Chapter 5

Quadratic Equations

Solutions

SECTION - A

Objective Type Questions (One option is correct)

If a and b are rational and α , β be the roots of $x^2 + 2ax + b = 0$, then the equation with rational coefficients one of whose roots is $\alpha + \beta + \sqrt{\alpha^2 + \beta^2}$ is

(1)
$$x^2 + 4ax - 2b = 0$$

(1)
$$x^2 + 4ax - 2b = 0$$
 (2) $x^2 + 4ax + 2b = 0$

$$(3) x^2 - 4ax + 2b = 0$$

$$(4) x^2 - 4ax - 2b = 0$$

Sol. Answer (2)

$$\alpha + \beta = -2a$$
, $\alpha\beta = b$

$$\alpha + \beta + \sqrt{\alpha^2 + \beta^2} = -2a + \sqrt{4a^2 - 2b}$$

The other root of equation will be $\alpha + \beta - \sqrt{\alpha^2 + \beta^2}$

i.e.,
$$-2a - \sqrt{4a^2 - 2b}$$

∴ Sum of roots,
$$S = -4a$$

Product of roots,
$$P = 4a^2 - (4a^2 - 2b) = 2b$$

∴ required equation is
$$x^2 - Sx + P = 0$$

i.e.,
$$x^2 + 4ax + 2b = 0$$

Let α , β be the roots of $ax^2 + bx + c = 0$, γ , δ be the roots of $px^2 + qx + r = 0$ and D_1 and D_2 be their respective discriminant. If α , β , γ , δ are in A.P., then the ratio $D_1:D_2$ is equal to

(1)
$$\frac{a^2}{b^2}$$

(2)
$$\frac{a^2}{p^2}$$

$$(3) \quad \frac{b^2}{q^2}$$

(4)
$$\frac{c^2}{r^2}$$

Sol. Answer (2)

$$\alpha + \beta = -\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$, $D_1 = b^2 - 4ac$

$$\gamma + \delta = -\frac{q}{p}, \ \gamma \delta = \frac{r}{p}, \ D_2 = q^2 - 4rp$$

Let common difference of A.P. be k.

$$k = |\alpha - \beta| = |\gamma - \delta|$$

$$\Rightarrow \frac{\sqrt{b^2 - 4ac}}{a} = \frac{\sqrt{q^2 - 4pr}}{p} \qquad \Rightarrow \frac{\sqrt{b^2 - 4ac}}{\sqrt{q^2 - 4pr}} = \frac{a}{p} \quad \Rightarrow \quad \frac{\sqrt{D_1}}{\sqrt{D_2}} = \frac{a}{p}$$

$$\Rightarrow \frac{D_1}{D_2} = \frac{a^2}{\rho^2}$$

- 3. The value of k if
 - (1) The roots of $5x^2 + 13x + k = 0$ are reciprocal to each other is 5
 - (2) The roots of $x^2 + x + k = 0$ are consecutive integer is 1
 - (3) The roots of $x^2 6x + k = 0$ are in the ratio 2 : 1 is 7
 - (4) The roots of the equation $x^2 + kx 1 = 0$ are real, equal in magnitude but opposite in sign is 1

Sol. Answer (1)

(1) Let roots are α , β

$$\alpha + \beta = -\frac{13}{5}$$

$$\alpha \beta = \frac{k}{5} \qquad \dots$$

For reciprocal roots $\alpha\beta = 1 \implies k = 5$.

(2) If roots are cosecutive integer then

$$|\alpha - \beta| = 1$$

$$\Rightarrow |\alpha - \beta|^2 = 1$$

$$(\alpha + \beta)^2 - 4\alpha\beta = 1$$

$$\Rightarrow 1 - 4k = 1$$

$$\Rightarrow k = 0$$

(3) Let roots are 2α , α

$$\Rightarrow$$
 2 α + α = 6

$$2\alpha \cdot \alpha = k$$

$$\alpha = 2, k = 8$$

(4) In this case

$$\alpha + \beta = 0$$

$$\Rightarrow k = 0$$

If the difference of the roots of the equation $x^2 + ax + b = 0$ is equal to the difference of the roots of the equation $x^2 + bx + a = 0$, then

(1)
$$a + b = 4$$

(2)
$$a + b = -4$$

(3)
$$a - b = 4$$

(2)
$$a + b = -4$$
 (3) $a - b = 4$ (4) $a - b = -4$

Sol. Answer (2)

$$x^2 + ax + b = 0 \implies \alpha + \beta = -a, \ \alpha\beta = b, \ |\alpha - \beta| = \sqrt{a^2 - 4b}$$

$$x^2 + bx + a = 0 \implies \gamma + \delta = -b, \ \gamma \delta = a, \ |\gamma - \delta| = \sqrt{b^2 - 4a}$$

