sub>2</sub> or I<sub>2</sub> (for HBr and HI), e.g. HBr and HI can be prepared in the laboratory by slowly pouring a mixture of red phosphorus (1 part) and Br<sub>2</sub> or I<sub>2</sub> (20 parts) from a dropping funnel, fitted to a flask.

$$\begin{array}{ccc} 8\mathrm{H}_{2}\mathrm{O} + \underset{(\mathrm{Red})}{2}\mathrm{P} + 5\mathrm{Br}_{2} &\longrightarrow & 10\mathrm{HBr} + 2\mathrm{H}_{3}\mathrm{PO}_{4} \\ 8\mathrm{H}_{2}\mathrm{O} + \underset{(\mathrm{Red})}{2}\mathrm{P} + 5\mathrm{I}_{2} &\longrightarrow & 10\mathrm{HI} + 2\mathrm{H}_{3}\mathrm{PO}_{4} \end{array}$$

Methods of preparation of only HCl

• HCl can be prepared in the laboratory by heating NaCl with conc.  $H_2SO_4$ .

$$2$$
NaCl + H<sub>2</sub>SO<sub>4</sub>  $\xrightarrow{\Delta}$  Na<sub>2</sub>SO<sub>4</sub> + 2HCl

The gas HCl obtained as above cannot be dried over  $P_2O_5$  or quick lime (CaO), since HCl reacts with both of these substances.

$$\begin{array}{rcl} 2P_2O_5 + 3HCl \longrightarrow POCl_3 + 3HPO_3 \\ CaO + 2HCl \longrightarrow CaCl_2 + H_2O \end{array}$$

Pure HCl is obtained by the action of water on SiCl<sub>4</sub>.
 (hydrolysis SiCl<sub>4</sub>).

$$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$$

• Considerable quantities of HCl are obtained as a by-product in the manufacture of  $Na_2CO_3$  from NaCl by Le-Blanc process.

#### **Physical Properties**

(i) **Hydrofluoric acid** exists as a dimeric molecule,  $(H_2F_2)$  even in the gaseous state because of intermolecular H-bonding.

Due to its dimeric nature,  $H_2F_2$  gives two types of salts which contain  $HF_2^-$  and  $F_2^{2-}$  ions.

$$\begin{array}{l} 2\mathrm{HF} \rightleftharpoons \mathrm{HF}_2^- + \mathrm{H}^+ \\ \mathrm{HF}_2^- \rightleftharpoons \mathrm{F}_2^{2-} + \mathrm{H}^+ \\ \mathrm{HX} \rightleftharpoons \mathrm{H}^+ + X^- \qquad (X = \mathrm{Cl}, \ \mathrm{Br}, \ \mathrm{I}) \end{array}$$

- (ii) **Physical state** Anhydrous HF is a liquid at ordinary temperature and fumes strongly in air, while the remaining hydrogen halides, are colourless gas, with pungent smell and acidic taste.
- (iii) **Thermal stability** In HX molecule, as the size of the halogen atom increases from F to I, H—X bond length increases (i.e. H—F < H—Cl < HBr < HI) due to which bond strength decreases (H—F > HCl > HBr > HI). By successive decreases in the bond strength the thermal stability of HX decreases, i.e. in H—F > HCl > HBr > HI.

Maximum thermal stability of HF is the reason because of which it is not oxidised even by strong oxidising agents.

(iv) Boiling point As we move down the group from HF to HI, the magnitude of van der Waals' forces increases and hence, the boiling point of the hydrides should increase as,

#### $\mathrm{HF} < \mathrm{HCl} < \mathrm{HBr} < \mathrm{HI}$

But, this order is not correct. Actually boiling point first decreases from HF to HCl and then increases until we reach HI. The anomaly is due to the presence of H-bonding in HF. Thus, the actual order will be

#### HF > HI > HBr > HCl

(v) **Volatility** HF is the least volatile and HCl is the most volatile. The least volatility of HF molecule is due to much stronger H—F bond and association of HF molecules to form dimer,  $H_2F_2$ , through H-bonding.

The maximum volatility of HCl is due to its monomeric nature and less strength of H—Cl bond in HCl molecule.

(vi) Solubility All the hydrogen halides are highly soluble in water and give a constant boiling mixture, which is called azeotropic mixture. The azeotropic mixture of each acid contains a particular weight-percentage of the acid and boils at a fixed temperature. The dilute solution of the acid cannot be concentrated by boiling it beyond the weight-percentage of the acid.

For example dilute solution of HCl cannot be concentrated by boiling beyond 20.2%.

- (vii) **Combustible** All the halogen acids are neither combustible nor supporter of combustion.
- (viii) **Ionic character** H—X bond in gaseous state HX molecules is largely covalent and has very small amount of ionic character.

The covalent character of H - X bond is also confirmed by the fact that melting and boiling points of hydrogen halides are low and pure liquid halides are poor conductors of electricity. The ionic character of H - X bond in gaseous HX molecules is in the order

$$H - F > H - Cl > H - Br > H - I$$

The above order of the ionic character of H—X bond in gaseous HX molecules has been explained on the basis of

- electronegativity difference value,  $(\chi_X \chi_H)$ .
- dipole moment values of HX molecules.
- polarisation in between cations and anions (see chemical bonding).
- (ix) Acidic nature HX molecules in the gaseous state are essentially covalent and hence, are not able to ionise to yield proton  $(H^+)$  but in aqueous solution, they give hydrated proton,  $H^+(aq)$  and hence, act as Bronsted acids.

$$HX(g) + H_2O \longrightarrow H_3O^+ + X^-(aq)$$

The acidic strength (i.e. proton releasing power) of halogen acids in aqueous solution is in the order as,

 $\operatorname{HF}(aq) \leq \operatorname{HI}(aq) \leq \operatorname{HCl}(aq) \leq \operatorname{HBr}(aq)$ 

However, the relative order of the acidic strength of HX molecules, in methanol solvent, has been found as

• The important properties of halogen acids are summarised below in tabulated form.

#### **Properties of Halogen Acids**

| Property                                                                                                                                                                                                                      | HF                         | HCl                                         | HBr                      | HI                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|--------------------------|-----------------------------|
| Monomeric or dimeric                                                                                                                                                                                                          | Dimeric $(H_2F_2)$         | Monomeric (HCl)                             | Monomeric (HBr)          | Monomeric (HI)              |
| Physical state at 15°C                                                                                                                                                                                                        | Liquid                     | Gas                                         | Gas                      | Gas                         |
| H—X bond length (Å)                                                                                                                                                                                                           | 0.92                       | 1.27<br>— Increases —                       | 1.41                     | 1.61                        |
| Strength of H—X bond or thermal stability of HX molecule                                                                                                                                                                      | Maximum                    | High<br>—— Decreases ——                     | Not so high              | Very little                 |
| H—X bond dissociation energy or heat of dissociation $(kJ \text{ mol}^{-1})$                                                                                                                                                  | + 574.0                    | + 428.1<br>— Decreases —                    | + 362.5                  | + 294.6                     |
| Dissociation temperature (°C)                                                                                                                                                                                                 | <u>Does not dissociate</u> | 1500<br>— Decreases —                       | 800                      | 180                         |
| Melting point (°C)                                                                                                                                                                                                            | -83                        | -111                                        | -86                      | -50.8                       |
| Boiling point (°C)                                                                                                                                                                                                            | + 19.4 (Maximum)           | – 85 (Minimum)                              | -67                      | -35.0                       |
| Hydrogen bonding                                                                                                                                                                                                              | Maximum                    | Little                                      | Very little              | Very little                 |
| Solubility in water at 0°C (g/L)                                                                                                                                                                                              | 85.3                       | 42.0                                        | 49.0                     | 57.1                        |
| Dipole moment values when HX molecules are<br>assumed to be completely ionic [calculated values<br>C.m.)]                                                                                                                     | $1.47 \times 10^{-29}$     | $2.03 \times 10^{-29}$ Increases            | $2.25 \times 10^{-29}$   | $2.57 \times 10^{-29}$      |
| % of ionic character in the gaseous HX molecules<br>(a) as calculated from their moment values<br>(b) as calculated from Hanny-Smith's equation                                                                               | 43.5<br>40.14              | 16.8<br>19.5                                | 11.6<br>15.04            | 4.9<br>8.87                 |
| Heat evolved (kJ mol <sup>-1</sup> ) in the reaction,<br>$HX(g) + aq \longrightarrow HX(aq) \longrightarrow H^{+}(aq) + X^{-}(aq)$<br>or $HX(g) + H_2O \longrightarrow H_3O^{+} + X^{-}(aq)$ (called heat of<br>onisation)    | -9.0<br>Weakest acid       | – 60.8<br>Very strong acid<br>— Decreases — | – 64.6<br>Strongest acid | – 58.4<br>Strong acid       |
| Reducing property                                                                                                                                                                                                             | Not a reducing agent       | Mild reducing<br>agent                      | Strong<br>reducing agent | Strongest<br>reducing agent |
| Heat of formation (kJ mol <sup>-1</sup> )<br>$\frac{1}{2}X_2(s, l, g) + \frac{1}{2}H_2(g) \rightarrow HX(g)$                                                                                                                  | -271.1 (g)                 | — Increases —                               | -36.4 (g)                | +25.4 (g)                   |
| $2^{2} = 2 + 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 = 2 + 2 +$ |                            |                                             |                          |                             |
| Heat of dehydration (kJ mol <sup>-1</sup> )<br>$HX(aq) + heat \longrightarrow HX(g)$ ]                                                                                                                                        | +48.0                      | +18.0                                       | +21.0                    | +23.0                       |
| Heat of neutralisation with NaOH (kJ mol <sup>-1</sup> )                                                                                                                                                                      | + 68.2                     | +57.3                                       | +57.9                    | +57.6                       |
| Apparent degree of dissociation in 0.1 N solution at oom temperature                                                                                                                                                          | 0.08                       | 0.93                                        | 0.94                     | 0.95                        |
| Solubility of silver salt $(g/100 \text{ g})$                                                                                                                                                                                 | 172                        | 0.00154                                     | 0.000084                 | 0.000028                    |
| Solubility of calcium salt (g /100 g)                                                                                                                                                                                         | 0.0016                     | — Increases —<br>42.7<br>— Increases —      | 58.8                     | 67.6                        |

#### **Chemical Properties**

Some following reactions are common to halogen acids are

 Anhydrous hydrofluoric acid does not show acidic property and hence, does not attack metals except potassium. However, its concentrated solution shows acidic character because it reacts with metals (e.g. Zn), their hydroxides, carbonates, oxides etc to form metallic fluorides.

$$\begin{array}{rcl} Zn+H_2F_2 &\longrightarrow & ZnF_2+H_2\\ 2NaOH+H_2F_2 &\longrightarrow & Na_2F_2+2H_2O\\ B_2O_3+3H_3F_2 &\longrightarrow & 2BF_3+3H_2O \end{array}$$

The aqueous solution of HCl, HBr and HI show acidic nature and hence, turn blue litmus red. Each of them reacts with metals, their hydroxides, carbonates, oxides etc to form metallic halides as

$$Zn + 2HX(X = Cl, Br, I) \longrightarrow ZnX_2 + H_2 \uparrow$$

$$NaOH + HX \longrightarrow NaX + H_2O$$

$$Na_2CO_3 + 2HX \longrightarrow 2NaX + CO_2 \uparrow + H_2O$$

$$Na_2CO_3 + 2HX \longrightarrow 2NaX + CO_2 \uparrow + H_2O$$

 HCl, HBr and HI do not react with SiO<sub>2</sub> and glass. HF attacks on SiO<sub>2</sub> and gives hydro fluosilicic acid (H<sub>2</sub>SiF<sub>6</sub>)

$$SiO_2 + 4HF \longrightarrow SiF_4 + 2H_2O$$

The white fumes of  $SiF_4$  form a gelatinous mass of  $H_2SiO_3$  or  $H_4SiO_4$  and hydro-fluorosilicic acid ( $H_2SiF_6$ ) with a drop of water held in these fumes.

 $3SiF_4 + 3H_2O \longrightarrow H_2SiO_3 + 2H_2SiF_6$ 

or  $3\mathrm{SiF}_4+4\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{SiO}_3\cdot\mathrm{H}_2\mathrm{O}$  or  $\mathrm{H}_4\mathrm{SiO}_4+2\mathrm{H}_2\mathrm{SiF}_6$ Now, we know that glass is composed of Na\_2SiO\_3 and CaSiO\_3. HF reacts with these silicates and form sodium and calcium fluosilicate (Na\_2SiF\_6 and CaSiF\_6) respectively.

$$\begin{array}{l} \mathrm{Na_2SiO_3} + 6\mathrm{HF} \longrightarrow \mathrm{Na_2SiF_6} + 3\mathrm{H_2O} \\ \mathrm{CaSiO_3} + 6\mathrm{HF} \longrightarrow \mathrm{CaSiF_6} + 3\mathrm{H_2O} \end{array}$$

Since, HF reacts with glass as shown above, it should not be kept in glass vessels; it should be stored in waxed glass vessels because wax prevents the action of HF on glass. The property of HF to act on glass has been utilised in the etching of glass and in making scales on the glass instruments. For etching glass, commercial  $H_2F_2$  (40-60%) is used.

HCl decomposes the salts of weaker acids like carbonates, bicarbonates, sulphides, sulphites, thiosulphates and nitrites as

$$\begin{split} &2\mathrm{Na}_{2}\mathrm{CO}_{3}+2\mathrm{HCl} \longrightarrow 2\mathrm{Na}\mathrm{Cl}+\mathrm{H}_{2}\mathrm{O}+\mathrm{CO}_{2}^{\uparrow} \\ &\mathrm{Na}\mathrm{HCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{Na}\mathrm{Cl}+\mathrm{H}_{2}\mathrm{O}+\mathrm{CO}_{2}^{\uparrow} \\ &\mathrm{Na}_{2}\mathrm{S}+2\mathrm{HCl} \longrightarrow 2\mathrm{Na}\mathrm{Cl}+\mathrm{H}_{2}\mathrm{S}^{\uparrow} \\ &\mathrm{Na}_{2}\mathrm{SO}_{3}+2\mathrm{HCl} \longrightarrow 2\mathrm{Na}\mathrm{Cl}+\mathrm{H}_{2}\mathrm{O}+\mathrm{SO}_{2}^{\uparrow} \\ &\mathrm{Na}_{2}\mathrm{S}_{2}\mathrm{O}_{3}+2\mathrm{HCl} \longrightarrow 2\mathrm{Na}\mathrm{Cl}+\mathrm{S}+\mathrm{H}_{2}\mathrm{O}+\mathrm{SO}_{2}^{\uparrow} \\ &\mathrm{2Na}\mathrm{NO}_{2}+2\mathrm{HCl} \longrightarrow 2\mathrm{Na}\mathrm{Cl}+\mathrm{H}_{2}\mathrm{O}+\mathrm{NO}+\mathrm{NO}_{2}^{\uparrow} \end{split}$$

With metal oxides and hydroxides, HCl forms salt and water.

• With AgNO<sub>3</sub> solution, HF forms AgF which becomes soluble in water. On the other hand, HCl, HBr and HI give the precipitate of AgCl (white), AgBr (pale yellow) and AgI (yellow) respectively.

$$\begin{array}{ccc} \mathrm{AgNO}_3 \ + \mathrm{HF} & \longrightarrow \ \mathrm{AgF} \ + \mathrm{HNO}_3 \\ \mathrm{AgNO}_3 \ + & & & \\ \mathrm{HX} \ - & \mathrm{Cl, Br, I} \\ \end{array} \xrightarrow{} \begin{array}{c} \mathrm{AgX} \ + & & \\ \mathrm{Ppt.} \end{array} \xrightarrow{} \begin{array}{c} \mathrm{AgX} \ + & & \\ \mathrm{HNO}_3 \end{array}$$

• HF does not give any precipitate with the solution of Pb (II) salts like Pb(NO<sub>3</sub>)<sub>2</sub>, (CH<sub>3</sub>COO)<sub>2</sub>Pb etc, while HCl, HBr and HI give the precipitate of PbCl<sub>2</sub> (white) PbBr<sub>2</sub> (white) and PbI<sub>2</sub> (yellow) respectively.

$$\begin{array}{l} \operatorname{Pb}(\operatorname{NO}_3)_2 + \underbrace{2HX}_{(X \, = \, \operatorname{Cl}, \, \operatorname{Br}, \, \operatorname{I})} \longrightarrow \operatorname{Pb}\!X_2 + 2\operatorname{HNO}_3 \\ (\operatorname{CH}_3\operatorname{COO})_2\operatorname{Pb} + 2\operatorname{HX} \longrightarrow \operatorname{Pb}\!X_2 + 2\operatorname{CH}_3\operatorname{COOH} \end{array}$$

[All the three precipitates (i.e.  $PbCl_2$ ,  $PbBr_2$  and  $PbI_2$ ) are soluble in hot water.]

 HF does not give any precipitate with mercurous and mercuric salts. HCl forms a white precipitate of Hg<sub>2</sub>Cl<sub>2</sub> with Hg<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub> solution.

$$2\text{HCl} + \text{Hg}_2(\text{NO}_3)_2 \longrightarrow \underset{\text{White}}{\text{Hg}_2\text{Cl}_2} + 2\text{HNO}_3$$

 $Hg_2Cl_2$  is soluble in *aqua-regia*. HI forms scarlet precipitate of  $HgI_2$  with  $HgCl_2$  solution.

$$2\mathrm{HI} + \mathrm{HgCl}_2 \longrightarrow \underset{\mathrm{Scarlet}}{\mathrm{HgI}_2} + 2\mathrm{HCl}$$

• HF, HCl and HBr do not react with  $CuSO_4$  solution, but HI gives  $CuI_2$  which, being unstable, decomposes into CuI and  $I_2$  as,

$$\begin{array}{rcl} 2\mathrm{HI} + \mathrm{CuSO}_4 & \longrightarrow & \mathrm{CuI}_2 + \mathrm{H}_2\mathrm{SO}_4 \\ & & 2\mathrm{CuI}_2 & \longrightarrow & 2\mathrm{CuI} + \mathrm{I}_2 \end{array}$$

• With the solution of BaCl<sub>2</sub>, SrCl<sub>2</sub> and CaCl<sub>2</sub> salts, H<sub>2</sub>F<sub>2</sub> forms white precipitate of BaF<sub>2</sub>, SrF<sub>2</sub> and CaF<sub>2</sub> respectively. Other acids do not give any precipitate since  $MX_2$  (M = Ba, Sr, Ca; X = Br, I) are soluble.

$$\begin{array}{ll} M\mathrm{Cl}_2 + \mathrm{H}_2\mathrm{F}_2 & \longrightarrow & M\mathrm{F}_2 + 2\mathrm{HCl} \\ \mathrm{Ppt.} \\ M\mathrm{Cl}_2 + 2\mathrm{H}X & \longrightarrow & \mathrm{M}X_2 & + 2\mathrm{HCl} \\ \mathrm{Soluble} \end{array}$$

• Anhydrous HF does not attack any metal under ordinary conditions except potassium while acid reacts with many metals to form their fluorides with the evolution of H<sub>2</sub>.

$$\begin{array}{rcl} & & \operatorname{Zn}+2\mathrm{HF} \longrightarrow & \operatorname{Zn}F_2+\mathrm{H}_2 \uparrow \\ & & \operatorname{Mg}+2\mathrm{HF} & \longrightarrow & \operatorname{Mg}F_2+\mathrm{H}_2 \uparrow \end{array}$$

e.9

In these reactions, the metal is oxidised and HF is reduced to  $\mathrm{H}_{2}.$ 

Gaseous HCl reacts with hot metals while aqueous HCl reacts with cold metals. The reaction between aqueous HCl and Pt, Au, Ag and Hg is not unreadable. Some examples of the reaction between metal and HCl are as,

- (i) Aqueous HCl reacts with Ag in presence of air.  $4Ag + 4HCl + O_2 \longrightarrow 4AgCl + 2H_2O$
- (ii) Cu dissolves in conc HCl. Fe reacts with HCl and gives lower chloride viz., FeCl<sub>2</sub> (not FeCl<sub>3</sub>).

$$Fe + 2HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

HBr dissolves Fe, Zn, Sn, Cu, Ag, Pb etc., with the liberation of  $H_2$  and formation of bromides. HBr attacks Hg very slowly, forming  $H_2$  and HgBr<sub>2</sub>.

 When HX molecule or X<sup>-</sup> ion reacts with an oxidising agent, it reduces the oxidising agent and is itself oxidised to X<sub>2</sub> molecule.

 $2HX + O_2 \longrightarrow 2H_2O + 2X_2$  (molecular equation) It has been found that the tendency of  $X^-$  ions to lose electrons increases from  $F^-$  to  $\Gamma^-$  ion. Accordingly, the order of reducing power of  $X^-$  ions or HX molecules is as follow.

$$F^- < Cl^- < Br^- < I^-$$
 or  $HF < HCl < HBr < HI$ 

As a matter of fact, HF or  $F^-$  does not show reducing properties at all (even with very strong oxidising agent). The increasing order of the reducing power of HX molecules or  $X^-$  ion can be explained on the basis of decrease in electronegative character from F to I.

- I. As reducing agent, HCl molecule or Cl<sup>-</sup> ion is weaker than HBr and HI both and hence, reduces only strong oxidising agents and is itself oxidised to  $\rm Cl_2$  which is evolved as a yellowish green gas. Thus, HCl reduces
  - (i)  $\mathbf{MnO}_2$  (acidified with conc.  $\mathrm{H}_2\mathrm{SO}_4$ ) to  $\mathrm{MnSO}_4$  $\mathrm{MnO}_2 + \mathrm{H}_2\mathrm{SO}_4 + 2\mathrm{HCl} \longrightarrow \mathrm{MnSO}_4 + 2\mathrm{H}_2\mathrm{O} + \mathrm{Cl}_2 \uparrow$
  - (ii) MnO<sub>2</sub> to MnCl<sub>2</sub>

$$\operatorname{MnO}_2 + \operatorname{4HCl}_{(\operatorname{Conc.})} \to \operatorname{MnCl}_2 + 2\operatorname{H}_2\operatorname{O} + \operatorname{Cl}_2\uparrow$$

(iii) KMnO<sub>4</sub> to MnCl<sub>2</sub>  $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2$ (iv) K Cn O to CnCl + 8H<sub>2</sub>O + 5Cl<sub>2</sub>↑

- (iv)  $\mathbf{K}_{2}\mathbf{Cr}_{2}\mathbf{O}_{7}$  to  $\mathbf{CrCl}_{3}$  $\mathbf{K}_{2}\mathbf{Cr}_{2}\mathbf{O}_{7} + 14\mathbf{HCl} \longrightarrow 2\mathbf{KCl} + 2\mathbf{CrCl}_{3} + 7\mathbf{H}_{2}\mathbf{O} + 3\mathbf{Cl}_{2}^{\uparrow}$
- (v)  $PbO_2$  to  $PbCl_2$  $PbO_2 + 4HCl \longrightarrow PbCl_2 + 2H_2O + Cl_2^{\uparrow}$
- (vi)  $Pb_3O_4$  (red lead) to  $PbCl_2$  $Pb_3O_4 + 8HCl \longrightarrow 3PbCl_2 + 4H_2O + Cl_2\uparrow$
- (vii)  $O_2$  to  $H_2O$  in presence of Cu-salts (catalyst)  $O_2 + 4HCl \longrightarrow 2H_2O + 2Cl_2\uparrow$
- (viii) Bleaching powder (CaOCl<sub>2</sub>) to CaCl<sub>2</sub> CaOCl<sub>2</sub> + 2HCl  $\longrightarrow$  CaCl<sub>2</sub> + H<sub>2</sub>O + Cl<sub>2</sub>  $\uparrow$
- $\begin{array}{ll} (\mathrm{ix}) \ \mathbf{F_2} \ \mathbf{to} \ \mathbf{HF} \ \mathbf{but} \ \mathbf{neither} \ \mathbf{Br_2} \ \mathbf{to} \ \mathbf{HBr} \ \mathbf{nor} \ \mathbf{I_2} \ \mathbf{to} \ \mathbf{HI} \\ \\ & 2\mathrm{HCl} + \mathrm{F_2} \longrightarrow 2\mathrm{HF} + \mathrm{Cl_2}] \ \mathrm{possible} \\ \\ & 2\mathrm{HCl} + \mathrm{Br_2} \longrightarrow 2\mathrm{HBr} + \mathrm{Cl_2} \\ \\ & 2\mathrm{HCl} + \mathrm{I_2} \longrightarrow 2\mathrm{HI} + \mathrm{Cl_2} \end{array} \right] \ \mathrm{not} \ \mathrm{possible} \\ \end{array}$

II. Since, HBr or Br<sup>-</sup> is a weaker reducing agent than HI or I<sup>-</sup>, it reduces some oxidising agents and is itself oxidised to Br<sub>2</sub> which is evolved as reddish brown vapour. Thus, HBr reduces as,
(i) H<sub>2</sub>SO<sub>4</sub> to SO<sub>2</sub>

$$2 \mathrm{HBr} + \mathrm{H}_2 \mathrm{SO}_4 \longrightarrow \mathrm{SO}_2 + 2 \mathrm{H}_2 \mathrm{O} + \mathrm{Br}_2$$

(ii) Atmospheric  $O_2$  to  $H_2O$ 

$$4\text{HBr} + \text{O}_2 \longrightarrow 2\text{H}_2\text{O} + 2\text{Br}_2$$

- (iii) Acidified solution of  $\text{KMnO}_4$  to  $\text{MnSO}_4$   $2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 + 10\text{HBr} \longrightarrow \text{K}_2\text{SO}_4$  $+ 2\text{MnSO}_4 + 8\text{H}_2\text{O} + 5\text{Br}_2$
- (iv) Acidified solution of  $K_2 Cr_2 O_7$  to  $Cr_2 (SO_4)_3$   $K_2 Cr_2 O_7 + 4H_2 SO_4 + 6HBr \longrightarrow K_2 SO_4 + Cr_2 (SO_4)_3$  $+ 7H_2 O + 3Br_2$

(v) 
$$H_2O_2$$
 to  $H_2O$ 

$$2HBr + H_2O_2 \longrightarrow 2H_2O + Br_2$$

(vi) **FeCl<sub>3</sub> to FeCl<sub>2</sub>** 

$$\operatorname{FeCl}_3 + 2\operatorname{HBr} \longrightarrow 2\operatorname{FeCl}_2 + 2\operatorname{HCl} + \operatorname{Br}_2$$

(vii) F<sub>2</sub> to HF and Cl<sub>2</sub> to HCl but not I<sub>2</sub> to HI

$$2HBr + F_2 \longrightarrow 2HF + Br_2$$
  
$$2HBr + Cl_2 \longrightarrow 2HCl + Br_2$$
 possible

 $2HBr + I_2 \longrightarrow 2HI + Br_2$  not possible

(viii) Acidified MnO<sub>2</sub> to MnSO<sub>4</sub>

(i)

$$MnO_2 + H_2SO_4 + 2HBr \longrightarrow MnSO_4 + 2H_2O + Br_2$$

III. Being the strongest reducing agent, HI or  $I^-$  reduces even very strong oxidising agents and is itself oxidised to  $I_2$  which is evolved as violet vapour. Thus, HI or  $I^-$  reduces

$$\begin{array}{l} \mathrm{H_2SO_4 \ to \ SO_2, \ S \ or \ H_2S(\mathrm{or \ S^{2-}})} \\ \mathrm{2HI} + \mathrm{H_2SO_4} \longrightarrow \mathrm{SO_2} + \mathrm{2H_2O} + \mathrm{I_2} \\ \mathrm{6HI} + \mathrm{H_2SO_4} \longrightarrow \mathrm{S} + \mathrm{4H_2O} + \mathrm{3I_2} \\ \mathrm{8HI} + \mathrm{H_2SO_4} \longrightarrow \mathrm{H_2S} + \mathrm{4H_2O} + \mathrm{4I_2} \end{array}$$

- (ii) HNO<sub>3</sub> to NO or NO<sub>2</sub>  $2HNO_3 + 6HI \longrightarrow 2NO + 4H_2O + 3I_2$  $2HNO_3 + 2HI \longrightarrow 2NO_2 + 2H_2O + I_2$
- (iii) HNO<sub>2</sub> to NO 2HNO<sub>2</sub> + 2HI  $\longrightarrow$  2NO + 2H<sub>2</sub>O + I<sub>2</sub>
- (iv)  $\operatorname{FeCl}_3$  to  $\operatorname{FeCl}_2$ 2FeCl<sub>3</sub> + 2HI  $\longrightarrow$  2FeCl<sub>2</sub> + 2HCl + I<sub>2</sub>
- (v)  $CuSO_4$  to CuI $2CuSO_4 + 4HI \longrightarrow 2CuI + 2H_2SO_4 + I_2$
- (vi) Atmospheric  $O_2$  to  $H_2O$

$$4\text{HI} + \text{O}_2 \longrightarrow 2\text{H}_2\text{O} + 2\text{I}_2$$

(due to the liberation of free  $I_2$ , the solution of HI turns brown, when kept in air).

(vii) Acdified MnO<sub>2</sub> to MnSO<sub>4</sub>

 $MnO_2 + H_2SO_4 + 2HI \longrightarrow MnSO_4 + 2H_2O + I_2$ 

(viii) Iodic acid ( $HIO_3$ ) to  $I_2$ 

$$5HI + HIO_3 \longrightarrow 3H_2O + 3I_2$$

(ix) Arsenate  $(AsO_4^{3-})$  to arsenite  $(AsO_3^{3-})$ 

$$2I^- + AsO_4^{3-} + 2H^+ \longrightarrow AsO_3^{3-} + H_2O + I_2$$

(x) Acidified solution of  $\text{KMnO}_4$  to  $\text{MnSO}_4$ 10HI + 2KMnO<sub>4</sub> + 3H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  K<sub>2</sub>SO<sub>4</sub> + 2MnSO<sub>4</sub> + 8H<sub>2</sub>O + 5I<sub>2</sub>

#### 2. Interhalogen Compounds

Halogens react with each other to produce a number of interhalogen compounds ( $XX_n$ ' where, n = 1, 3, 5 or 7). An interhalogen compound, infact, is regarded as the halide of more electropositive halogen, with a halogen with less electropositive character (electropositive character increases down the group).

Thus, as far as this trend is concerned, F cannot form any interhalogen compound as central atom, while I has the maximum tendency to form interhalogen compounds.

#### Categories

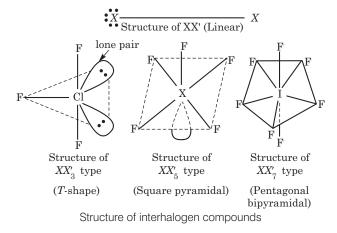
Interhalogens can be grouped into four categories namely XX' (e.g. ClF, BrF etc.)  $XX'_3$  (e.g. ClF<sub>3</sub> BrF<sub>3</sub> etc.)  $XX'_5$  (e.g. ClF<sub>5</sub>, IF<sub>5</sub> etc.) and  $XX'_7$  (e.g. IF<sub>7</sub>). The oxidation states of X atom in these are +1, +3, +5 and +7 respectively.

Some important examples of interhalogen compound are

**Examples of Interhalogens Compounds** 

| XX'                  | XX 3′                                       | $XX_{5}'$        | $XX_{7}'$ |
|----------------------|---------------------------------------------|------------------|-----------|
| ClF                  | $ClF_3$                                     | $ClF_5$          | $IF_7$    |
| $\operatorname{BrF}$ | ${ m BrF}_3$                                | $\mathrm{BrF}_5$ |           |
| BrCl                 | $\mathrm{IF}_3$                             | $\mathrm{IF}_5$  |           |
| ICl                  | $\mathrm{ICl}_3(\mathrm{I}_2\mathrm{Cl}_6)$ |                  |           |
| IBr                  |                                             |                  |           |
| IF                   |                                             |                  |           |

#### Stability


The stability of interhalogen compounds increases as the size of central atom increases.

Out of two halogens the one with smaller size and higher electronegativity assigned negative oxidation state.

#### Structure

XX' interhalogen compounds have linear structure,  $XX_3'$  compounds have bent T structure,  $XX_5'$  compounds have

square pyramidal structure and  $\mathrm{IF}_7$  have pentagonal bipyramidal structure.



**Example 8.** The correct statement about ICl<sub>5</sub> and ICl<sub>4</sub><sup>-</sup> is (JEE Main 2019) (a) ICl<sub>5</sub> is square pyramidal and ICl<sub>4</sub><sup>-</sup> is tetrahedral

(b)  $ICl_5$  is square pyramidal and  $ICl_4^-$  is square planar

(c) Both are isostructural

(d)  $ICl_5$  is trigonal bipyramidal and  $ICl_4^-$  is tetrahedral

**Sol.** (b) For 
$$ICl_5$$
,  

$$H = \frac{1}{2} (7 + 5 - 0 + 0) = 6 (sp^3d^2)$$

$$Cl \qquad Cl \qquad Cl \qquad Sp^3d^2-hybridised$$
Geometry : Octahedral  
Shape / Structure : Square pyramidal

For  $ICI_4^-$ ,

So,  $ICl_5$  and  $ICl_4^-$  are isolobal but not isostructural.

#### **Pseudohalides**

There are several uni-negative groups which show characteristics of halide ions. These are called **pseudohalides** or **pseudohalide ions**.

As the halides of halide ions are called **halogens**, the covalent dimers of pseudohalide ions are called **pseudohalogens.** Some of them are as follows

Some Pseudohalides and their Formulae

| Pseudohalide ions  | Formulae            | Pseudohalogens            | Formulae     |
|--------------------|---------------------|---------------------------|--------------|
| Cyanide            | $CN^{-}$            | Cyanogen                  | $(CN)_2$     |
| Cyanate            | OCN <sup>-</sup>    | Oxocyanogen               | $(OCN)_2$    |
| Thiocyanate        | $\mathrm{SCN}^-$    | Thiocyanogen              | $(SCN)_2$    |
| Selenocyanate      | $\rm SeCN^-$        | Selenocyanogen            | $(SeCN)_2$   |
| Azidothiocarbonate | $\mathrm{SCSN}_3^-$ | Azidocarbon<br>disulphide | $(SCSN_3)_2$ |
| Isocyanate         | ONC <sup>-</sup>    |                           |              |

- I. Some important similarities between halide and pseudohalide ions are
- Both can form ionic compounds, such as AgCl (AgCN), PbCl<sub>2</sub> [Pb(NCS)<sub>2</sub>], covalent compounds, e.g. ICl(ICN), SiCl<sub>4</sub> [Si(NCS)<sub>4</sub>], complex ions with transition metal ions, e.g.  $[FeF_6]^{3-}$ ,  $Fe(CN)_6^{3-}$ ;  $[CoCl_4]^{2-}$ ,  $[Co(SCN)_4]^{2-}$  etc.
- As halide ions combine together to form *interhalogen* compounds, pseudohalide ions also combine together to form *inter pseudohalogen* compounds like  $\text{CN} \cdot \text{N}_3$ ,  $\text{CN} \cdot \text{SCN}$  etc.
- Both of them combine with  $\rm H_2$  to form monobasic hydracids, e.g. HCl, HCN etc.
- Both give *insoluble* salts with  $Ag^+$ ,  $Pb^{2+}$  and  $Hg^+$  ions. e.g.  $Ag^+ + Cl^- \longrightarrow AgCl\downarrow$

$$Ag^+ + CN^- \longrightarrow AgCN \downarrow$$

- Both of them can coordinate with two metal ions simultaneously, i.e. can acts as bridging ligands,
   e.g. CN<sup>-</sup> in R<sub>2</sub>Au(CN)<sub>4</sub>, similarly Cl<sup>-</sup> in R<sub>2</sub>AuCl<sub>2</sub>.
- II. However, halide and pseudohalide ions differ in following respects
- Pseudohalide ions are stronger ligands than halide ions due to the ability of former to form the  $\sigma$  as well as  $\pi\text{-bond}.$
- Pseudohalide ions, being made up of two hetero atoms can function as **ambidentate ligands** (see coordination compounds for detail). However, halide ions do not show this behaviour.
- III. Similarities between halogens and pseudohalogens are
- Both are dimeric and fairly volatile (with the exception of polymeric thiocyanogen) in the free state.
- Pseudohalogens are **isomorphous** to halogens when in the free or solid state. e.g.  $Cl_2$  is isomorphous to  $(CN)_2$ ;  $Br_2$  is isomorphous to  $(SCN)_2$ .
- Both can be added to ethylenic double bond linkage as

$$\begin{array}{l} \mathrm{CH}_2 = \mathrm{CH}_2 + \mathrm{Cl}_2 \longrightarrow \mathrm{CH}_2 \mathrm{Cl} - \mathrm{CH}_2 \mathrm{Cl} \\ \mathrm{CH}_2 = \mathrm{CH}_2 + (\mathrm{SCN})_2 \longrightarrow \mathrm{CH}_2 \mathrm{SCN} - \mathrm{CH}_2 \mathrm{SCN} \end{array}$$

• Both react with alkalies as

$$(SCN)_2 + \underset{(Cold and dilute)}{2KOH} \longrightarrow KSCN + KOSCN + H_2O$$

$$Cl_2 + \underset{(Cold and dilute)}{2KOH} \longrightarrow KCl + KOCl + H_2O$$

IV. Halogen and pseudohalogens differ from each other in the fact that pseudohalogens have the ability to undergo polymerisation as,

$$n(\text{CN})_2 \xrightarrow{500^{\circ}\text{C}} 2(\text{CN})_n$$
  
Similarly,  $n(\text{SCN})_2 \xrightarrow{\text{Room}} 2(\text{SCN})_n$ 

On the other hand halogens do not have such a tendency.

#### 4. Oxides of Halogens

In these oxides, bonds are mainly covalent, since there is a very small difference between the electronegativity of oxygen and the halogens.

Oxides of chlorine are acidic. This the acidic nature increases as the percentage of oxygen increases. Moreover, these are powerful oxidising agents and decompose explosively when exposed to mechanical shock or on heating.

All the three monoxides *viz.*,  $OF_2$ ,  $Cl_2O$  and  $Br_2O$  have **tetrahedral structure** involving  $sp^3$  hybridisation of oxygen. The bond angle increases as the size of halogen atom increases. Thus, the bond angle varies in the order **FOF < ClOCl < BrOBr.** This is because electrons in the case of  $OF_2$  are nearer to fluorine due to high electronegativity of F compared to Cl to Br.

The bonded electron pairs in  $Cl_2O$  and  $Br_2O$  are closer to oxygen making the repulsion between them more. Due to this the lone pair-lone pair repulsion on oxygen to some extent decreases. Also due to the bulkiness of Cl and Br, the angles of ClOCl and BrOBr increase to such an extent that  $109^{\circ}28'$ , (the tetrahedral angle), is approached.

Halogens form following oxides are

| Oxides of<br>chlorine | Oxides of bromine      | Oxides of iodine |
|-----------------------|------------------------|------------------|
| $Cl_2O$               | $Br_2O$                | $I_2O_5$         |
| $ClO_2$               | $\operatorname{BrO}_2$ |                  |
| $Cl_2O_6$             | $\mathrm{BrO}_3$       |                  |
| $Cl_2O_7$             |                        |                  |

#### 5. Oxoacids of Halogens

Because of the high electronegativity and small size, fluorine forms only one oxoacid, i.e. HOF (known as **fluoric acid** or **hypofluorous acid**). Other halogens form many oxoacids. These are stable in aqueous solution or in the form of their salts.

Examples of the oxoacids of halogens are given below

|          |                                      |                                       | -                                            |                                                                                                                                                                                                          |
|----------|--------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Halogen  | Hypohalous<br>acids, HXO<br>(X = +1) | Halous<br>acids, $HXO_2$<br>(X = + 3) | Halic acids,<br>HXO <sub>3</sub><br>(X = +5) | Perhalic<br>acids, $HXO_4$<br>(X = +7)                                                                                                                                                                   |
| Chlorine | HClO                                 | $\mathrm{HClO}_2$                     | $\mathrm{HClO}_3$                            | $\mathrm{HClO}_4$                                                                                                                                                                                        |
| Bromine  | HBrO                                 | _                                     | $\mathrm{HBrO}_3$                            | _                                                                                                                                                                                                        |
| Iodine   | HIO                                  | _                                     | $\mathrm{HIO}_3$                             | $\begin{array}{l} \mathrm{HIO}_{4},\\ \mathrm{HIO}_{4}\cdot 2\mathrm{H}_{2}\mathrm{O},\\ \mathrm{HIO}_{4}\cdot 2\mathrm{H}_{2}\mathrm{O},\\ \mathrm{2HIO}_{4}\cdot \mathrm{H}_{2}\mathrm{O} \end{array}$ |

Oxoacids of Halogens

Some of the general properties of oxoacids are as follows

(i) **Thermal stability** These oxoacids depends on the oxidation number and electronegativity of the central halogen atom.

Greater is the oxidation number or electronegativity of central halogen atom, greater will be the thermal stability of the acid and *vice-versa*.

Thus, the following two cases may be studied

- (a) In case of oxoacids of a same halogen atom since the electronegativity of the central halogen atom (viz., Cl-atom) in this case remains the same, the thermal stability depends only upon the oxidation number of the central atom. As the oxidation number of the central atom increases, X—O bond in the acids becomes more and more covalent. Hence, thermal stability of the acids increases. For example, thermal stability of the chlorine acids is in the order : HClO < HClO<sub>2</sub> < HClO<sub>3</sub> < HClO<sub>4</sub>.
- (b) In case of oxoacids, having the same formula and different central halogen atom In this case since, the oxidation number of the halogen atoms remains the same, the thermal stability depends only upon the electronegativity of the halogen atom. Thermal stability decreases with the decrease in electronegativity of halogen atom. Thus, thermal stability of the given acids is in the order

**Reaction with alkalies** Fluorine reacts with cold dilute alkalies to give  $OF_2$  (oxygen difluoride) while with concentration alkalies, it evolves oxygen.

$$\begin{array}{rcl} 2\text{NaOH} &+ 2\text{F}_2 &\longrightarrow 2\text{NaF} + \text{OF}_2 + \text{H}_2\text{O} \\ & & & & \\ 4\text{NaOH} + 2\text{F}_2 &\longrightarrow 4\text{NaF} + \text{O}_2 \uparrow + 2\text{H}_2\text{O} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Fluorine show diffrent behaviour than  $Cl_2$ ,  $Br_2$  and  $I_2$ . They form a mixture of halide and hypohalites with cold dilute alkalies while a mixture of halides and halate with concentrated hot alkalies.

$$\begin{array}{c} 2\text{NaOH} & +X_2 \longrightarrow \text{Na}X + \text{Na}X\text{O} + \text{H}_2\text{O}\\ \text{Cold and dilute} & +X_2 \longrightarrow \text{Na}X + \text{Na}X\text{O}_3 + 3\text{H}_2\text{O}\\ \text{Hot and conc.} & 5\text{Na}X + \text{Na}X\text{O}_3 + 3\text{H}_2\text{O}\\ \text{Halate} & \text{(where, } X = \text{Cl, Br, I)} \end{array}$$

- (ii) **Acidity** (or acid strength) of oxoacids also follows the same trend as thermal stability.
- (iii) **Oxidising power** Here, also following two cases may be possible
  - (a) Oxidising power of oxoacids of a same halogen atom (e.g. HClO, HClO<sub>2</sub>, HClO<sub>3</sub>, HClO<sub>4</sub>) decreases with the increase in the oxidation number of the central halogen atom. This is because the X—O bond becomes more and more covalent as the oxidation number of the central atom increases. Thus, the oxidising power of the given acids is in the order

 $HClO > HClO_2 > HClO_3 > HClO_4$ 

(b) In case of oxoacids, having the same formula and different halogen atom (e.g. HClO<sub>3</sub>, HBrO<sub>3</sub> and HIO<sub>3</sub>), oxidising power decreases with the decrease in the electronegativity of the halogen atom. Thus, oxidising power of the given acids is in the order

$$HClO_3 > HBrO_3 > HIO_3$$

(iv) Stability and basicity of the oxo-anions of a given halogen atom (e.g. ClO<sup>-</sup>, ClO<sup>-</sup><sub>2</sub>, ClO<sup>-</sup><sub>3</sub> and ClO<sup>-</sup><sub>4</sub>) have been found to be in the following order Stability ClO<sup>-</sup><sub>4</sub> > ClO<sup>-</sup><sub>3</sub> > ClO<sup>-</sup><sub>2</sub> > ClO<sup>-</sup>

**Basicity**  $\text{ClO}_4^- < \text{ClO}_3^- < \text{ClO}_2^- < \text{ClO}^-$ 

Some important oxyacids of halogens as discussed below

#### 1. Hypochlorous Acid, HClO

Hypochlorous acid, HClO is known only in solution. Therefore, it cannot be isolated from them.

#### **Methods of Preparation**

It is prepared by following methods are

• By passing  $Cl_2$  into  $H_2O$  or into a suspension of  $CaCO_3$  in water or into an aqueous solution of potassium hypochlorite (KClO) or bleaching powder (CaOCl<sub>2</sub>).

$$Cl_2 + H_2O \longrightarrow HCl + HClO$$

In this reaction,  ${\rm Cl}_2$  undergoes disproportionation into HCl and HClO.

• By the action of atmospheric CO<sub>2</sub> on sodium hypochlorite, NaOCl.

 $NaOCl + CO_2 + H_2O \longrightarrow NaHCO_3 + HOCl$ 

• By distilling the aqueous solution of bleaching powder  $(CaOCl_2)$  with a calculated quantity of 5%  $HNO_3$  or by passing  $CO_2$  into aqueous solution of  $CaOCl_2$  and then distilling.

$$\begin{array}{ccc} 2\text{CaOCl}_2 + 2\text{HNO}_3 & \longrightarrow \text{CaCl}_2 + \text{Ca}(\text{NO}_3)_2 + 2\text{HClO} \\ & & (5\%) \\ \text{CaOCl}_2 + \text{H}_2\text{O} + \text{CO}_2 & \longrightarrow & \text{CaCO}_3 + 2\text{HClO} \end{array}$$

• By shaking  $Cl_2$  water with freshly precipitated HgO (General method for the preparation of hypohalous acids).

 $2Cl_2 + 2HgO + H_2O \longrightarrow HgCl_2 \cdot HgO \downarrow + 2HClO$ The insoluble  $HgCl_2 \cdot HgO$  is removed by filtration. The filtrate is distilled when dilute HClO passes over.

#### **Physical Properties**

The concentrated solution of HClO is yellow in colour, while the dilute solution is colourless. It is a weak acid, even weaker than  $H_2CO_3$ . Its dissociation constant is  $3 \times 10^{-8}$  at 20°C.

#### **Chemical Properties**

- (i) The dilute solution of the acid is fairly stable in the dark, but when concentrated solution is exposed to light, it becomes unstable and hence, undergoes **disproportionation** into  $Cl_2$  (Cl = 0) and  $HClO_3$ (Cl =+5).
  - $5\text{HClO} \xrightarrow{\text{In presence of light}} 2\text{Cl}_2 + \text{HClO}_3 + 2\text{H}_2\text{O}$ (Cl = +1) (Cl = 0) (Cl = +5)

The decomposition is accelerated by Pt-black, MnO and CoO.

(ii) When aqueous solution of HClO is heated, it undergoes disproportionation into HCl and HClO<sub>3</sub>.

$$3 \text{HClO} \longrightarrow 2 \text{HCl} + \text{HClO}_3$$

- On distillation, HClO decomposes into  $H_2O$  and  $Cl_2O$ . 2HClO  $\longrightarrow Cl_2O + H_2O$
- It reacts with metals, e.g. it dissolves in Mg, with the evolution of  $H_2$ , in Fe and Al, with the evolution of  $H_2$  and  $Cl_2$ , while with Co, Ni and Cu,  $Cl_2$  and  $O_2$  are evolved.

Mg + 2HClO  $\longrightarrow$  Mg(OCl)<sub>2</sub> + H<sub>2</sub>  $\uparrow$ 

When HClO is shaken with Hg, a light brown precipitate of basic mercuric chloride, [HgCl(OH)], which is soluble in HCl, is obtained

 $2Hg + 2HClO \longrightarrow \underset{(Light brown ppt.)}{2HgCl(OH)}$ 

• The aqueous solution of HClO and its salts (e.g. NaOCl) are **oxidising** and **bleaching agents.** This property is due to the fact that HClO or NaOCl decomposes to give nascent oxygen.

$$\begin{array}{ccc} \text{HClO} & \xrightarrow{\text{Reduction}} & \text{HCl} + [O] \\ \text{NaClO} & \xrightarrow{\text{Reduction}} & \text{NaCl} + [O] \end{array}$$

• HClO is a **monobasic acid**, since its aqueous solution gives only one H<sup>+</sup> ion on ionisation.

HClO 
$$(aq) \rightleftharpoons H^+(aq) + ClO^-(aq)$$

ClO<sup>-</sup> ion is called **hypochlorite ion.** Its monobasic nature shows that HClO molecule has one OH group attached directly with the central Cl-atom.

Being an acid, HClO reacts with alkalies to form the salts which are called hypochlorites.

e.g. NaOH + HClO  $\longrightarrow$  NaOCl + H<sub>2</sub>O

• HClO reacts with AgNO<sub>3</sub> and gives silver hypochlorite (AgClO). This compound is unstable and hence, undergoes disproportionation into AgCl and AgClO<sub>3</sub>.

$$HOCl + AgNO_3 \longrightarrow AgOCl + HNO_3$$
$$3AgOCl \longrightarrow AgCl + AgClO_3$$

#### 2. Chloric Acid (HClO<sub>3</sub>)

This acid is known only in solution. It is an oxoacid of chlorine. It is the formal precursor of chlorate salts. Its preparation, physical and chemical properties are as follow.

#### **Methods of Preparation**

 $\mathrm{HClO}_3$  is prepared by following methods.

• By the action of dil  $H_2SO_4$  on  $Ba(ClO_3)_2$ .

 $\begin{array}{l} \operatorname{Ba}(\operatorname{ClO}_3)_2 + \operatorname{H}_2\operatorname{SO}_4 \longrightarrow \operatorname{Ba}\operatorname{SO}_4 \ (\operatorname{ppt.}) + 2\operatorname{HClO}_3 \\ \text{The precipitate of } \operatorname{Ba}\operatorname{SO}_4 \ \text{is obtained by filtration. The} \\ \operatorname{unused} \operatorname{H}_2\operatorname{SO}_4 \ \text{is precipitated with baryta water. The} \\ \operatorname{filtrate} \ \text{is evaporated in a vacuum desicator over} \\ \operatorname{concentrated} \operatorname{H}_2\operatorname{SO}_4 \ \text{until a} \ 4\% \ \text{solution of } \operatorname{HClO}_3 \ \text{is} \\ \operatorname{obtained.} \end{array}$ 

If the solution containing  $\text{HClO}_3$  is evaporated further more, it gets decomposed into perchloric acid,  $\text{HClO}_4$ .

$$3HClO_3 \xrightarrow{\Delta} HClO_4 + Cl_2 + 2O_2 + H_2O$$

• By the action of hydrofluorosilicic acid  $(H_2SiF_6)$  on  $KClO_3$ .  $2KClO_3 + H_2SiF_6 \longrightarrow K_2SiF_6(ppt.) + 2HClO_3$ 

#### **Physical and Chemical Properties**

- Concentrated solution of the acid is colourless and is a pungent smelling liquid.
- It is fairly stable in dark. In light it decomposes and becomes yellow. On heating,  $\mathrm{HClO}_3$  decomposes to give  $\mathrm{HClO}_4$ .

$$3HClO_3 \xrightarrow{\Delta} HClO_4 + Cl_2 \uparrow + 2O_2 \uparrow + H_2O$$

- When organic substances like cotton, wool, paper etc, come in contact with the acid, they catch fire.
- The acid is a powerful oxidising and bleaching agent.
- When iodine is evaporated with 25% HClO<sub>3</sub>, iodic acid (HIO<sub>3</sub>) is obtained.

$$2HClO_2 + I_2 \longrightarrow 2HIO_2 + Cl_2 \uparrow$$

This reaction has been used for the preparation of  $HIO_3$ .

• HClO<sub>3</sub> is a monobasic acid.

$$HClO_3 \rightleftharpoons H^+ + ClO_3^-$$

#### 3. Perchloric Acid, HClO<sub>4</sub>

It is a mineral acid, usually found as an aqueous solution. Its preparation and properties are as follow

#### **Methods of Preparation**

 $\mathrm{HClO}_4$  is prepared as,

by heating HClO<sub>3</sub>

$$3\text{HClO}_3 \xrightarrow{\Delta} \text{HClO}_4 + \text{Cl}_2 \uparrow + 2\text{O}_2 \uparrow + \text{H}_2\text{O}_3$$

• by treating  $Ba(ClO_4)_2$  with calculated quantity of dil.  $H_2SO_4$  and then removing the insoluble  $BaSO_4$  by filtration.

 $\mathrm{Ba}(\mathrm{ClO}_4)_2 + \mathrm{H}_2\mathrm{SO}_4 \longrightarrow 2\mathrm{HClO}_4 + \mathrm{Ba}\mathrm{SO}_4 \!\downarrow$ 

- by adding  $NH_4ClO_4$  dissolved in conc. HCl to warm conc. HNO<sub>3</sub> and then evaporating.

 $\begin{array}{c} \mathrm{NH}_4\mathrm{ClO}_4 + \underset{(\mathrm{Conc.})}{\mathrm{HCl}} + \underset{(\mathrm{Conc.})}{\mathrm{3HNO}_3} \longrightarrow \mathrm{HClO}_4 \\ + 2\mathrm{N}_2\mathrm{O} + 4\mathrm{Cl}_2 + 7\mathrm{H}_2\mathrm{O} \end{array}$ 

• anhydrous acid is obtained by distilling a mixture of potassium perchlorate (KClO<sub>4</sub>) with conc.  $H_2SO_4$ under reduced pressure.  $KClO_4 + H_2SO_4 \longrightarrow HClO_4 + KHSO_4$ 

#### **Physical and Chemical Properties**

- Anhydrous  $\mathrm{HClO}_4$  is a colourless, hygroscopic and oily liquid. It fumes strongly in moist air and dissolves in water with hissing sound due to the liberation of much heat.
- It forms hydrates with 1, 2, 2.5, 3 and 3.5 molecules of water of crystallisation.
- It is unstable and decomposes with explosion on heating and sometimes mainly on standing for a few days even in the dark. Aqueous solution of the acid is quite stable and does not decompose and hence, can be kept indefinitely.
- It is highly dangerous acid and produces severe wounds on the skin.
- It is powerful oxidising agent and in flames paper and wood.
- On dehydration with  $P_2O_5$  at  $-10^{\circ}$  C, it gives  $Cl_2O_7$  which is the anhydride of perchloric acid.

$$2\text{HClO}_4 + \text{P}_2\text{O}_5 \xrightarrow{-10^\circ\text{C}} \text{Cl}_2\text{O}_7 + 2\text{HPO}_3$$

This reaction has been used for the preparation of  $\text{Cl}_2\text{O}_7$ .

- +  ${\rm HClO}_4$  is the strongest acid of all the acids.
- The metals like Zn, Fe etc., dissolve in the aqueous solution of the acid and form the soluble perchlorates.

 $\operatorname{Zn}+2\operatorname{HClO}_4(aq) \longrightarrow \operatorname{Zn}(\operatorname{ClO}_4)_2(aq) + \operatorname{H}_2 {\downarrow}$ 

- The acid is not reduced by nascent hydrogen but gets reduced to chloride by strong reducing agents like SnCl<sub>2</sub>, CrCl<sub>2</sub> etc.
- When a suspension of iodine is heated with  $HClO_4$ , para periodic acid ( $H_5IO_6$ ) is obtained.

$$2\mathrm{HClO}_4 + \mathrm{I}_2 + 4\mathrm{H}_2\mathrm{O} \xrightarrow{\Delta} 2\mathrm{H}_5\mathrm{IO}_6 + \mathrm{Cl}_2$$

#### Uses

The aqueous solution of this acid is used for the estimation of potassium gravimetrically.

#### 4. Metaperiodic Acid, HIO<sub>4</sub>

It is the oxoacid of iodine in which the iodine exists in +7 oxidation state.

#### Methods of Preparation

It is obtained by heating paraperiodic acid,  $H_5IO_6$ .

$$H_5IO_6 \xrightarrow{100^{\circ}C} HIO_4 + 2H_2O$$

 $HIO_4 \rightleftharpoons H^+ + IO_4^-$ 

- When dissolved in water, it changes back to  $\rm H_5IO_6.$   $\rm HIO_4 + 2H_2O \longrightarrow H_5IO_6$
- ${\rm HIO}_4$  and its salts are strong oxidising agents in acidic medium.

 $2\mathrm{IO}_4^- + 16\mathrm{H}^+ + 14e^- \longrightarrow \mathrm{I}_2 + 8\mathrm{H}_2\mathrm{O}$ 

# VIIIA (18) Group Elements and their Compounds

This group of periodic table contains 6 elements, i.e. He, Ne, Ar, Kr, Xe and Rn. These were called as **inert gases** due to their inert nature. However, these are now as called **noble gases** because some of these elements form compounds under specific conditions.

#### Occurrence

All these gases except radon (Rn) are present in atmosphere. Rn results from disintegration of radium (is itself radioactive). The total abundance of these elements in dry air (except Rn) is  $\sim 1\%$  by volume, out of which Ar is the major component.

#### **General and Physical Properties**

- (i) **Electronic configuration** These gases have highly stable  $ns^2 np^6$  configuration thus, have very little tendency to form chemical compounds with other elements (inert gases).
- (ii) Atomic and ionic radii The atomic radii of 18th group elements correspond to the van der Waals' radii and increases on moving down the group.
- (iii) Boiling points They have low boiling points in comparison to other elements and which increases with increases in atomic sizes, i.e. increases down the group.
- (iv) **Ionisation energy and electron affinity** Noble gases have stable  $ns^2np^6$  (fully-filled) electronic configuration, thus, have no tendency to add or lose electron. Therefore, their ionisation energy is very high. On the other hand, their electron affinity is zero.

(v) Heat of vaporisation and polarisability They possess very low values of heat of vaporisation. This is due to the presence of very weak van der Waals' forces of attraction between their monoatomic molecules. However, this value increases with atomic number. This shows that there is an increase in polarisability of the larger electronic clouds of the elements with higher atomic number. In other words, the polarisability increases down the group as,

$$He < Ne < Ar < Kr < Xe.$$

- (vi) Solubility They are slightly soluble in water and their solubility generally increases on moving down the group.
- (vii) **Adsorption** Except He, all the noble gases are adsorbed by coconut charcoal. This ease of adsorption increases an moving down the group.
- (viii) **Conductivity** They have high electrical conductivity at low pressures.
- (ix) **Spectra** All of them give characteristic spectra, by which they can be identified.
- (x) Liquification Due to the presence of weak van der Waals' forces of attraction, it is difficult to liquify noble gases. Ease of liquification increases down the group from He to Rn due to increase in intermolecular forces.

The above mentioned physical properties can be summarised as.

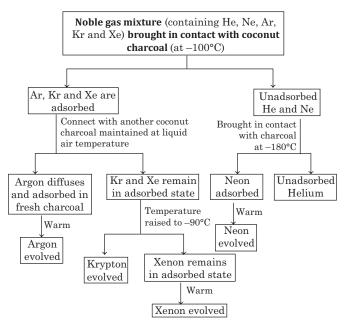
Physical Properties of Noble Gases

| Property                                        | Helium      | Neon                                   | Argon                                                     | Krypton                   | Xenon                        | Radon                                                                 |
|-------------------------------------------------|-------------|----------------------------------------|-----------------------------------------------------------|---------------------------|------------------------------|-----------------------------------------------------------------------|
| Atomic<br>number                                | 2           | 10                                     | 18                                                        | 36                        | 54                           | 86                                                                    |
| Electronic configuration                        | $1s^2$      | $[\text{He}]\\2s^22p^6$                | $\begin{array}{c} [\mathrm{Ne}] \\ 2s^2 3p^6 \end{array}$ | $[Ar] \\ 3d^{10}4s^24p^6$ | $[{ m Kr}]4d^{10}\ 5s^25p^6$ | $\begin{array}{c} [{\rm Xe}]4f^{14}\\ 5d^{10}6s^2\\ 6p^6 \end{array}$ |
| Molar mass<br>(amu)                             | 4.003       | 20.183                                 | 39.948                                                    | 83.30                     | 131.30                       | 222                                                                   |
| Boiling point<br>(°C)                           | -268.9<br>3 | $\begin{array}{c}-246.0\\6\end{array}$ | $-185. \\ 86$                                             | -153.35                   | -108.1                       | -62                                                                   |
| Melting<br>point (°C)                           | -272.1      | $^{-246.6}_{1}$                        | $-189. \\ 37$                                             | -157.2                    | -111.8                       | -71                                                                   |
| Ionisation<br>energy<br>(kJ mol <sup>-1</sup> ) | 2372.1      | 2080.4                                 | 1520.<br>6                                                | 1350.6                    | 1170.2                       | 1037.0                                                                |
| Heat of vaporisation $(kJ mol^{-1})$            | 0.08        | 1.74                                   | 6.52                                                      | 9.05                      | 12.65                        | 18.1                                                                  |
| Atomic<br>radius (Å)                            | 1.4         | 1.54                                   | 1.88                                                      | 2.02                      | 2.16                         | —                                                                     |
| Critical<br>temperature<br>(°C)                 | -267.9      | -228.7                                 | -122.<br>4                                                | -62.5                     | +16.6                        | +14.5                                                                 |
| Critical<br>pressure<br>(atm)                   | 2.26        | 26.9                                   | 50.0                                                      | 54.3                      | 58.3                         | 62.4                                                                  |
| $\gamma = C_p / C_V$                            | 1.652       | 1.642                                  | 1.60                                                      | 1.689                     | 1.60                         | _                                                                     |
| Absorption<br>coefficient in<br>water at 25°C   | 0.0097      | 0.0114                                 | $0.005 \\ 3$                                              | 0.1105                    | 0.2420                       | 0.5100                                                                |

#### **Chemistry of Noble Gases**

The real chemistry of noble gases began in **1962** when **Neil Bartlett** isolated an orange yellow solid from the reaction of Xe and  $PtF_6$ .

The possibility of this reaction arise due to similarity in ionisation enthalpies of  $O_2$  and Xe. After this discovery many compounds of Xe were prepared (with oxygen and F only).


Kr forms comparatively fewer compounds (only  $\text{KrF}_2$  have been studied in detail). Compounds of Rn have not been isolated but are identified with radiotracer techniques.

#### **Extraction of Noble Gas**

Helium, argon, neon, krypton and xenon are prepared by the fractional distillation of liquid air. Fractional distillation of air gives  $O_2$ ,  $N_2$  and mixture of noble gases.

The individual gases may be obtained by adsorption of air on coconut charcoal. The charcoal adsorbs different gases at different temperatures and thus, these gases can be collected.

Steps involve in the extraction of noble gas are shown below in a flow chart.



However, radon is obtained by radioactive disintegration of radium (226) as,

 $_{88}\mathrm{Ra}^{226} \longrightarrow {}_{86}\mathrm{Rn}^{222}$  +  ${}_{2}\!\alpha^4$ 

#### **Properties and Uses of Noble gases**

Some important properties along with the uses and discoverer of noble gases can be summarised below in tabulated form. Discovery and Uses of Noble Gases

| Noble gas | Discoverer                 | Uses                                                                                                                                                                    | Reasons                                                                                                                                                      |
|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| He        | Lockyer and Janssen (1868) | <ul> <li>(i) He/O<sub>2</sub> mixture for deep-sea breathing, instead of N<sub>2</sub>/O<sub>2</sub> mixture.</li> <li>(ii) Diluent for gaseous anaesthetics</li> </ul> | Low solubility in blood; prevents nitrogen narcosis<br>and "bends".<br>Non-flammable, non-reactive.                                                          |
|           |                            | (iii) Filling of observation balloons and<br>other lighter air craft                                                                                                    | Non-flammable; 93% lifting power as compared to flammable $H_2$ .                                                                                            |
|           |                            | (iv) Liquid He to maintain very low<br>temperature in research (cryogenics)                                                                                             | Extremely low boiling point.                                                                                                                                 |
|           |                            | (v) He/O $_{\rm 2}{\rm mixtures}$ for respiratory patients                                                                                                              | Low density flows easily through restricted assages.                                                                                                         |
|           |                            | (vi) Heat transfer agent in gas cooled nuclear reactors.                                                                                                                | Transfers heat readily; does not becomes radioactive; chemically inert.                                                                                      |
| Ne        | Ramsay and Travers         | Neon signs.                                                                                                                                                             | Even at low pressure Ne, moderate electric<br>current causes bright orange-red glow; can<br>be modified by coloured glass or mixing with<br>Ar or Hg vapour. |
| Ar        | L. Rayleigh and Ramsay     | (i) Inert atmosphere for welding<br>(ii) Filling incandescent light bulbs.                                                                                              | Chemically inert.                                                                                                                                            |
|           |                            |                                                                                                                                                                         | Inert; prevents vaporisation of tungsten and blackening of bulbs.                                                                                            |
| Kr        | Ramsay and Travers (1898)  | Airport runway and approach lights                                                                                                                                      | Gives longer life to incandescent lights than Ar, but more expensive.                                                                                        |
| Rn        | Dorn (1900)                | For the treatment of cancer (radiotherapy).                                                                                                                             | Because of radioactive nature.                                                                                                                               |

### **Compounds of Group 18 Elements**

Xenon due to its low ionisation energy forms several compounds. However no true compounds of He, Ne and Ar are known. Most of the compounds of Xe are with F and O. Some xenon compound are as follows.

#### **Xenon Fluorides**

Xenon forms three binary fluorides, i.e.  $XeF_2$ ,  $XeF_4$  and  $XeF_6$  by the direct union of elements under appropriate experimental conditions. In these fluorides, Xe is in +2, +4 and +6 oxidation states respectively.

#### 1. Xenon Difluorine

 $XeF_2$  is prepared by the following method as

$$\begin{array}{c} \bullet \underbrace{\operatorname{Xe} + \operatorname{F}_2}_{2: 1 \text{ ratio}} \xrightarrow[]{\operatorname{Sealed Ni}} \operatorname{Xe}\operatorname{F}_2 \\ \bullet \underbrace{\operatorname{Xe} + \operatorname{F}_2}_{2: 1 \text{ ratio}} \xrightarrow[]{\operatorname{Electric}} \operatorname{Xe}\operatorname{F}_2 \\ \bullet \operatorname{Xe} + \operatorname{F}_2 \xrightarrow[]{\operatorname{Photochemical combination}} \operatorname{Xe}\operatorname{F}_2 \end{array}$$

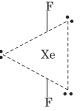
Some important properties exhibited by  $\rm XeF_2$  are as follows

- It is a colourless crystalline solid with m.p. is 140°C.
- It is reduced by  $H_2O$  to Xe and  $H_2O$  is oxidised to  $O_2$ .  $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2 \uparrow$

However, it is rapidly hydrolysed by an aqueous solution of a base.

 $2XeF_2 + 4OH^- \longrightarrow 2Xe + 4F^- + 2H_2O + O_2 \uparrow$ 

- XeF\_2 is a mild fluorinating agent. Thus, it reacts with  $C_6H_6$  to give  $C_6H_5F.$
- It can oxidise many substances and itself gets reduced to xenon. e.g.


$$\begin{array}{ccc} {\rm XeF}_2 + {\rm H}_2 & \longrightarrow & {\rm Xe} + 2 {\rm HF} \\ {\rm 2XeF}_2 + 2 {\rm H}_2 {\rm O} & \longrightarrow & 2 {\rm Xe} + 4 {\rm HF} + {\rm O}_2 & \\ & {\rm XeF}_2 + {\rm I}_2 & \xrightarrow{{\rm BF}_3} & {\rm Xe} + 2 {\rm IF} \end{array}$$

 In BrF<sub>3</sub> solution, XeF<sub>2</sub> forms adducts with MF<sub>5</sub> molecules (M = P, A, Sb etc).

$$\begin{array}{rcl} \operatorname{XeF}_2 + MF_5 & \longrightarrow & \operatorname{XeF}_2 \cdot MF_5 \\ \operatorname{XeF}_2 + 2MF_5 & \longrightarrow & \operatorname{XeF}_2 \cdot 2MF_5 \end{array}$$

$$2XeF_2 + MF_5 \longrightarrow 2XeF_2 \cdot MF_5$$

 $XeF_2$  has  $sp^3d$ -hybridisation and linear geometry (due to the presence of 3 lone pairs) which is represented as,



Linear geometry of  $XeF_2$ 

#### 2. Xenon Tetrafluoride, XeF<sub>4</sub>

XeF<sub>4</sub> can be prepared as

$$\underbrace{ \begin{array}{c} \underbrace{\operatorname{Xe}+2F_2}_{1:5 \text{ ratio}} & \xrightarrow{\operatorname{Ni} \text{ tube}} & \operatorname{Xe}F_4 \\ \underbrace{\operatorname{Xe}+2F_2}_{1:2 \text{ ratio}} & \xrightarrow{\operatorname{Electric discharge}} & \operatorname{Xe}F_4 \end{array}}_{-80^\circ \mathrm{C}} \xrightarrow{} \operatorname{Xe}F_4$$

Some important properties are as follows

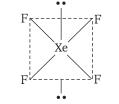
- It is also a colourless crystalline solid. Its m.p. is 117.1°C. It sublimes readily.
- XeF<sub>4</sub> undergoes disproportionation in water, giving  $XeO_3$  which is a highly explosive solid.
- $2XeF_4 + 3H_2O \longrightarrow Xe(g) + XeO_3(s) + 6HF(aq) + F_2(g)$ If the reaction is carried out at  $-80^{\circ}$ C, XeOF<sub>2</sub> is formed. In this reaction, slow and partial hydrolysis of XeF<sub>4</sub> takes place as,

$$XeF_4 + H_2O \xrightarrow{-80^{\circ}C} XeOF_2 + 2HF$$

• XeF<sub>4</sub> is a stronger fluorinating agent than XeF<sub>2</sub>. Some of its reactions are

$$\begin{array}{rcl} 2\mathrm{Hg} + \mathrm{XeF}_4 & \longrightarrow & \mathrm{Xe} + 2\mathrm{HgF}_2 \\ & \mathrm{Pt} + \mathrm{XeF}_4 & \longrightarrow & \mathrm{Xe} + \mathrm{PtF}_4 \\ & 2\mathrm{SF}_4 + \mathrm{XeF}_4 & \longrightarrow & \mathrm{Xe} + 2\mathrm{SF}_6 \end{array}$$

· It also acts as an oxidising agent and itself get reduced to Xe.


$$\begin{array}{rcl} {\rm XeF_4+2H_2} & \longrightarrow & {\rm Xe+4HF} \\ {\rm 3XeF_4+4BCl_3} & \longrightarrow & {\rm 3Xe+4BF_3+6Cl_2} \\ {\rm XeF_4+4I^-} & \longrightarrow & {\rm Xe+4F^-+2I_2} \end{array}$$

• XeF<sub>4</sub> dissolves in molten SbF<sub>5</sub> and gives the addition ionic compound, XeF<sub>4</sub> · SbF<sub>5</sub> which is represented as  $[XeF_3]^+$   $[SbF_6]^-$ .

$$XeF_4 + SbF_5 \longrightarrow XeF_4 \cdot SbF_5 \longrightarrow [XeF_3]^+ [SbF_6]^-$$

It also dissolves in molten TaF<sub>5</sub>, giving a compound,  $Xe(TaF_6)_2$ , which is described as an addition compound,  $XeF_2 \cdot 2TaF_5$ .

$$XeF_4 + 2TaF_5 \longrightarrow Xe(TaF_6)_2$$
 or  $XeF_2 \cdot 2TaF_5 + F_2$   
XeF<sub>4</sub> has  $sp^3d^2$ -hybridisation but square planar geometry  
because of the presence of two lone pairs of electrons.



Square planar geometry of XeF<sub>4</sub>

#### 3. Xenon Hexafluoride, XeF<sub>6</sub>

XeF<sub>6</sub> can be prepared as,  

$$\underbrace{Xe + 3F_2}_{1 : 20 \text{ ratio}} \xrightarrow{\text{Ni vessel}}_{250300^{\circ}\text{C}, 50.60 \text{ atm}} \rightarrow \text{XeF}_6$$

$$\begin{array}{c} \underbrace{\operatorname{Xe} + 3F_2}_{1:3 \text{ ratio}} \xrightarrow{\operatorname{Electric discharge}} & \operatorname{Xe} F_6 \\ \\ \operatorname{Xe} F_4 + \operatorname{O}_2 F_2 \longrightarrow & \operatorname{Xe} F_6 + \operatorname{O}_2 \\ \\ & \operatorname{Xe} F_4 + F_2 \longrightarrow & \operatorname{Xe} F_6 \end{array}$$

....

Its properties include

- It is colourless crystalline solid with melting point 49.5°C.
- · It undergoes hydrolysis in water. The final product obtained is XeO<sub>3</sub> (an explosive solid).

$$\begin{array}{l} {\rm XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF} \\ {\rm XeF_6 + 2H_2O \longrightarrow XeO_2F_2 + 4HF} \\ {\rm XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF} \end{array}$$

• In strongly basic solution, the reaction proceeds as

$$XeF_{6} + 7OH^{-} \longrightarrow 6F^{-} + 4H_{2}O + HXeO_{4}^{-}$$
(Xenate ion)  
(Xe = + 6)  

$$HXeO_{4}^{-} \xrightarrow{+2OH^{-}} \frac{6}{4} H_{2}O + \frac{1}{4} Xe + \frac{3}{4} XeO_{6}^{4-}$$
(Pervenate ion)  
(Xe = +8)

In acidic solution, main species is  $XeOF_4$  (Xe = + 6) and  $H_6XeO_6$  (Xe = + 6).  $H_6XeO_6$  is called **xenic acid.** 

• It also acts as an oxidising agent as  

$$XeF_6 + 3H_2 \longrightarrow Xe + 6HF$$
  
 $XeF_6 + 8NH_3 \longrightarrow Xe + 6NH_4F + N_2 \uparrow$   
 $XeF_6 + 6HC1 \longrightarrow Xe + 6HF + 3Cl_2$ 

 It dissolves in HF, giving a solution containing XeF<sub>5</sub><sup>+</sup> and HF<sub>2</sub><sup>+</sup> ions. Due to the presence of these ions solution is a good conductor of electricity.

$$XeF_6 + HF \longrightarrow XeF_5^+ + HF_2^+$$

- It gives addition compound with  $\mbox{AsF}_5$  and  $\mbox{SbF}_5$ molecules.

$$\begin{array}{cccc} \operatorname{XeF}_{6} + MF_{5} & \longrightarrow & \operatorname{XeF}_{6} \cdot MF_{5} & \longrightarrow & [\operatorname{XeF}_{5}]^{+}[MF_{6}]^{-} \\ (M = \operatorname{As, Sb}) \end{array}$$

In these reactions, XeF<sub>6</sub> molecule acts as F<sup>-</sup> ion donor while  $MF_5$  molecule behaves as  $F^-$  ion acceptor.

• It also reacts with alkali metal fluorides (except LiF) and gives species containing XeF<sub>7</sub><sup>-</sup> and XeF<sub>8</sub><sup>2-</sup> ions. In these reactions  $XeF_6$  molecule acts as  $F^-$  ion acceptor and *M*F molecule (M = Na, K, Rb) behaves as F<sup>-</sup> ion donor.

$$\begin{array}{ccc} \operatorname{XeF_6} + 2MF &\longrightarrow & M_2 \operatorname{XeF_8} \\ (M = \operatorname{Na}, \operatorname{K}) & & (\operatorname{Octafluoroxenate}) \\ \operatorname{XeF_6} + 2\operatorname{RbF} & \xrightarrow{200^\circ \mathrm{C}} & 2\operatorname{RbXeF_7} & \xrightarrow{50^\circ \mathrm{C}} \\ & & & (\operatorname{Heptafluoroxenate}) \\ & & & \operatorname{Rb}_2 \operatorname{XeF_8} & + \operatorname{XeF_6} \\ & & & & (\operatorname{Octafluoroxenate}) \end{array}$$

• It is the most volatile among all of the fluorides. Its vapours have a greenish yellow colour.

• It is extremely reactive. Thus, cannot be stored in glass or quartz vessels, since it readily reacts with SiO<sub>2</sub> present in glass as one of its constituents. With  $SiO_2$ ,  $XeF_6$ gives dangerously explosive  $XeO_3$  as a final product.

Ke-

$$2XeF_6 + 3SiO_2 \longrightarrow 2XeO_3 + 3SiF_4$$

 $XeF_6$  has  $sp^3d^3$  hybridisation and

distorted octahedral geometry because of the presence of one lone Distorted octahedral XeF<sub>6</sub> pair of electrons.

#### B. Xenon Oxides

Two of its oxides are given below.

#### 1. Xenon Trioxide, XeO<sub>3</sub>

 $XeO_3$  can be prepared by complete hydrolysis of  $XeF_4$  and XeF<sub>6</sub> as,

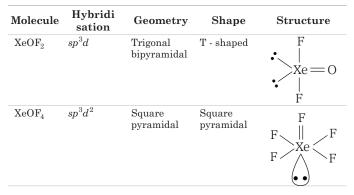
$$\begin{array}{rcl} 6\mathrm{XeF}_{4}+12\mathrm{H}_{2}\mathrm{O} &\longrightarrow& 2\mathrm{XeO}_{3}+4\mathrm{Xe}+3\mathrm{O}_{2}\uparrow+24\mathrm{HF}\\ \mathrm{XeF}_{6}+3\mathrm{H}_{2}\mathrm{O} &\longrightarrow& \mathrm{XeO}_{3}+6\mathrm{HF} \end{array}$$

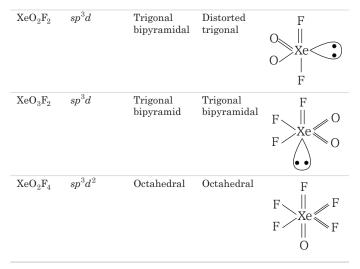
It is a colourless solid, highly explosive and powerful oxidising agent. XeO<sub>3</sub> has *sp*<sup>3</sup>-hybridisation trigonal pyramidal geometry because of the presence of one lone pair of electrons over Xe. The molecule has three Xe == O double bonds containing  $p\pi$ - $d\pi$  overlapping.

#### 2. Xenon Tetraoxide, XeO<sub>4</sub>

 $XeO_4$  can be prepared by the action of conc H<sub>2</sub>SO<sub>4</sub> on sodium or barium xenate (Na<sub>4</sub>XeO<sub>6</sub>; Ba<sub>2</sub>XeO<sub>6</sub>) at room temperature.

$$\begin{split} \mathrm{Na}_{4}\mathrm{XeO}_{6} + 2\mathrm{H}_{2}\mathrm{SO}_{4} &\longrightarrow \mathrm{XeO}_{4} + 2\mathrm{Na}_{2}\mathrm{SO}_{4} + 2\mathrm{H}_{2}\mathrm{O} \\ \mathrm{Ba}_{2}\mathrm{XeO}_{6} + 2\mathrm{H}_{2}\mathrm{SO}_{4} &\longrightarrow \mathrm{XeO}_{4} + 2\mathrm{Ba}\mathrm{SO}_{4} + 2\mathrm{H}_{2}\mathrm{O} \end{split}$$


 $XeO_4$  is purified by vacuum sublimation at 195 K. It is quite unstable gas and decomposes to xenon and oxygen,


$$XeO_4 \longrightarrow Xe + 2O_2^{\uparrow}$$

 $XeO_4$  has tetrahedral structure due to  $sp^3$ -hybridisation of Xe. There are four Xe—O double bonds containing  $p\pi$  -  $d\pi$  overlapping.

#### C. Xenon Oxyfluorides

Xenon forms number of oxyfluorides that are given below in the tabular form.





Preparation

$$\begin{array}{l} \operatorname{XeF_4} + \operatorname{H_2O} \longrightarrow \operatorname{XeOF_2} + 2\operatorname{HF} \\ \operatorname{XeF_6} + \operatorname{H_2O} \longrightarrow \operatorname{XeOF_4} + 2\operatorname{HF} \\ \operatorname{XeF_6} + 2 \operatorname{H_2O} \longrightarrow \operatorname{XeO_2F_2} + 4\operatorname{HF} \end{array}$$

#### Clathrates

Noble gases form a number of compounds in which these are trapped into the cavities of crystal lattices of certain organic and inorganic compounds. These are called cage compounds or clathrates, e.g. Xe · 6H<sub>2</sub>O, quinol clathrate. He and Ne do not form clathrate compounds as the size of the cavity is more than the size of the He or Ne-atom.

#### **Uses of Clathrates**


Some important uses of clathrates include

- Separation of noble gases. Ne can be separated from other gases (Ar and Kr) as it does not form clathrate with quinol.
- The clathrates are convenient form of handling, processing and transporting of isotopes of noble gases.

**Example 9.** The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF<sub>4</sub>, respectively, are

|                     | (JEE Main 2019)     |
|---------------------|---------------------|
| (a) $sp^3d^2$ and 1 | (b) $sp^3d$ and 2   |
| (c) $sp^3d$ and 1   | (d) $sp^3d^2$ and 2 |

**Sol.** (a) In XeOF<sub>4</sub> , Xe is  $sp^3d^2$ -hybridised. Geometry of the molecule is octahedral, but shape of the molecule is square pyramidal. According to VSEPR, theory it has one  $\pi$  bond. Remaining six electron pairs form an octahedron with one position occupied by a lone pair.



Here, Xe contains one lone pair of electrons.

# Practice Exercise

# **ROUND I** Topically Divided Problems

#### Physical and Chemical Properties of Group 15 Elements

 The element which catches fire in air at 30°C and is stored under water is

 (a) sodium
 (b) phosphorus

| (a) sodium    | (b) phosphorus |
|---------------|----------------|
| (c) magnesium | (d) zinc       |

- 2. Elements of group 15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is (NCERT Exemplar)

   (a) Bi<sub>2</sub>O<sub>5</sub>
   (b) BiF<sub>5</sub>
   (c) BiCl<sub>5</sub>
   (d) Bi<sub>2</sub>S<sub>5</sub>
- 3. Which of the following is not hydrolysed?
  (a) PF<sub>3</sub>
  (b) SbCl<sub>3</sub>
  (c) AsCl<sub>3</sub>
  (d) NF<sub>3</sub>
- The molecule having smaller bond angle is

   (a) NCl<sub>3</sub>
   (b) AsCl<sub>3</sub>
   (c) SbCl<sub>3</sub>
   (d) PCl<sub>3</sub>
- **5.** Which of the following oxide is alkaline? (a) P<sub>2</sub>O<sub>3</sub> (b) B<sub>2</sub>O<sub>3</sub> (c) Bi<sub>2</sub>O<sub>3</sub> (d) As<sub>2</sub>O<sub>3</sub>
- 6. Pure nitrogen can be prepared from
  (a) NH<sub>4</sub>OH
  (b) NH<sub>4</sub>NO<sub>2</sub>
  (c) Ba(NO<sub>3</sub>)<sub>2</sub>
  (d) Ca<sub>3</sub>N<sub>2</sub>
- **7.** The correct statement with respect to dinitrogen is (JEE Main 2020)
  - (a)  $\mathrm{N}_2$  is paramagnetic in nature.
  - (b) it can combine with dioxygen at 25°C.
  - (c) liquid dinitrogen is not used in cryosurgery.
  - (d) it can be used as an inert diluent for reactive chemicals.
- 8. A group 15 element, which is a metal and forms a hydride with strongest reducing power among group 15 hydrides. The element is (JEE Main 2021)
  (a) Sb
  (b) P
  (c) As
  (d) Bi
- 9. On heating ammonium dichromate and barium azide separately we get (NCERT Exemplar)
  - (a)  $N_2$  in both cases
  - (b)  $\mathrm{N}_2$  with ammonium dichromate and NO with barium azide

- (c)  $\rm N_2O$  with ammonium dichromate and  $\rm N_2$  with barium azide
- (d)  $\mathrm{NO}_2$  with a mmonium dichromate and  $\mathrm{NO}_2$  with barium azide
- **10.** Liquid ammonia is used for refrigeration because (a) it is basic
  - (b) it is a stable compound
  - (c) it has a high dipole moment
  - (d) it has high heat of vaporisation
- **11.** Ammonia on reaction with hypochlorite anion, can form
  - (a) NO (b)  $N_2H_4$  (c)  $NH_4Cl$  (d)  $HNO_2$
- **12.**  $NH_3$  gas is dried over

| (a) CaO       | (b) HNO <sub>3</sub> |
|---------------|----------------------|
| (c) $P_2 O_5$ | (d) $CuSO_4$         |

- $\begin{array}{ccc} \textbf{13.} & \text{Which oxide do not act as a reducing agent?} \\ & (a) \ N_2O_5 & (b) \ N_2O \\ & (c) \ NO & (d) \ NO_2 \end{array}$
- **14.** Reaction of ammonia with excess  $Cl_2$  gives

|                          | (JEE Main 2020)                |
|--------------------------|--------------------------------|
| (a) $NH_4Cl$ and $N_2$   | (b) NH <sub>4</sub> Cl and HCl |
| (c) $NCl_3$ and $NH_4Cl$ | (d) $NCl_3$ and $HCl$          |

- **15.** Which of the following products will be obtained when copper metal is reacted with dil and conc. HNO<sub>3</sub> respectively ?
  (a) NO and N<sub>2</sub>O<sub>5</sub>
  (b) NO<sub>2</sub> and N<sub>2</sub>O<sub>5</sub>
  - (c) NO and  $NO_2$  (d)  $HNO_2$  and  $N_2$
- 16. The set that represents the pair of neutral oxides of nitrogen is (JEE Main 2021)
  (a) NO and N<sub>2</sub>O
  (b) N<sub>2</sub>O and N<sub>2</sub>O<sub>3</sub>
  (c) N<sub>2</sub>O and NO<sub>2</sub>
  (d) NO and NO<sub>2</sub>
- 17. Nitrogen dioxide
  - (a) does not dissolve in water
  - (b) dissolves in water forming nitric acid
  - (c) dissolves in water to form a mixture of nitrous and nitric acid
  - (d) dissolves in water to form nitrous acid and gives off oxygen

**18.** In the reaction,  $HNO_3 + P_4O_{10} \longrightarrow HPO_3 + x$ , the product *x* is

(a) 
$$NO_2$$
 (b)  $N_2O_5$  (c)  $N_2O_3$  (d)  $H_2O_3$ 

**19.** The reaction of NO with  $\mathrm{N_2O_4}$  at 250 K gives

|                      |                     | 2 1          | -                                 |
|----------------------|---------------------|--------------|-----------------------------------|
|                      |                     |              | (JEE Main 2020)                   |
| (a) N <sub>2</sub> O | (b) NO <sub>2</sub> | (c) $N_2O_3$ | (d) N <sub>2</sub> O <sub>5</sub> |

- **20.** The species in which the N-atom is in a state of sp-hybridisation is (JEE Main 2016) (a) NO<sub>2</sub><sup>-</sup> (b) NO<sub>3</sub><sup>-</sup> (c) NO<sub>2</sub> (d) NO<sub>2</sub><sup>+</sup>
- 21. Which one of the following properties is not shown by NO? ([JEE Main 2014)
  (a) It is diamagnetic in gaseous state
  - (b) It is a neutral oxide
  - (c) It combines with oxygen to form nitrogen dioxide
  - (d) Its bond order is 2.5
- **22.** The oxidation states of nitrogen in NO, NO<sub>2</sub>, N<sub>2</sub>O and NO<sub>3</sub><sup>-</sup> are in the order of *(JEE Main 2021)* (a) NO<sub>3</sub><sup>-</sup> > NO<sub>2</sub> > NO > N<sub>2</sub>O (b) NO<sub>2</sub> > NO<sub>3</sub><sup>-</sup> > NO > N<sub>2</sub>O (c) N<sub>2</sub>O > NO<sub>2</sub> > NO > NO<sub>3</sub><sup>-</sup> (d) NO > NO<sub>2</sub> > N<sub>2</sub>O > NO<sub>3</sub><sup>-</sup>
- **23.** On heating with concentrated NaOH solution in an inert atmosphere of  $CO_2$ , white phosphorus gives a gas. Which of the following statement is incorrect about the gas? (NCERT Exemplar)
  - (a) It is highly poisonous and has smell like rotten fish.
  - (b) Its solution in water decomposes in the presence of light.
  - (c) It is more basic than  $NH_3$ .
  - (d) It is less basic than  $NH_3$ , .
- **24.** Phosphine is produced by adding water to (a)  $CaC_2$  (b)  $HPO_3$  (c)  $Ca_3P_2$  (d)  $P_4O_{10}$
- **25.** What may be expected to happen when phosphine gas is mixed with chlorine gas?
  - (a)  $\mathrm{PCl}_5$  and HCl are formed and the mixture cools down
  - (b)  $PH_3 Cl_2$  is formed with warming up
  - (c)  $PCl_3$  and HCl are formed and the mixture warms up (d) The mixture only cools down
- **26.** The substance used in Holme's signals of the ship is a mixture of

| (a) $\operatorname{CaC}_2$ + $\operatorname{Ca}_3 \operatorname{P}_2$ | (b) $Ca_3 (PO_4)_2 + Pb_3O_4$ |
|-----------------------------------------------------------------------|-------------------------------|
| (c) $H_3PO_4 + CaCl_2$                                                | (d) $NH_3$ + HOCl             |

**27.** In solid state  $PCl_5$  is a

(NCERT Exemplar)

- (a) covalent solid
- (b) octahedral structure
- (c) ionic solid with  $[PCl_6]^+$  octahedral and  $[PCl_4]^-$  tetrahedral
- (d) ionic solid with  $[\mathrm{PCl}_4]^+$  tetrahedral and  $[\mathrm{PCl}_6]^-$  octahedral

- 28. Hydrolytic reaction of PCl<sub>5</sub> in heavy water produces.
  (a) D<sub>3</sub>PO<sub>4</sub>
  (b) POCl<sub>3</sub>
  (c) Both (a) and (b)
  (d) None of these
- 29. Good reducing nature of H<sub>3</sub>PO<sub>2</sub> is attributed to the presence of (JEE Main 2019)
  (a) two P— H bonds
  (b) one P— H bond
  (c) two P— OH bonds
  (d) one P OH bond
- **30.** The pair that contains two P—H bonds in each of the oxoacids is (JEE Main 2019) (a)  $H_4P_2O_5$  and  $H_4P_2O_6$ (b)  $H_3PO_3$  and  $H_3PO_2$ (c)  $H_4P_2O_5$  and  $H_3PO_3$ (d)  $H_3PO_2$  and  $H_4P_2O_5$
- 31. The pair in which phosphorus atoms have a formal oxidation state of +3 is (JEE Main 2016)
  - (a) pyrophosphorous and hypophosphoric acids
  - (b) orthophosphorous and hypophosphoric acids
  - (c) pyrophosphorous and pyrophosphoric acids
  - (d) orthophosphorous and pyrophosphorous acids

#### Physical and Chemical Properties of Group 16 Elements

- 32. Sulphur in +3 oxidation state is present in
  (a) dithionous acid
  (b) sulphurous acid
  (c) thionous acid
  (d) pyrosulphuric acid
- **33.** When the first electron gain enthalpy  $(\Delta_{e_g} H)$  of oxygen is -141 kJ/mol, its second electron gain enthalpy is *(JEE Main 2019)* (a) a positive value
  - (b) a more negative value than the first
  - (c) almost the same as that of the first
  - (d) negative, but less negative than the first
- **34.**  $SO_2 + H_2S \longrightarrow x + y$ , the final products are (a)  $H_2SO_3$  (b)  $H_2SO_4$ (c)  $H_2SO_3$  (d)  $H_2O + S$
- 35. If the boiling point of H<sub>2</sub>O is 373 K, the boiling point of H<sub>2</sub>S will be (JEE Main 2020)
  (a) less than 300 K
  (b) equal to 373 K
  (c) more than 373 K
  (d) greater than 300 K but less than 373 K
- 36. The correct order of thermal stability of the hydrides of group 16 elements is
  (a) H<sub>2</sub>Po > H<sub>2</sub>Te > H<sub>2</sub>Se > H<sub>2</sub>S > H<sub>2</sub>O
  - (b)  $H_2O < H_2S > H_2Se > H_2Te > H_2Po$
  - (c)  $H_{2}O > H_{2}S > H_{2}Se > H_{2}Te > H_{2}Po$
  - (d)  $H_2O > H_2S > H_2Se > H_2Te > H_2Po$

- **37.** Ozone with KI solution produces
- (a)  $IO_3$  (b)  $I_2$  (c)  $Cl_2$  (d) HI **38.** Sulphur on boiling with NaOH solution gives
- (a)  $Na_2SO_3 + H_2S$  (b)  $Na_2S_2O_3 + Na_2S$ (c)  $Na_2S_2O_3 + NaHSO_3$  (d)  $Na_2SO_3 + SO_2$

## Compounds of Group 18 Elements

| <b>39</b> . | S—S bond is present in                        |                                                |
|-------------|-----------------------------------------------|------------------------------------------------|
|             | (a) $\alpha$ -(SO <sub>3</sub> ) <sub>n</sub> | (b) $\gamma$ -(S <sub>3</sub> O <sub>9</sub> ) |
|             | (c) $H_2S_2O_3$                               | (d) $H_2S_2O_8$                                |

**40.** In the reaction, HCOOH  $\xrightarrow{\text{H}_2\text{SO}_4}$  CO + H<sub>2</sub>O;

 $H_2SO_4$  acts as

| (a) reducing agent    | (b) oxidising agent |
|-----------------------|---------------------|
| (c) dehydrating agent | (d) All of these    |

- **41.** Concentrated sulphuric acid can be reduced by (a) NaCl (b) NaF (c) NaOH (d) NaBr
- 42. Copper turnings when heated with concentrated sulphuric acid will give
  (a) H<sub>2</sub>S
  (b) SO<sub>2</sub>
  (c) SO<sub>3</sub>
  (d) O<sub>2</sub>
- 43. Sulphuric acid has great affinity for water because
  (a) acid decomposes water(b) it hydrolyses the acid(c) it decomposes the acid(d) acid forms hydrates with water
- $\begin{array}{l} \textbf{45.} Which of the following are peroxoacids of sulphur?\\ (a) H_2SO_5 and H_2S_2O_8\\ (b) H_2SO_5 and H_2S_2O_7\\ (c) H_2S_2O_7 and H_2S_2O_8 \end{array}$ 
  - (d)  $\mathrm{H}_2\!\mathrm{S}_2\!\mathrm{O}_6$  and  $\mathrm{H}_2\!\mathrm{S}_2\!\mathrm{O}_5$

#### Physical and Chemical Properties of Group 17 Elements

- **46.** The chief source of iodine in which it is present as sodium iodate is
  - (a) carnallite
  - (b) sea weeds
  - (c) caliche
  - (d) iodine never exists as sodium iodate
- $\begin{array}{ccc} \textbf{47.} & \text{Which of the following is strongest oxidising agent?} \\ & \text{(a) } I_2 & \text{(b) } Br_2 & \text{(c) } Cl_2 & \text{(d) } F_2 \end{array}$
- **48.** Fluorine reacts with water to give

| (a) HF, $O_2$ and $O_3$ | (b) HF and $F_2$ |
|-------------------------|------------------|
| (c) HF and $O_2$        | (d) HF and $O_3$ |

49. The solubility of iodine in water increases in presence of(a) chloroform(b) alcohol

| (0 | (c) potassium iodide |  |  |  | le | (d) sodium hydroxide |  |
|----|----------------------|--|--|--|----|----------------------|--|
| -  |                      |  |  |  |    |                      |  |

- 51. Iodine is formed when potassium iodide reacts with a solution of
  (a) ZnSO<sub>4</sub>
  (b) CuSO<sub>4</sub>
  (c) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>
  (d) Na<sub>2</sub>SO<sub>4</sub>
- **52.** Among the give compounds, the strongest acid is (a) HI (b) HBr (c) HCl (d) HF

#### **Compounds of Group 17 Elements**

- 53. The acid employed for etching of glass is

  (a) HCl
  (b) HClO<sub>4</sub>
  (c) HF
  (d) aqua regia

  54. HF has highest boiling point among hydrogen
- halides, because it has (JEE Main 2019)
  (a) lowest ionic character
  - (a) lowest lonic character
  - (b) strongest van der Waals' interactions
  - (c) strongest hydrogen bonding
  - (d) lowest dissociation enthalpy
- 55. Which of the following is the most volatile compound?(a) HCl(b) HI(c) HBr(d) HF
- 56. Afinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?
  (a) HF
  (b) HCl
  (c) HBr
  (d) HI
- **58.** Total number of lone pair of electron in<br/> $I_3^-$  ion is(JEE Main 2018)<br/>(a) 3(a) 3(b) 6(c) 9(d) 12
- **59.** Which among the following is the most reactive? (*JEE Main 2015*)
  - (a)  $\operatorname{Cl}_2$  (b)  $\operatorname{Br}_2$  (c)  $\operatorname{I}_2$  (d) ICl
- 60. Which one of the following given below is a pseudohalide?
  (a) I<sub>2</sub><sup>-</sup>
  (b) IF<sup>-</sup>
  (c) ICl
  (d) CN<sup>-</sup>
- 61. Concentrated HNO<sub>3</sub> reacts with I<sub>2</sub> to gives
  (a) HI
  (b) HOI
  - (c)  $HIO_3$  (d)  $HOIO_2$

**62.** Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.

- 63. Which one of the following is the anhydride of HClO<sub>4</sub>?
  (a) ClO<sub>2</sub>
  (b) Cl<sub>2</sub>O<sub>7</sub>
  (c) Cl<sub>2</sub>O
  (d) Cl<sub>2</sub>O<sub>6</sub>
- 64. Among the following oxoacids, the correct decreasing order of acid strength is (JEE Main 2014)
  (a) HOCl > HClO<sub>2</sub> > HClO<sub>3</sub> > HClO<sub>4</sub>
  (b) HClO<sub>4</sub> > HOCl > HClO<sub>2</sub> > HClO<sub>3</sub>
  (c) HClO<sub>4</sub> > HClO<sub>3</sub> > HClO<sub>2</sub> > HOCl
  (d) HClO<sub>2</sub> > HClO<sub>4</sub> > HClO<sub>3</sub> > HClO<sub>3</sub> > HOCl
- **65.** The products obtained when chlorine gas reacts with cold and dilute aqueous NaOH are

|                                          | (JEE Main 2017)                           |
|------------------------------------------|-------------------------------------------|
| (a) $ClO^{-}$ and $ClO_{3}^{-}$          | (b) $\text{ClO}_2^-$ and $\text{ClO}_3^-$ |
| (c) Cl <sup>-</sup> and ClO <sup>-</sup> | (d) $Cl^{-}$ and $ClO_{2}^{-}$            |

**66.** HClO<sub>4</sub> + P<sub>2</sub>O<sub>5</sub>  $\longrightarrow$  (A) and (B)

| A and B are                                         |                         |
|-----------------------------------------------------|-------------------------|
| (a) $\mathrm{HClO}_3$ , $\mathrm{H}_3\mathrm{PO}_4$ | (b) $Cl_2O_6$ , $HPO_3$ |
| (c) $ClO_2$ , $H_2PO_4$                             | (d) $Cl_2O_7$ , $HPO_3$ |

- 67. What products are expected from the disproportionation reaction of hypochlorous acid?
  (a) HClO<sub>3</sub> and Cl<sub>2</sub>O
  (b) HClO<sub>2</sub> and HClO<sub>4</sub>
  (c) HCl and Cl<sub>2</sub>O
  (d) HCl and HClO<sub>3</sub>
- **68.** The following acids have been arranged in the order of decreasing acid strength. Identify the correct order

| HOCl(I)            | HOBr(II) | HOI(III)    |
|--------------------|----------|-------------|
| (a) $I > II > III$ | (b) I    | I > I > III |
| (c) III > II > I   | (d) I    | > III > II  |

#### Physical and Chemical Properties of Group 18 Elements

| 69. | Which one has the high | est boiling poi | nt?             |
|-----|------------------------|-----------------|-----------------|
|     |                        |                 | (JEE Main 2015) |
|     | (a) He                 | (b) Ne          |                 |
|     | (c) Kr                 | (d) Xe          |                 |
| 70. | Welding of magnesium   | can be done in  | an              |
|     | atmosphere of          |                 |                 |

| (a) Xe | (b) He | (c) Kr | (d) Ne |
|--------|--------|--------|--------|

- 71. Noble gases are sparingly soluble in water due to

  (a) dipole-dipole interaction
  (b) dipole-induced dipole interaction
  (c) induced dipole-induced dipole interaction
  (d) hydrogen bonding
- **72.** The noble gas which can diffuse through rubber and glass easily is
  - (a) Xe (b) Ne (c) Ar (d) He
- 73. The correct order of solubility in water for He, Ne, Ar, Kr, Xe is(a) Xe > Kr > Ar > Ne > He
  - (b) Ar > Ne > He > Kr > Xe
  - (c) He > Ne > Ar > Kr > Xe
  - (d) Ne > Ar > Kr > He > Xe
- 74. When the mineral clevite is heated, it give off the inert gas(a) helium(b) xenon(c) radon(d) argon
- **75.** The noble gas which shows abnormal behaviour in liquid state and behave as super fluid is
  - (a) Ne (b) He (c) Ar (d) Xe
- 76. Which of the following is the life saving mixture for an asthma patient?(a) Mixture of helium and oxygen
  - (b) Mixture of neon and oxygen
  - (c) Mixture of xenon and nitrogen
  - (d) Mixture of argon and oxygen
- **77.** The noble gas which forms maximum number of compounds is
  (a) Ar
  (b) He

| (4) 111 (5) 1 |    |
|---------------|----|
| (c) Ne (d) 2  | Xe |

#### **Compounds of Group 18 Elements**

- **78.**  $XeF_2$  on hydrolysis gives(a)  $XeO_3$ (b) XeO(c) Xe(d)  $XeO_2$
- **79.** Which of the following is not obtained by direct reaction of constituent elements? (a)  $XeO_3$  (b)  $XeF_2$ (c)  $XeF_6$  (d)  $XeF_4$
- **80.** Among the following molecule

| (i) $XeO_3$            | (ii) XeOF <sub>4</sub> |
|------------------------|------------------------|
| (iii) XeF <sub>6</sub> |                        |

those having same number of lone pairs on Xe are(a) (i) and (iii) only(b) (i) and (ii) only(c) (ii) and (iii) only(d) (i), (ii) and (iii)

**81.** The geometry of  $XeOF_4$  molecule is

| (a) tetrahedral   | (b) square pyramidal |
|-------------------|----------------------|
| (c) square planar | (d) octahedral       |

**82.** The pair of species having identical shape for molecules of both species is

| (a) $XeF_2$ , $IF_2^-$ | (b) $BF_3$ , $NH_3$   |
|------------------------|-----------------------|
| (c) $CF_4$ , $SF_4$    | (d) $PCl_5$ , $ICl_5$ |

**83.** Number of  $p\pi - d\pi$  bonds present in XeO<sub>4</sub> are (a) four (b) two

| (c) three | (d) zero |
|-----------|----------|

**84.**  $XeO_2F_2$  is obtained by partial hydrolysis of

| (a) XeOF <sub>4</sub> | (b) XeF <sub>6</sub> |
|-----------------------|----------------------|
| (c) Both (a) and (b)  | (d) None of these    |

 The number of P—O—P bridges in the structure of phosphorus pentoxide and phosphorus trioxide are respectively

(a) 5, 5 (b) 6, 5 (c) 5, 6 (d) 6, 6

2. Bleaching powder is disinfectant for purification of water, when water born germs are killed, but disinfectant activity is destroyed. It is due to its disproportionation into

(a) CaCl<sub>2</sub> and Cl<sub>2</sub>
(b) CaCl<sub>2</sub> and Ca(ClO<sub>3</sub>)<sub>2</sub>
(c) CaO and Cl<sub>2</sub>

(d) CaO,  $Cl_2$  and  $CaCl_2$ 

- **3.** A substance which gives a yellow precipitate when boiled with an excess of nitric acid and ammonium molybdate and red precipitate with  $AgNO_3$  is
  - (a) orthophosphate
  - (b) pyrophosphate
  - (c) metaphosphate
  - (d) hypophosphate
- 4. In compounds of type ECl<sub>3</sub>, where E = N, P, As or Bi the angles Cl—E—Cl for different E are in the order

| (a) $N > P > As > Bi$ | (b) $N > P = As = Bi$ |
|-----------------------|-----------------------|
| (c) $N < P = As = Bi$ | (d) $N < P < As < Bi$ |

5. The electron affinity values (in kJ mol<sup>-1</sup>) of three halogens *X*, *Y* and *Z* are respectively – 349, – 333 and – 325. Then *X*, *Y* and *Z* respectively, are

| (a) $F_2$ , $Cl_2$ and $Br_2$                                              | (b) $\operatorname{Cl}_2$ , $\operatorname{F}_2$ and $\operatorname{Br}_2$ |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| (c) $\operatorname{Cl}_2$ , $\operatorname{Br}_2$ and $\operatorname{F}_2$ | (d) $Br_2$ , $Cl_2$ and $F_2$                                              |

**6.** The stability of interhalogen compounds follows the order

| (a) $IF_3 > BrF_3 > ClF_3$ | (b) $BrF_3 > IF_3 > ClF_3$ |
|----------------------------|----------------------------|
| (c) $ClF_3 > BrF_3 > IF_3$ | (d) $ClF_3 > IF_3 > BrF_3$ |

- 85. Which of the following compounds can not be stored in glass vessels ?
  (a) XeF<sub>4</sub> (b) XeF<sub>6</sub> (c) XeO<sub>3</sub> (d) XeF<sub>2</sub>
- **86.** Xenon hexafluoride reacts with silica to form a xenon compound *X*. The oxidation state of xenon in *X* is (a) +2 (b) +4 (c) +6 (d) 0
- **87.** Clathrates are
  - (a) non-stoichiometric compounds
  - (b) complex compounds
  - (c) interstitial compounds
  - (d) ionic compounds

## ROUND II Mixed Bag

- 7. Which of the following statements is true?
  - (a)  $H_3PO_3$  is a stronger acid than  $H_2SO_3$
  - (b) In aqueous medium HF is a stroonger acid than HCl
  - (c)  $\mathrm{HClO}_4$  is weaker acid than  $\mathrm{HClO}_3$
  - (d)  $\mathrm{HNO}_3$  is a stronger acid than  $\mathrm{HNO}_2$
- **8.** The acidic, basic and amphoteric oxides, respectively, are
  - (JEE Main 2020) (a)  $Cl_2O, CaO, P_4O_{10}$  (b)  $N_2O_3, Li_2O, Al_2O_3$ (c)  $Na_2O, SO_3, Al_2O_3$  (d) MgO,  $Cl_2O, Al_2O_3$
- 9. Which of the following dissolves in water but does not give any oxyacid solution?
  (a) SO<sub>2</sub>
  (b) OF<sub>2</sub>
  (c) SCl<sub>4</sub>
  (d) SO<sub>3</sub>
- **10.** Which one of the following statements is a correct statement?
  - (a) Basicity of H<sub>3</sub>PO<sub>4</sub> and H<sub>3</sub>PO<sub>3</sub> is 3 and 3 respectively
  - (b) Acidity of  $H_3PO_4$  and  $H_3PO_3$  is 3 and 3 respectively
  - (c) Acidity of  $\rm H_{3}PO_{4}$  and  $\rm H_{3}PO_{3}~$  is 3 and 2 respectively
  - (d) Basicity of  $\mathrm{H_{3}PO_{4}}$  and  $\mathrm{H_{3}PO_{3}}$  is 3 and 2 respectively
- 11. Correct order of decreasing thermal stability is as

  (a) NH<sub>3</sub> > PH<sub>3</sub> > AsH<sub>3</sub> > SbH<sub>3</sub>
  (b) PH<sub>3</sub> > NH<sub>3</sub> > AsH<sub>3</sub> > SbH<sub>3</sub>
  (c) AsH<sub>3</sub> > PH<sub>3</sub> > NH<sub>3</sub> > SbH<sub>3</sub>
  (d) SbH<sub>3</sub> > AsH<sub>3</sub> > PH<sub>3</sub> > NH<sub>3</sub>
- **12.** The reaction in which the hybridisation of the underlined atom is affected is *(JEE Main 2020)* (a)  $\underline{XeF_4} + SbF_5 \longrightarrow$ (b)  $H_0S O_4 + NaCl \xrightarrow{420 \text{ K}}$ 
  - (c)  $H_3 \underline{P} O_2 \xrightarrow{\text{Disproportionation}}$
  - (d)  $NH_3 \xrightarrow{H^+}$

- 13. A green yellow gas reacts with an alkali metal hydroxide to form a halate which can be used in fireworks and safety matches. The gas and halate respectively are

  (a) Br<sub>2</sub>, KBrO<sub>3</sub>
  (b) Cl<sub>2</sub>, KClO<sub>3</sub>
  (c) I<sub>2</sub>, NaIO<sub>3</sub>
  (d) Cl<sub>2</sub>, NaClO<sub>3</sub>
- **14.** Which one of the following reaction is not feasible? (a)  $2KI + Br_2 \longrightarrow 2KBr + I_2$ (b)  $2KBr + I_2 \longrightarrow 2KI + Br_2$ (c)  $2KBr + Cl_2 \longrightarrow 2KCl + Br_2$ (d)  $2H_2O + 2F_2 \longrightarrow 4HF + O_2$
- **15.** The following two reactions of  $HNO_3$  with Zn are given as (equations are not balanced)

In reactions A and B, the compounds X and Y

respectively, are

- (a)  $NO_2$  and NO (b)  $NO_2$  and  $NO_2$ (c) NO and  $NO_2$  (d)  $NO_2$  and  $NH_4NO_3$
- **16.** Which one of the following statements regarding helium is incorrect?
  - (a) It is used to produce and sustain powerful super conducting magnets
  - (b) It is used in gas-cooled nuclear reactors
  - (c) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable
  - (d) It is used as a cryogenic agent for carrying out experiments at low temperature
- **17.** The formation of  $O_2^+[PtF_6]^-$  is the basis for the

formation of xenon fluorides. This is because

- (a)  $\mathrm{O}_2$  and Xe have comparable sizes
- (b) both  $\mathrm{O}_2$  and Xe are gases
- (c)  $\mathrm{O}_2$  and Xe have comparable ionisation energies
- (d) Both (a) and (b)
- 18. Which of the following statements are correct for SO<sub>2</sub> gas? [NCERT Exemplar]
  - (a) It acts as bleaching agent in moist conditions
  - (b) Its dilute solution is used as disinfectant
  - (c) It can be prepared by the reaction of dilute  $\mathrm{H_2SO_4}$  with metal sulphide
  - (d) (a) and (b) both are correct  $% \left( {{\left( {{{\bf{a}}} \right)}_{{\rm{a}}}}_{{\rm{b}}}} \right)$
- **19.** A metal, *M* forms chlorides in its +2 and +4 oxidation states. Which of the following statements about these chlorides is correct?
  - (a)  $MCl_2$  is more volatile than  $MCl_4$
  - (b)  $M\mathrm{Cl}_2\,\mathrm{is}\,\mathrm{more}\,\mathrm{soluble}\,\mathrm{in}\,\mathrm{anhydrous}\,\mathrm{ethanol}\,\mathrm{than}\,M\mathrm{Cl}_4$
  - (c)  $MCl_2$  is more ionic than  $MCl_4$
  - (d)  $M\!\mathrm{Cl}_2\,\mathrm{is}$  more easily hydrolysed than  $M\!\mathrm{Cl}_4$

- **20.** Which of the following statements is/are incorrect ? (a)  $He_{II}$  has much lower entropy
  - (b) Transition of He to  $He_{II}$  takes place, across the line  $\lambda-\lambda'=2.2~K$
  - (c) It has very high viscosity
  - (d)  $\mathrm{He}_\mathrm{II}$  is unique liquid that exhibits superconductivity

#### **21.** Which of the following statement is wrong?

- (a) The stability of hydrides increases from  $NH_3$  to  $BiH_3$  in group 15 of the periodic table
- (b) Nitrogen can't from  $d\pi p\pi$  bond
- (c) Singe N—N bond is weaker than the single P—P bond.
- (d)  $N_2O_4$  has two resonance structure
- **22.** Which one of the following reaction of xenon compounds is not feasible?
  - (a)  $XeO_3 + 6HF \longrightarrow XeF_6 + 3H_2O$
  - (b)  $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1.5 O_2$
  - (c)  $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$

(d) 
$$XeF_6 + RbF \longrightarrow Rb[XeF_7]$$

- **23.** A liquid X is treated with  $Na_2CO_3$  solution. A mixture of two salts Y and Z are produced in the solution. The mixture on acidification with sulphuric acid and distillation produces the liquid X again. Identify X.
  - (a)  $\operatorname{Cl}_2$  (b)  $\operatorname{Br}_2$
  - (c) Hg (d) I<sub>2</sub>
- 24. On heating, compound (A) gives a gas (B) which is a constituent of air. This gas when treated with 3 moles of hydrogen (H<sub>2</sub>) in the presence of a catalyst gives another gas (C) which is basic in nature. Gas C on further oxidation in moist condition gives a compound (D) which is a part of acid rain. Identify compound (D). [NCERT Exemplar]

  (a) HNO<sub>2</sub>
  (b) HNO<sub>3</sub>
  (c) H<sub>2</sub>SO<sub>4</sub>
  (d) HCl
- 25. On heating lead (II) nitrate gives a brown gas "A". The gas "A" on cooling changes to colourless solid "B". Solid "B" on heating with NO changes to a blue solid "C". Identify "C". (NCERT Exemplar)
  (a) NO<sub>2</sub>
  (b) N<sub>2</sub>O<sub>4</sub>
  (c) N<sub>2</sub>O<sub>5</sub>
  (d) N<sub>2</sub>O<sub>3</sub>
- **26.**  $PCl_3$  and  $PCl_5$  both exist;  $NCl_3$  exist but  $NCl_5$  does not exist. It is due to (AIEEE 2002)
  - (a) lower electronegativity of P and N
  - (b) lower tendency of N to form covalent bond
  - (c) availability of vacant  $d\mbox{-orbital}$  in P but not in N
  - (d) statement is itslelf incorrect

- 27. A dark brown solid (X) reacts with NH<sub>3</sub> to form a mild explosive which decomposes to give a violet coloured gas. (X) also reacts with H<sub>2</sub> to give an acid (Y). (Y) can also be prepared by heating its salt with H<sub>3</sub>PO<sub>4</sub>. X and Y are

  (a) Cl<sub>2</sub>, HCl
  (b) SO<sub>2</sub>, H<sub>2</sub>SO<sub>4</sub>
  (c) Br<sub>2</sub>, HBr
  (d) I<sub>2</sub>, HI
- **28.** Reaction of an inorganic sulphite X with dilute  $H_2SO_4$  generates compound Y. Reaction of Y with NaOH gives X. Further, the reaction of X with Y and water affords compound Z. Y and Z respectively, are (JEE Main 2020) (a)  $SO_2$  and  $Na_2SO_3$  (b)  $SO_3$  and  $NaHSO_3$ (c)  $SO_2$  and  $NaHSO_3$  (d) S and  $Na_2SO_3$
- 29. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with NH<sub>3</sub> an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from (NCERT Exemplar)

  (a) -3 to +3
  (b) -3 to 0
  (c) -3 to +5
  (d) 0 to -3
- **30.** The correct statement among the following is (JEE Main 2019)
  - (a)  $(SiH_3)_3N$  is planar and less basic than  $(CH_3)_3N$ .
  - (b) (SiH<sub>3</sub>)<sub>3</sub>N is pyramidal and more basic than (CH<sub>3</sub>)<sub>3</sub>N.
  - (c) (SiH<sub>3</sub>)<sub>3</sub>N is pyramidal and less basic than (CH<sub>3</sub>)<sub>3</sub>N.
  - (d)  $(SiH_3)_3N$  is planar and more basic than  $(CH_3)_3N$ .
- **31.** Which of the following option are not in accordance with the property mentioned against them ?
  - (a)  $F_2 > Cl_2 > Br_2 > I_2$  (Oxidising power)
  - (b) MI > MBr > MCl > MF (Ionic character of metal halide)
  - (c)  $Cl_2 > Br_2 > F_2 > I_2$  (Bond dissociation energy) (d) HI < HBr < HCl < HF (H—X bond shrength)
  - (u) III < IIDI < IIOI < III (II—A bolid shrengul)
- **32.** Copper metal on treatment with dilute  $HNO_3$

produces a gas (X). (X) when passed through acidic solution of stannous chloride, a nitrogen containing compound (Y) is obtained. (Y) on reaction with nitrous acid produces a gas (Z). Gas (Z) is (a) NO (b) N<sub>2</sub> (c) NO (c) NO

- (c)  $NO_2$  (d)  $N_2O$
- **33.** White phosphorus on reaction with lime water gives calcium salt of an acid (*A*) along with a gas (*X*). Which of the following statement is correct with respect to above?
  - (a) (A) on heating gives (X) and  $O_2$

- (b) The bond angle in (X) is less than that in case of ammonia
- (c) (A) is a dibasic acid
- (d) (X) is more basic than ammonia
- **34.** An oxide of a non-metal has the following properties
  - (i) It acts both as a proton donor as well as proton acceptor
  - (ii) It reacts readily with basic and acidic oxides
  - (iii) It oxidises Fe at its boiling point.

The oxide is

| (a) $P_2O_5$         | (b) $SiO_2$         |
|----------------------|---------------------|
| (c) H <sub>2</sub> O | (d) CO <sub>2</sub> |

- **35.** Which of the following statements regarding sulphur is incorrect?
  - (a)  $S_2$  molecule is paramagnetic
  - (b) The vapour at 200°C consists mostly of  $\mathrm{S}_8$  rings
  - (c) At 600°C the gas mainly consists of  ${\rm S}_2$  molecules
  - (d) The oxidation state of sulphur is never less than +4 in its compounds
- **36.** Identify the incorrect statement among the following.
  - (a) Ozone reacts with  $SO_2$  to give  $SO_3$
  - (b) Silicon reacts with NaOH (aq) in the presence of air to give Na  $_2$ SiO $_3$  and H $_2$ O
  - (c)  $Cl_2$  reacts with excess of  $NH_3$  to give  $N_2$  and HCl
  - (d)  $Br_2\,reacts$  with hot and strong NaOH solution to give NaBr,  $NaBrO_4$  and  $H_2O$
- **37.** Concentrated hydrochloric acid when kept in open air sometimes produces a cloud of white fumes. The explanation for it is that
  - (a) concentrated hydrochloric acid emits strongly smelling HCl gas all the time
  - (b) oxygen in air reacts with the emitted HCl gas to form a cloud of chlorine gas
  - (c) strong affinity of HCl gas for moisture in air results in forming of droplets of liquid solution which appears like a cloudy smoke
  - (d) due to strong affinity for water, concentrated hydrochloric acid pulls moisture of air towards itself. This moisture forms droplets of water and hence, the cloud

#### **Numeric Value Questions**

- **38.** The number of S—O—S bonds in suphur trioxidetrimer  $(S_3O_9)$  is ......
- **39.** In  $NO_3^-$  ion, the number of bond pair of electrons on nitrogen atom are ......

- **40.** The basicity of orthophosphoric acid is ......
- **41.** The number of hydrogen atom(s) directly phosphorus atom in hypophosphorus acid is ......
- **42.** In H<sub>3</sub>PO<sub>3</sub> acid, if *x* is the number of lone pairs, *y* is the number of  $\sigma$  bonds and *z* is the number of  $\pi$  bonds then the value of x + y + z is .....
- **43.** Reaction of  $Br_2$  with  $Na_2CO_3$  in aqueous solution gives X and Y with evolution of Z gas. The sum of total number of X, Y, Z molecule formed in the balanced chemical equation is .....
- **44.** In the preparation of  $HNO_3$ , we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of  $NH_3$  will be ........

- **45.** Among the given oxoacids of phosphorous  $H_4P_2O_7$ ,  $H_2P_2O_8$ ,  $H_4P_2O_6$ ,  $H_2P_2O_5$  and  $H_3PO_2$ , the total number of tetrabasic compounds is/are .....
- **46.** If X is the number of moles of phosphine formed on thermal decomposition of hypophosphorus acid, then the value of  $(x^2 0.5)$  is .....
- **47.** Nitric acid forms an oxide of nitrogn on reaction with  $P_4O_{10}$ . The resonating structures of the oxide of nitrogen formed will be (NCERT Exemplar)
- **48.** White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. The mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water will be ..... (g).

#### Round I

| 1. (b)         | <b>2.</b> (b)   | <b>3.</b> (d)  | <b>4.</b> (c)  | <b>5.</b> (c)  | <b>6.</b> (b)    | <b>7.</b> (d)  | <b>8.</b> (d)    | <b>9.</b> (a)  | 10. (d)        |
|----------------|-----------------|----------------|----------------|----------------|------------------|----------------|------------------|----------------|----------------|
| 11. (b)        | <b>12.</b> (a)  | <b>13.</b> (a) | 14. (d)        | <b>15.</b> (c) | 16. (a)          | 17. (c)        | 18. (b)          | <b>19.</b> (c) | <b>20.</b> (d) |
| <b>21.</b> (a) | <b>22.</b> (a)  | <b>23.</b> (c) | <b>24.</b> (c) | <b>25.</b> (a) | <b>26.</b> (a)   | <b>27.</b> (d) | <b>28.</b> (a)   | <b>29.</b> (a) | <b>30.</b> (d) |
| <b>31.</b> (d) | <b>32.</b> (a)  | <b>33.</b> (a) | <b>34.</b> (d) | <b>35.</b> (a) | <b>36.</b> (c)   | <b>37.</b> (b) | <b>38.</b> (b)   | <b>39.</b> (c) | <b>40.</b> (c) |
| 41. (d)        | <b>42.</b> (b)  | <b>43.</b> (d) | <b>44.</b> (c) | <b>45.</b> (a) | <b>46.</b> (c)   | 47. (d)        | <b>48.</b> (a)   | <b>49.</b> (c) | <b>50.</b> (b) |
| <b>51.</b> (b) | <b>52.</b> (a)  | <b>53.</b> (c) | <b>54.</b> (c) | <b>55.</b> (a) | <b>56.</b> (a)   | <b>57.</b> (a) | 58. (c)          | <b>59.</b> (d) | <b>60.</b> (d) |
| <b>61.</b> (c) | <b>62.</b> (c)  | <b>63.</b> (b) | <b>64.</b> (c) | <b>65.</b> (c) | <b>66.</b> (d)   | <b>67.</b> (d) | <b>68.</b> (a)   | <b>69.</b> (d) | <b>70.</b> (b) |
| <b>71.</b> (b) | <b>72.</b> (d)  | <b>73.</b> (a) | <b>74.</b> (a) | <b>75.</b> (b) | <b>76.</b> (a)   | <b>77.</b> (d) | 78. (c)          | <b>79.</b> (a) | <b>80.</b> (d) |
| 81. (b)        | <b>82.</b> (a)  | <b>83.</b> (a) | 84. (c)        | <b>85.</b> (b) | 8 <b>6.</b> (c)  | <b>87.</b> (a) |                  |                |                |
| Round II       |                 |                |                |                |                  |                |                  |                |                |
| 1. (d)         | <b>2.</b> (b)   | <b>3.</b> (a)  | <b>4.</b> (a)  | <b>5.</b> (b)  | <b>6.</b> (a)    | <b>7.</b> (d)  | 8. (b)           | <b>9.</b> (b)  | 10. (d)        |
| 11. (a)        | 12. (a)         | 13. (b)        | 14. (b)        | 15. (d)        | 16. (c)          | 17. (c)        | 18. (d)          | <b>19.</b> (c) | <b>20.</b> (c) |
| <b>21.</b> (a) | <b>22.</b> (a)  | <b>23.</b> (b) | <b>24.</b> (b) | <b>25.</b> (d) | <b>26.</b> (c)   | 27. (d)        | 28. (c)          | <b>29.</b> (a) | <b>30.</b> (a) |
| <b>31.</b> (b) | <b>32.</b> (d)  | <b>33.</b> (b) | <b>34.</b> (c) | <b>35.</b> (d) | <b>36.</b> (d)   | <b>37.</b> (b) | <b>38.</b> (3)   | <b>39.</b> (4) | <b>40.</b> (3) |
| <b>41.</b> (2) | <b>42.</b> (13) | <b>43.</b> (9) | <b>44.</b> (2) | <b>45.</b> (3) | <b>46.</b> (0.5) | <b>47.</b> (2) | <b>48.</b> (219) |                |                |

Answers

# Solutions

#### Round I

- Due to very low ignition temperature (303 K) of phosphorus, it is always kept under water.
- Bismuth forms BiF<sub>5</sub> only in which its oxidation state is +5.
- Due to absence of d-orbitals in N-atom, it cannot accept electrons from H<sub>2</sub>O for hydrolysis of NF<sub>3</sub>.
- 4. MCl<sub>3</sub> [where, M = has sp<sup>3</sup>-hybridised M-element N, P, As, Sb] with one lone pair.

Lone pair and bond pair repulsion decreases bond angle. However, the bond pairs of electrons are much farther away from the central atom in  $NCl_3$  than they are in  $PCl_3$ ,  $AsCl_3$  and  $SbCl_3$ .

Thus, bond angle decreases from  $\mathrm{NCl}_3$  (maximum) to  $\mathrm{SbCl}_3$  (minimum).

**5.**  $\underbrace{P_2O_3 \quad A_2O_3 \quad B_2O_3}_{Acidic \text{ oxides}} \qquad \underbrace{Bi_2O_3}_{Alkaline} \} \text{ as Bi is most metallic}$ 

among the group.

**7.** (a) All electrons in  $N_2$  are paired, thus it is diamagnetic, not paramagnetic.

(b) 
$$N_2 + O_2 \xrightarrow{Above}{2000^{\circ}C} 2NO(g)$$
,

- (c) Liquid N<sub>2</sub> gas is used to create extremely cold temperature to destroy diseased tissues located outside the body.
- (d)  $N_2$  gas used as a diluent due to it's inert nature. Hence, the correct option is (d).
- **8.** In group 15, N and P = Non metal;

As and Sb = Metalloid; Bi = Metal

In  $NH_3$ , hydrogen atom gets partial positive charge due to less electronegativity.

But in  $BiH_3$ , hydrogen atom gets partial negative charge because hydrogen is more electronegative than bismuth. i.e.  $BiH_3$  is a strong reducing agent than others because we know that  $H^-$  is a strong reducing agent.

- $\begin{array}{ll} \textbf{9.} & (\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \stackrel{\Delta}{\longrightarrow} \mathrm{Cr}_2\mathrm{O}_3 \downarrow + \mathrm{N}_2 \uparrow + 4\mathrm{H}_2\mathrm{O} \\ & \mathrm{Ammonium} \\ & \mathrm{dichromate} \\ & \mathrm{Ba}(\mathrm{N}_3)_2 \quad \stackrel{\Delta}{\longrightarrow} \mathrm{Ba} + 3\mathrm{N}_2 \\ & \mathrm{Barium\ azide} \end{array}$
- **10.** Liquid ammonia is used in refrigeration because it has high heat of vaporisation.

**11.** 
$$3NH_3 + OCl^- \longrightarrow NH_2 - NH_2 + NH_4Cl + OH^-$$

**12.**  $NH_3$  reacts with  $P_2O_5$ , therefore, it cannot be dried over either of them.

 $\rm CuSO_4$  and  $\rm HNO_3$  are not drying agent.  $\rm NH_3$  can be dried over CaO only because it is a drying agent with which it does not react.

- 13. In N<sub>2</sub>O<sub>5</sub>, the oxidation state of N is +5. Further, increase in oxidation state is not possible. That's why, its does not behave as reducing agent.
- **14.** (*d*) A yellow explosive liquid nitrogen trichloride is formed as,

$$\begin{array}{cc} NH_3 \ + \ 3Cl_2 \longrightarrow 3HCl + \ NCl_3 \\ (Excess) & Nitrogen \\ trichloride \end{array}$$

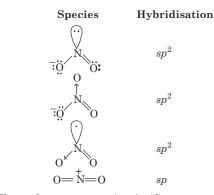
Here, ammonia is taken in excess then ammonium chloride is formed.

$$\underset{(\text{Excess})}{\text{7NH}_3} + 3\text{Cl}_2 \longrightarrow \text{NH}_4\text{Cl} + \text{N}_2 \uparrow$$

(c) The products of the reaction of copper with HNO<sub>3</sub> depends upon the concentration of HNO<sub>3</sub> used.
Copper metal reacts with dilute HNO<sub>3</sub> to form nitrogen (II) oxide (NO).

$$3Cu + 8HNO_3 (dilute) \longrightarrow 3Cu(NO_3)_2 + 2NO \uparrow +4H_2O$$

Copper metal reacts with conc.  $HNO_3$  to form nitrogen (IV) oxide or nitrogen dioxide  $(NO_2)$ .  $Cu + 4HNO_3(conc.) \longrightarrow Cu(NO_3)_2 + 2NO_2 \uparrow + 2H_2O$ 


**16.** Neutral oxides show neither basic nor acidic properties and hence do not form salts when reacted with acids or bases. e.g. carbon monoxide (CO); nitrous oxide (N<sub>2</sub>O); nitric oxide (NO), etc., are neutral oxides.

 $\rm N_2O$  and NO are neutral oxides of nitrogen  $\rm NO_2$  and  $\rm N_2O_3$  are acidic oxides.

- **18.**  $4HNO_3 + P_4O_{10} \longrightarrow 4HPO_3 + 2N_2O_5$
- **19.** Nitrogen monoxide react with dinitrogen tetraoxide at 250 K temperature forms blue solid of  $N_2O_3$ .

$$2NO + N_2O_4 \xrightarrow{250 \text{ K}} 2N_2O_3$$

 $N_2O_3$  is acidic in nature. In  $N_2O_3$ , N has +3 oxidation state. Generally, oxides with higher oxidation states are more acidic than oxides having lower oxidation state. It is a blue solid because it strongly absorbs in the visible region to appear bright blue in colour.



Thus, the correct option is (d).

**21.** The electronic configuration of NO [15  $e^-$ ] is given by  $\sigma 1s^2$ ,  $\sigma^* 1s^2$ ,  $\sigma 2s^2$ ,  $\sigma^* 2s^2$ ,  $\sigma 2p_z^2$ ,  $\pi 2p_x^2 = \pi 2p_y^2$ ,  $\pi^* 2p_z^1$ 

Thus, NO possess one unpaired electron, hence, it is paramagnetic in nature.

However, it dimerises at low temperature to become diamagnetic.

$$2NO \Longrightarrow N_2O_2$$
  
rder of  $NO = \frac{1}{2} [10-5] = 2.5$ 

Thus, bond order of NO is 2.5 and it combines with  $\rm O_2$  to give  $\rm NO_2.$ 

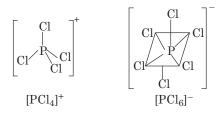
Hence, the correct option is (a).

Bond of

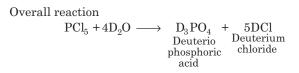
**22.** The oxidation states of nitrogen in following molecules are as follows

$$NO_{3}^{-} \rightarrow +5$$
$$NO_{2} \rightarrow +4$$
$$NO \rightarrow +2$$
$$N_{2}O \rightarrow +1$$

Hence, correct order is


$$NO_{3}^{-} > NO_{2} > NO > N_{2}O.$$

**23.** (c) White phosphorus combines with a concentrated solution of NaOH in inert atmosphere of  $CO_2$ , to yield a highly poisonous gas, phosphine. It has rotten fish like smell.


 $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3 \uparrow$ 

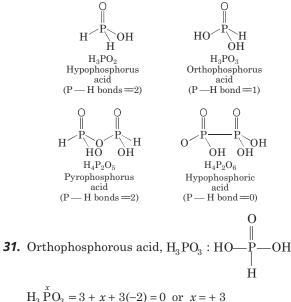
Its aqueous solution is neutral, so it is not more basic than  $\rm NH_3.$ 

- **24.**  $Ca_3P_2 + 6H_2O \longrightarrow 3Ca(OH)_2 + 2PH_3$
- **25.**  $PH_3 + 4Cl_2 \longrightarrow PCl_5 + 3HCl$
- **26.** In Holmes signals of the ship, mixutre of  $CaC_2$  and  $Ca_3P_2$  is used.
- **27.** Solid  $PCl_5$  shows ionic lattices. It has tetrahedral cations  $[PCl_4]^+$  and octahedral anions  $[PCl_6]^-$ .



**28.** Here, reactions are same as those with water ( $H_2O$ ). PCl<sub>5</sub> shows following hydrolytic reactions with heavy water ( $D_2O$ ).




**29.** The structure of  $H_3PO_2$  (hypophosphorous) acid is



Due to the presence of two P—H bonds,  $H_3PO_2$  acts a strong reducing agent. e.g.

$$4\operatorname{Ag}^{+1}\operatorname{NO}_3 + \operatorname{H}_3\operatorname{PO}_2 + 2\operatorname{H}_2\operatorname{O} \longrightarrow 4\operatorname{Ag}^0 \downarrow + \operatorname{H}_3\operatorname{PO}_4 + 4\operatorname{HNO}_3$$

**30.** Let us consider the structure of the phosphorus oxyacids,



 $H_3 = O_3 = 5 + x + 5(-2) = 0$  or x = +Pyrophosphorous acid,  $H_4 P_2 O_5$ 

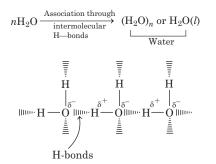
20.

$$\begin{array}{cccc}
O & O \\
\parallel & \parallel \\
HO - P - O - P - O H \\
\downarrow & H \\
H_{4} \dot{P}_{2} O_{5} = 4 + 2x + 5 (-2) = 0 \\
4 + 2x - 10 = 0 \implies x = + 3
\end{array}$$

- **32.** Dithionous acid  $(H_2S_2O_4)$  has sulphur in +3 oxidation state.
- **33.** As given, the first electron gain enthalpy of oxygen can be shown as,

$$\label{eq:G} \begin{split} \mathcal{O}(g)+e^- &\longrightarrow \mathcal{O}^-(g), \ \Delta_{e_g}H_1=-\,141 \ \mathrm{kJ/mol} \\ \text{The expression of second electron gain enthalpy of oxygen will be,} \end{split}$$

$$O^{-}(g) + e^{-} \longrightarrow O^{2-}(g), \quad \Delta_{e_{\sigma}}H_{2} = + \text{ ve}$$


 $\Delta_{e_g} H_2$  of oxygen is positive, i.e. endothermic, because a strong electrostatic repulsion will be observed between highly negative O<sup>-</sup> and the incoming electron ( $e^-$ ).

A very high amount of energy will be consumed (endothermic) by the system to overcome the electrostatic repulsion.

**34.**  $SO_2$  acts as an oxidising agent particularly when treated with stronger reducing agents.  $SO_2$  oxidises  $H_2S$  into S.

$$SO_2 + 2H_2S \longrightarrow 2H_2O + S$$

**35.** Two O—H bonds of a  $H_2O$  molecule make stronger and extensive intermolecular hydrogen bonds which lead two association of  $H_2O$  molecules into water or  $H_2O(l)$ . One  $H_2O$  molecule can make four H–bonds.



But S—H bonds of  $H_2S$  cannot make H–bonds. So, boiling point of  $H_2O$  is more 373 K than  $H_2S$ , because : Boiling point  $\propto$  molecular association.

**36.** Thermal stability  $\propto$  bond dissociation energy,

$$\Delta_{\rm diss} H(H - E) / k J \, {\rm mol}^{-1} \propto \frac{1}{{
m Size of central atom}}$$
  
(where,  $E = 16$  group elements)

On moving down the group, bond dissociation energy decreases because bond length increases.

Thus, the order of bond dissociation energy is  $H_2O > H_2S > H_2Se > H_2Te > H_2Po$ This is also the order of thermal stability.

**38.** 
$$3S + 4NaOH \xrightarrow{Boiling} Na_{0}S_{0}O_{0} + Na_{0}S_{0}O_{0}$$

$$HO = \overset{\parallel}{S} = S = OH$$

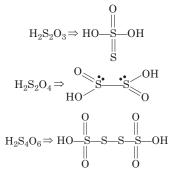
0

**40.** H<sub>2</sub>SO<sub>4</sub> acts as dehydrating agent in the following reaction.

HCOOH 
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 CO + H<sub>2</sub>O

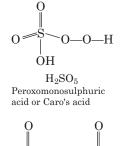
**41**. Concentrated sulphuric acid, being a strong acid, oxidises bromides and iodides but not chlorides and fluorides.

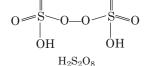
Since, the later are more electronegative. Hence, it can be reduced only by NaBr among the given options.


$$\begin{array}{c} \operatorname{H}_{2}\overset{+6}{\operatorname{SO}}_{4} + 2\operatorname{Na}\overset{-1}{\operatorname{Br}} \longrightarrow \operatorname{NaH}\overset{+6}{\operatorname{SO}}_{4} + \operatorname{H}\overset{-1}{\operatorname{Br}} \\ 2\operatorname{H}\overset{-1}{\operatorname{Br}} + \operatorname{H}_{2}\overset{+6}{\operatorname{SO}}_{4} \longrightarrow 2\operatorname{H}_{2}\operatorname{O} + \overset{0}{\operatorname{Br}}_{2} + \overset{+4}{\operatorname{SO}}_{2} \\ & \left| \begin{array}{c} \operatorname{Reduction} \end{array} \right| \end{array}$$

- **43.** The great affinity of  $H_2SO_4$  for water is because it forms hydrates with water.
- **44.** S S bond is not present in  $H_2S_2O_7$  (pyrosulphuric acid or oleum).

$$\begin{array}{cccc} & & O & O \\ & \parallel & \parallel \\ H_2S_2O_7 \Rightarrow HO\_S\_O\_S\_OH \\ & \parallel & \parallel \\ & O & O \end{array}$$


While the other given oxoacids of sulphur, i.e.


 $\rm H_2S_2O_3$  (thiosulphuric acid),  $\rm H_2S_2O_4$  (hyposulphurous or dithionous acid) and  $\rm H_2S_4O_6$  (tetrathionic acid) contains S—S bonds.



**45.** In peroxoacids, —O—O—

linkage is present  $H_2SO_5$  and  $H_2S_2O_8$  are peroxoacids of sulphur.





Peroxodisulphuric acid or Marshall's acid

- **46.** Caliche is crude chile salt petre which contains about 0.02% iodine as sodium iodate (NaIO<sub>3</sub>), from which iodine is extracted.
- **47.** Fluorine is the strongest oxidising agent. It will oxidise other halide ions to halogens in solution or even in dry.

$$F_2 + 2X^- \longrightarrow 2F^- + X_2$$

**48.**  $2F_2 + 2H_2O \longrightarrow 4HF + O_2$  $3F_2 + 3H_2O \longrightarrow O_3 + 6HF$ 

**49.** Iodine has the least affinity for water and is only slightly soluble in it. However, it dissolves in 10% aqueous solution of KI due to the formation of a complex ion, i.e.  $I_3^-$ .

$$I_2 + KI \rightleftharpoons KI_3$$

or

 $I_2 + I^- \rightleftharpoons I_3^-$ (Complex ion)

- **50.** AgI is a covalent compound so, it is insoluble in water.
- **51.**  $CuSO_4 + 2KI \longrightarrow CuI_2 + K_2SO_4$

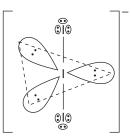
$$2CuI_2 \longrightarrow 2CuI + I_2$$
  
Cuprous iodide

- **52.** HI is the strongest acid because H—I bond is weakest bond.
- **54.** HF has highest boiling point among hydrogen halides because it has strongest hydrogen bonding.

Here, the hydrogen bond exists between hydrogen of one molecule and fluorine atom of another molecule as shown below.

$$H \longrightarrow F \dots H \dots H$$

In this molecule, hydrogen bond behaves like a bridge between two atoms that holds one atom by covalent bond and the other by hydrogen bond.


- 55. Hydride HF HCl HBr HI
  B. pt. (in K) 293 189 206 238
  Because of having low boiling point HCl is more volatile.
- **56.** As the size of the halogen atom increases from F to I, H-X bond length in HX molecules also increases from H-F to HI

#### $\mathrm{HF} < \mathrm{HCl} < \mathrm{HBr} < \mathrm{HI}$

The increase in HX bond length decreases the strength of HX bond from HF to HI (HF > HCl > HBr > HI). Due to decrease in the strength of HX bonds, their bond dissociation enthalpy decreases from HF to HI.

| HX                                     | $_{\rm HF}$ | > | HCl   | > | HBr   | > | HI    |
|----------------------------------------|-------------|---|-------|---|-------|---|-------|
| Bond dissociation<br>enthalpy (kJ/mol) | 574.0       |   | 428.1 |   | 362.5 |   | 294.6 |

**58.** The structure of  $I_3^-$  ion is



Hence, 9 is the correct answer.

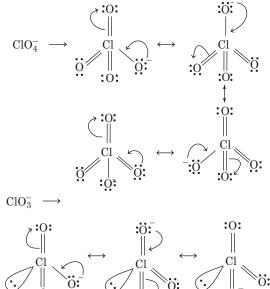
59. Cl<sub>2</sub>, Br<sub>2</sub> and I<sub>2</sub> are homonuclear diatomic molecule in which electronegativity of the combining atoms is same, so they are more stable and less reactive. Whereas, I and Cl have different electronegativities and bond between them are polarised and hence, reactive. Therefore, interhalogen compounds are more reactive.

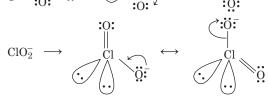
**Time Saving Technique** In this type of question of halogen, only go through the polarity of the molecule.

As we know, diatomic molecule does not have polarity but molecules with dissimilar sizes have polarity resulting in more reactivity.

- **61.**  $I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O$
- **62.** Oxidising power of species is directly proportional to reduction potentials.

Therefore, order of oxidising power of given ions is as follows


| Ion               | ${ m BrO}_4^->$ | $\mathrm{IO}_4^-$ | $> \operatorname{ClO}_4^-$ |
|-------------------|-----------------|-------------------|----------------------------|
| $E_c(\mathbf{V})$ | 1.74            | 1.65              | 1.19                       |


#### **63.** $2HClO_4 \longrightarrow H_2O + Cl_2O_7$

**64.** Acidic strength of oxoacids depends upon the stability of conjugate base. More stable the conjugate base of an acid, stronger is the acid.

$$\begin{array}{c} \text{HClO}_4 \rightleftharpoons \text{ClO}_4^- + \text{H}^+ \\ \text{HClO}_3 \rightleftharpoons \text{ClO}_3^- + \text{H}^+ \\ \text{HClO}_2 \rightleftharpoons \text{ClO}_2^- + \text{H}^+ \\ \text{HOCl} \rightleftharpoons \text{ClO}^- + \text{H}^+ \end{array}$$

Conjugate bases stabilises by resonance.





 $\rm ClO^-$  does not show resonance. Thus, the stability order of conjugate base due to resonance is

$$\text{ClO}_4^- > \text{ClO}_3^- > \text{ClO}_2^- > \text{ClO}$$

Hence, the acidic strength of given oxoacids is as follows

$$HClO_4 > HClO_3 > HClO_2 > HClO_3$$

**65.**  $Cl_2$ ,  $Br_2$  and  $I_2$  form a mixture of halide and

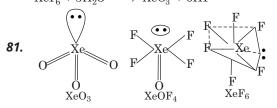
hypohalites when react with cold dilute alkalies while a mixture of halides and haloate when react with concentrated cold alkalies.

$$Cl_2 + 2NaOH \longrightarrow NaCl + NaClO + H_2O$$
  
(Cold and dilute)

 $\therefore$  Cl^ and ClO are obtained as products when chlorine gas reacts with cold and dilute aqueous NaOH.

**67.** 
$$3HOCI \longrightarrow 2HCl + HClO_3$$

**68.** Acid strength decreases from HClO to HIO as the electronegativity of halogen decrease.


- **69.** As we move down the group of noble gases, molecular mass increases by which dipole produced for a moment and hence, London forces increases from He to Xe. Therefore more amount of energy is required to break these forces. Thus, boiling point also increases from He to Xe.
- **70.** Welding of Mg is done in the atmosphere of He due to its inert and non-inflammable nature.
- **71.** Dipole of water  $O < H^{\delta^+}$  induces dipole in noble gases

which interact and causes solubility in water.

- **72.** He, because of its small size can diffuse through rubber, glass PVC etc. easily.
- **73.** Solubility increases on moving down the group. Xe > Kr > Ar > Ne > He
- 74. Clevite is uranium mineral, on heating it gives He.
- **78.**  $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2 \uparrow$
- **79.**  $XeF_2$ ,  $XeF_4$  and  $XeF_6$  can be directly prepared by

$$\begin{array}{l} \operatorname{Xe} + \operatorname{F}_2 & \xrightarrow{\operatorname{Ni} \operatorname{tube}} & \operatorname{Xe}\operatorname{F}_2; \\ \operatorname{Xe} + 2\operatorname{F}_2 & \xrightarrow{673 \text{ K}} & \operatorname{Xe}\operatorname{F}_4 \\ \operatorname{Xe} + 3\operatorname{F}_2 & \xrightarrow{523 \cdot 573 \text{ K}} & \operatorname{Xe}\operatorname{F}_6 \\ \end{array} \end{array}$$

$$\begin{split} & {\rm XeO_3} \text{ is obtained by the hydrolysis of XeF_6}.\\ & {\rm XeF_6}+3{\rm H_2O} \longrightarrow {\rm XeO_3}+6{\rm HF} \end{split}$$



- **82.** Both  $XeF_2$  and  $IF_2^-$  are linear species but the central atoms Xe and I undergo  $sp^3d$  hybridisation with all the three equatorial positions occupied by the lone pairs of electrons.
- **83.** XeO<sub>4</sub> is formed by promoting one 5*s* and three 5*p*-electrons of Xe to higher energy. 5*d* orbitals giving eight unpaired orbitals hybridize to give  $sp^3$  hybridisation which form sigma bonds with four O atoms. The four unhybridised singly occupied 5*d* orbitals form four  $p\pi d\pi$  bonds with oxygen atoms.
- **84.**  $XeOF_4 + H_2O \longrightarrow XeO_2 F_2 + 2HF$

 $XeF_6 + 2H_2O \longrightarrow XeO_2 F_2 + 4HF$ 

 $\label{eq:stored} \textbf{85. XeF}_6 \text{ cannot be stored in glass vessels because it} \\ \text{reacts with SiO}_2 \text{ of the glass to give highly explosive} \\ \text{XeO}_3. \end{aligned}$ 

 $2XeF_6 + 3SiO_2 \longrightarrow 2XeO_3 + 3SiF_4$ 

**86.** Xenon hexa fluoride reacts with silica to form  ${\rm XeOF_4}$  as

$$2XeF_6 + SiO_2 \longrightarrow 2XeOF_4 + SiF_4$$

The oxidation state of xenon in  $\mathsf{XeOF}_4$  is calculated as

6

$$x + (-2) + 4 \times (-1) = 0$$
  
x + (-2) + 4 × (-1) = 0  
x - 2 - 4 = 0  
x = +

**87.** Clathrates are non-stoichiometric compounds where the ratio of guest and host molecules does not correspond to ideal chemical formula.

#### Round II

**1.**  $P_2O_5$ , i.e.  $P_4O_{10}$ 

P<sub>2</sub>O<sub>3</sub>, i.e. P<sub>4</sub>O<sub>6</sub>

$$\begin{array}{ccc} 0 & & \\ 0 & & \\ P & P \\ 0 & P \\ 0 & P \end{array} \Rightarrow \operatorname{Six} P - 0 - P \text{ bridges} \\ 0 & P & 0 \end{array}$$

- **2.** CaCl(OCl)  $\longrightarrow$  Ca(ClO<sub>3</sub>)<sub>2</sub> + CaCl<sub>2</sub>
- 3. Orthophosphate + Ammonium molybdate

 $\begin{array}{c} \xrightarrow{\text{HNO}_3} & \text{Yellow ppt.} \\ & & \downarrow + \text{AgNO}_3 \\ & & \text{Red ppt.} \end{array}$ 

- 4. As we go down the group, bond angle decreases, since the repulsion between the bonded pairs of electrons decreases. So, N > P > As > Bi.
- 5. The electron affinity (in kJ/mol)

Fluorine = 332.6 Chlorine = 348.5

Bromine = 324.7 Iodine = 295.5 Chlorine has highest electron affinity value.

So, according to question the correct order of electron affinity will be  $Cl_2 > F_2 > Br_2$ .

**6.** Due to electronegativity difference, the stability of interhalogen compounds follows following the order

$$IF_3 > BrF_3 > ClF_3$$

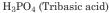
7. 
$$H \rightarrow 0 \rightarrow N = 0$$

Polarity along O—H in  $HNO_3$  is more in comparison to -O—H in  $HNO_2$ .

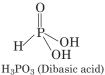
Thus,  $H^+$  ion can easily be removed due to which acidity is increased in  $HNO_3$ .

 $\label{eq:second} \begin{array}{l} \mbox{8. The normal oxides of the elements present on} \\ extreme left of periodic table are most acidic (Li_2O) \\ as they form strong base when dissolved in water \\ and oxides of the elements present in extreme right \\ are acidic (N_2O_3). The amphoteric oxides show both \\ the acidic and basic character (Al_2O_3) . \end{array}$ 

The acidic, basic and amphoteric oxides, respectively are  $N_2O_3$ ,  $Li_2O$  and  $Al_2O_3$ .


**9.**  $OF_2$  dissolves in water but does not give any oxyacid solution while  $SO_2$ ,  $SCl_4$  and  $SO_3$  give oxyacid solution in water.

$$\begin{array}{rcl} \mathrm{SO}_2 + \mathrm{H}_2\mathrm{O} & & \mathrm{H}_2\mathrm{SO}_3\\ & & \mathrm{Sulphurous\ acid}\\ \mathrm{SCl}_4 + 3\mathrm{H}_2\mathrm{O} & & \mathrm{H}_2\mathrm{SO}_3 & + \ 4\mathrm{HCl}\\ & & \mathrm{Sulphurous\ acid}\\ \mathrm{SO}_3 + \mathrm{H}_2\mathrm{O} & & \mathrm{H}_2\mathrm{SO}_4\\ & & \mathrm{Sulphuric\ acid} \end{array}$$


**10.** Orthophosphoric acid  $(H_3PO_4)$  is a tribasic acid because it has three replaceable hydrogen atoms. Hence, the basicity of  $H_3PO_4$  is 3.

Its structure is shown below as,





While phosphorous acid  $(H_3PO_3)$  is a dibasic acid because it has two replaceable hydrogen atom. Hence, the basicity of  $H_3PO_3$  is 2. Its structure is shown below as



**11.** The thermal stability of the hydrides of nitrogen family or group 15 elements decreases on moving downwards in the group.

Therefore,  $NH_3$  is the most stable and  $SbH_3$  is the least stable. The stability of the hydrides of group 15 elements decreases in the order as,

$$NH_3 > PH_3 > AsH_3 > SbH_3$$

**12.** Complete reaction with change in hybridisation is as follows

(a) 
$$\underline{\mathrm{XeF}}_4 + \mathrm{SbF}_5 \longrightarrow [\mathrm{XeF}_3]^+ [\mathrm{SbF}_6]^-$$
  
 $sp^3d^2 \qquad sp^3d$   
 $\underline{\mathrm{Change in hybridisation}}^*$   
(b)  $\mathrm{H}_0\mathrm{SO}_4 + 2\mathrm{NaCl} \longrightarrow \mathrm{Na}_2\mathrm{SO}_4 + 2\mathrm{Ho}^2$ 

b) 
$$H_2\underline{SO}_4 + 2NaC1 \longrightarrow Na_2SO_4 + 2HCl$$
  
 $sp^3 \qquad sp^3$   
 $\downarrow No change in hybridisation  $\uparrow$$ 

(c) 
$$H_3 \underline{PO}_2 \xrightarrow{\text{Disproportionation}} \Delta H_3 \underline{PO}_4 + P\underline{H}_3$$
  
 $\stackrel{sp^3}{\downarrow}$  No change in hybridisation  $\uparrow^{sp^3}$ 

(d) 
$$\underbrace{\overset{\bullet}{\mathrm{N}}}_{sp^{3}}^{\mathrm{H}_{3}} \xrightarrow{\mathrm{N}^{+}} \underbrace{\overset{\bullet}{\mathrm{N}}}_{sp^{3}}^{\mathrm{H}_{4}} \underbrace{\overset{\bullet}{\mathrm{N}}}_{sp^{3}}^{\mathrm{H}_{4}}$$

In the reaction (a), hybridisation of Xe in XeF<sub>4</sub> is  $sp^3d^2$  converted into [XeF<sub>3</sub>]<sup>+</sup> and hybridisation of Xe in [XeF<sub>3</sub>]<sup>+</sup> is  $sp^3d$ .

In this reaction,  $sp^3d^2$  hybridisation change into  $sp^3d$ .

**13.** A halate will be formed from halogen and the greenish yellow gas is  $Cl_2$ . The halate which is used in fireworks and safety matches is  $KClO_3$ .

 $3Cl_2 + 6KOH \longrightarrow KClO_3 + 5HCl + 3H_2O$ (Greenish yellow gas)

**15.**  $\operatorname{Zn}$  + conc.  $\operatorname{4HNO}_3 \longrightarrow \operatorname{Zn}(\operatorname{NO}_3)_2 + 2\operatorname{NO}_2 + 2\operatorname{H}_2\operatorname{O}_{(X)}$ 

$$4\text{Zn} + \text{dil}. 10\text{HNO}_3 \longrightarrow 4\text{Zn}(\text{NO}_3)_2 + \text{NH}_4\text{NO}_3 + 3\text{H}_2\text{O}$$

**17.** The first ionisation energy of xenon is quite close to that of oxygen and the molecular diameter of xenon and oxygen are almost identical.

Based on the above facts, it is suggested that as oxygen combines with  $PtF_6$ , so xenon should also form similar compound with  $PtF_6$ .

**18.** (a) In the presence of moisture,  $SO_2$  liberates nascent hydrogen. Due to which it can bleach delicate articles like silk and straw.

$$SO_2 + H_2O \longrightarrow H_2SO_3 \rightleftharpoons 2H^+ + SO_3^{2-}$$

- (b) Its dilute solution is used as disinfectant.
- (c)  $\mathrm{SO}_2$  is prepared by the reaction of conc.  $\mathrm{H}_2\mathrm{SO}_4$  with metals.

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 2H_2O + SO_2$$

**19.**  $MCl_2$ ; oxidation state of M = +2

 $MCl_4$ ; oxidation state of M = +4

Higher the oxidation state, smaller the size. Greater is the polarizing power, greater is the covalent characteristics. Hence,  $MCl_4$  is more covalent and  $MCl_2$  is more ionic.

**20.**  $He_{II}$  has extremely low viscosity and readily form films only a few hundred atom thick, which flow without friction.

21. (a) Thermal stability of the hydrides decreases as we move down the group in Periodic Table for group 15 (N-family).

$$\begin{array}{rrrr} {\rm BiH_3} < {\rm SbH_3} < {\rm AsH_3} < {\rm PH_3} < {\rm NH_3}\\ {\rm Least\ stable}\\ \hline $M$-{\rm H}$ & - $255$ 247$ 322$ 391\\ {\rm Bond\ energy}\\ {\rm (kJ\ mol^{-1})} \end{array}$$

- (b) Due to absence of *d*-orbital, nitrogen can't form  $d\pi d\pi$  bond, thus it is correct.
- (c) The N—N bond (BE 160 kJ mol<sup>-1</sup>) is weaker than P—P bond (BE 209 kJ mol<sup>-1</sup>). Thus, it is correct.
- (d)  $N_2O_4$  can form two resonance structures.

$$\bigcirc N-N \bigtriangledown 0 \longleftrightarrow 0 \longleftrightarrow N-N \swarrow 0$$

Thus, it is correct.

23. The liquid X is bromine which on treatment with sodium carbonate forms a mixture of NaBr and NaBrO<sub>3</sub> (sodium bromate). The mixture with conc. H<sub>2</sub>SO<sub>4</sub> on distillation, gives the liquid bromine again.

$$\underset{(X)}{\operatorname{3Br}_2} + \operatorname{3Na}_2\operatorname{CO}_3 \longrightarrow \underset{(Y)}{\operatorname{5NaBr}} + \underset{(Z)}{\operatorname{NaBrO}_3} + \operatorname{3CO}_2$$

5NaBr + NaBrO<sub>3</sub> + 3H<sub>2</sub>SO<sub>4</sub>  $\longrightarrow$  3Na<sub>2</sub>SO<sub>4</sub> + 3Br<sub>2</sub> + 3H<sub>2</sub>O

**24.** The main constituent of air are nitrogen (78%) and oxygen (21%). Only  $N_2$  reacts with three moles of  $H_2$  in the presence of a catalyst to give  $NH_3$  (ammonia) which is a gas having basic nature. On oxidation  $NH_3$  gives  $NO_2$  which is a part of acid rain. So, the compounds A to D are as

$$A = NH_4NO_2$$
;  $B = N_2$ ;  $C = NH_3$ ;  $D = HNO_3$ .

**25.** Pb (NO<sub>3</sub>)<sub>2</sub>  $\xrightarrow{\Delta}$  2PbO +4NO<sub>2</sub>(g) Lead nitrate  $\xrightarrow{673 \text{ K}}$  Brown

$$2\text{NO}_{2}(g) \xrightarrow{\text{Cooling}}_{\text{Heating}} \text{N}_{2}\text{O}_{4}(g)$$

$$[B]$$

$$2\text{NO} + \text{N}_{2}\text{O}_{4} \xrightarrow{250 \text{ K}} 2\text{N}_{2}\text{O}_{3}(s)$$

$$[C]$$

$$B_{\text{lue}}$$

$$[C]$$

**26.** Phosphorus (3rd period element) can raise covalency facilitating vacant *d*-orbitals

 $P \text{ (ground)} = [\text{Ne}] 3s^2 \quad 3p^3 \quad 3d^0$  $P \text{ (excited)} = [\text{Ne}] 3s^1 \quad 3p^3 \quad 3d^1$ 

**27.**  $X = I_2, Y = HI$ 

**28.** 
$$\operatorname{Na}_{2}SO_{3} \xrightarrow[(X)]{\operatorname{Dil},\operatorname{H}_{2}SO_{4}} SO_{2} \xrightarrow[(Y)]{\operatorname{NaOH}} \operatorname{Na}_{2}SO_{3} \xrightarrow{\operatorname{SO}_{2}+\operatorname{H}_{2}O} \operatorname{NaHSO}_{3}$$
  
Here, X, Y, Z are

 $X = \text{Na}_2\text{SO}_3, Y = \text{SO}_2, Z = \text{Na}\text{HSO}_3$ 

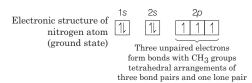
Na  $_2SO_3$  react with dil.  $H_2SO_4$  form sulphur dioxide  $(SO_2)$  gas.  $SO_2$  on reaction with NaOH again form Na  $_2SO_3$ . By the reaction of SO\_2 and H\_2O with Na  $_2SO_3$  form NaHSO\_3.

**29.**  $MnO_2 + H_2SO_4 + 2HCl \longrightarrow MnSO_4 + 2H_2O + Manganese oxide (black)$ 

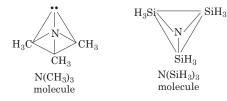
Cl<sub>2</sub> ↑ Chlorine gas (greenish yellow)

 $\begin{array}{rcl} \mathrm{NH}_3 &+ \ \mathrm{3Cl}_2 &\longrightarrow & \mathrm{NCl}_3 + \mathrm{3HCl} \\ \mathrm{Ammonia} & \mathrm{Excess} & & \mathrm{Nitrogen\ trichloride} \\ & & & (\mathrm{Unstable\ and\ explosive}) \end{array}$ 

In NH<sub>3</sub>, let the oxidation state of N = x


$$-3(+1) = 0$$

$$NCl_3$$
, Let the oxidation state of  $N = y$ 


$$y + 3(-1) = 0$$
$$y = +3$$

**30.** The correct statement is that  $(SiH_3)_3 N$  is planar and less basic than  $(CH_3)_3 N$ . The compounds trimethylamine  $(CH_3)_3 N$  and trisilylamine  $(SiH_3)_3 N$  have similar formulae, but have totally different

structures. In trimethylamine, the arrangement of electrons is as follows



In trisilylamine, three  $sp^2$  orbitals are used for  $\sigma$ -bonding, giving a plane triangular structure.



In  $(\text{SiH}_3)_3$ N the lone pair of electrons on nitrogen are used up in  $p\pi \cdot d\pi$  back bonding while in  $(\text{CH}_3)_3$ N such  $p\pi \cdot d\pi$  bonding is not possible due to absence of vacant *d*-orbitals in carbon atom.

Therefore,  $(CH_3)_3N$  is more basic than  $(SiH_3)_3N$ .

**31.** The ionic character of M—X bond decrease as the size of halogen atom increases MF > MCl > MBr > MI.

32. Cu produces NO gas when treated with dil. HNO<sub>3</sub>. This gas is reduced by SnCl<sub>2</sub> / HCl and then oxidised by HNO<sub>2</sub> to give N<sub>2</sub>O. The reactions are as follows

$$\begin{array}{c} \text{Cu + dil. HNO}_{3} \longrightarrow \underset{(X)}{\text{NO}} \xrightarrow{\text{SnCl}_{2}/\text{HCl}} \text{NH}_{2}\text{OH} \cdot \text{HCl} \\ \xrightarrow{\text{HNO}_{2}} \underset{(X)}{\overset{(Z)}{\longrightarrow}} \underset{(X)}{\overset{(Z)}{\longrightarrow}} \underset{(X)}{\overset{\text{SnCl}_{2}/\text{HCl}}{\longrightarrow}} \text{NH}_{2}\text{OH} \cdot \text{HCl} \\ \xrightarrow{\text{NH}_{2}\text{OH}} \cdot \text{HCl} \xrightarrow{\underset{(X)}{\overset{(Y)}{\longrightarrow}}} \underset{(X)}{\overset{\text{NH}_{2}\text{OH}}{\longrightarrow}} \underset{(X)}{\overset{(Y)}{\longrightarrow}} \underset{(X)}{\overset{(Y)}{\overset{(Y)}{\longrightarrow}} \underset{(X)}{\overset{(Y)}{\overset{(Y)}{\longrightarrow}} \underset{(X)}{\overset{(Y)}{\longrightarrow}} \underset{(X)}{\overset$$

**33.**  $\underset{\text{White Lime water}}{\text{8P}} + 3\text{Ca(OH)}_2 + 6\text{H}_2\text{O} \longrightarrow 3\text{Ca(H}_2\text{PO}_2)_2 + 2\text{PH}_3 \uparrow (X)$ 

(*A*) is  $H_3PO_2$  (hypophosphorous acid), a monobasic acid.  $PH_3$  is less basic than  $NH_3$ . The bond angle in (*X*) is less than that present in  $NH_3$ .

 $H_3PO_2$  on heating gives orthophosphoric acid and phosphine (X).

**34.**  $H_2O$  is a amphoteric oxide. It can accept protons and also can donate them.

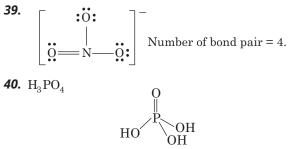
Thus, it readily reacts with basic as well as acidic oxides. Only water vapour react with Fe.

- **35.** (a)  $S_2$  molecule is paramagnetic due to unpaired electrons in its M.O configuration and is blue-coloured compound, thus true.
  - (b) The vapour at 200°C consists mostly of  ${\rm S}_8$  rings, thus correct.
  - (c) At 600°C, the gas mainly consists of  ${\rm S}_2$  molecules, thus, correct.
  - (d) Oxidation states of sulphur are

| -2 | in | $H_2S$         |
|----|----|----------------|
| 0  | in | $S_8$          |
| +2 | in | $S_2 O_3^{2-}$ |
| +4 | in | $SO_2$         |
| +6 | in | $SO_3$         |

Thus, option (d) is incorrect.

**36.**  $3SO_2 + O_3 \longrightarrow 3SO_3$  (correct)


 $\begin{array}{l} 2{\rm Si}+2{\rm NaOH}+\!4{\rm H}_2{\rm O} \longrightarrow 2{\rm NaSiO}_3+\!5{\rm H}_2 \mbox{ (correct)} \\ 3{\rm Br}_2+6{\rm NaOH} \longrightarrow {\rm NaBrO}_3+5{\rm NaBr}+3{\rm H}_2 \mbox{ (correct)} \end{array}$ 

Hence, option (d) is incorrect.





Trioxide trimer (3S—O—S bond)



The basicity is 3.

**41.** Structure of hypophosphorus acid  $H_3PO_2$  is

Thus, the number of hydrogen atoms directly attached to phosphorus atom is 2.

**43.** 
$$3Br_2 + 3Na_2CO_3 \longrightarrow 5NaBr + NaBrO_3 + 3CO_2 \uparrow$$
  
(X)
(Y)
(Y)
(Z)
Total sum = X + Y + Z = 9

- **45.**  $H_4P_2O_7$ ,  $H_4P_2O_8$  and  $H_4P_2O_6$  are tetrabasic compound hence answer is 3.
- **46.**  $2H_3PO_2 \xrightarrow{\Delta} H_3PO_4 + PH_3$ ; Here, x = 1 $(x^2 - 0.5) = (1)^2 - 0.5 = 1 - 0.5 = 0.5$
- **47.**  $P_4O_{10}$  being a dehydrating agent, removes a molecule of water and forms anhydride of  $HNO_3$ .

$$4\text{HNO}_3 + \text{P}_4\text{O}_{10} \longrightarrow 4\text{HPO}_3 + 2\text{N}_2\text{O}_5$$

 $\mathrm{N}_{2}\mathrm{O}_{5}$  have two resonating structure.

$$\begin{array}{c} \overset{\text{e.g.}}{\overset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\text{i}}{\underset{\text{i}}}{\underset{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}{\underset{i}}}{}}}}}}}$$

**48.** Equations for the reactions

$$\begin{array}{c} P_4 + 6 \mathrm{Cl}_2 & \longrightarrow & 4 \mathrm{PCl}_3 \\ \hline P\mathrm{Cl}_3 + 3\mathrm{H}_2\mathrm{O} & \longrightarrow & \mathrm{H}_3\mathrm{PO}_3 + 3\mathrm{HCl} \times 4 \\ \hline P_4 + 6\mathrm{Cl}_2 + 12\mathrm{H}_2\mathrm{O} & \longrightarrow & 4\mathrm{H}_3\mathrm{PO}_3 + 12\mathrm{HCl} \\ 1 & \mathrm{mol} & 12 & \mathrm{mol} \\ \hline 31 \times 4 = 124 \text{ g} & 12 \times 36.5 = 438.0 \text{ g} \\ \because & 124 \text{ g of white phosphorus produces } \mathrm{HCl} = 438 \text{ g} \end{array}$$

 $\therefore$  62 g of white phosphorus will produces

$$HCl = \frac{438}{124} \times 62 = 219.0 \text{ g HCl}$$