Now,
$$|\alpha - \beta| = |\gamma - \delta| \implies \sqrt{a^2 - 4b} = \sqrt{b^2 - 4a}$$

$$\Rightarrow a^2 - 4b = b^2 - 4a \Rightarrow a^2 - b^2 = 4(b - a)$$

$$\Rightarrow$$
 $(a-b)(a+b+4)=0 \Rightarrow a+b=-4(a \neq b)$

If the equations $px^2 + 2qx + r = 0$ and $px^2 + 2rx + q = 0$ ($q \ne r$) have a common root, then p + 4q + 4r equals

$$(4) -2$$

Sol. Answer (1)

Let α be common root, $p\alpha^2 + 2q\alpha + r = 0$

...(1)

and
$$p\alpha^2 + 2r\alpha + q = 0$$

Now
$$(1) - (2) \Rightarrow 2\alpha(q-r) + r - q = 0 \Rightarrow \alpha = \frac{1}{2}$$

Common root is $\alpha = \frac{1}{2}$, substituting in (1)

$$p\left(\frac{1}{2}\right)^2 + 2q\left(\frac{1}{2}\right) + r = 0 \implies 4r + 4q + p = 0$$

Consider that $f(x) = ax^2 + bx + c$, $D = b^2 - 4ac$, then which of the following is not true?

(1) If a > 0, then minimum value of f(x) is $\frac{-D}{4a}$

(2) If a < 0, then maximum value of f(x) is $\frac{-D}{4a}$

(3) If a > 0, D < 0, then f(x) > 0 for all $x \in R$

(4) If a > 0, D > 0, then f(x) > 0 for all $x \in R$

Sol. Answer (4)

$$f(x) = ax^2 + bx + c$$

$$= a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a \left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} - \frac{b^2}{4a^2} + \frac{c}{a} \right)$$

$$= a\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^{2} + \frac{b^{2} - 4ac}{4a^{2}}\right)$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

$$f(x) = a\left(x + \frac{b}{2a}\right) - \frac{D}{4a}$$

Clearly if a > 0 the minimum value of $f(x) = \frac{-D}{4a}$

Similarly of a < 0 the maximum value = $\frac{-D}{4a}$

If $ax^2 + bx + c > 0$ then a > 0, D < 0 for all $x \in R$

Hence option (4) is not true.

- 7. If one root of the equation $(l-m)x^2 + lx + 1 = 0$ is double the other and if l is real, then the greatest value of m is $(l \neq m)$
 - (1) $\frac{9}{8}$

(2) $\frac{7}{8}$

(3) $\frac{8}{9}$

(4) $\frac{5}{9}$

Sol. Answer (1)

$$(I-m)x^2 + Ix + 1 = 0$$

$$\alpha + 2\alpha = \frac{I}{m-I} \implies \alpha = \frac{I}{3(m-I)}$$

$$\alpha \cdot (2\alpha) = \frac{1}{l-m} \implies \alpha^2 = \frac{1}{2(l-m)}$$

From (1) and (2),

$$\frac{1}{2(I-m)} = \frac{I^2}{9(I-m)^2}$$

$$\Rightarrow 2l^2 - 9l + 9m = 0$$

For real
$$l$$
, $81-8\times9m\geq0$ \Rightarrow $m\leq\frac{81}{72}$
 \Rightarrow $m\leq\frac{9}{72}$

- \therefore Greatest value of m is $\frac{9}{8}$
- 8. If p, q, r are real numbers satisfying the condition p + q + r = 0, then the roots of the quadratic equation $3px^2 + 5qx + 7r = 0$ are
 - (1) Positive
- (2) Negative
- (3) Real and distinct
- (4) Imaginary

Sol. Answer (3)

$$3px^2 + 5qx + 7r = 0$$

$$\Delta = (5q)^2 - 4(3p)(7r)$$

$$=25q^2-84pr$$

$$=25(p+r)^2-84pr$$

$$=25p^2-34pr+25r^2$$

$$= \left(5p - \frac{17}{5}r\right)^2 + \frac{336}{25}r^2 > 0$$

.: roots are real and distinct.

- 9. If x is real, then the expression $\frac{x^2 + 34x 71}{x^2 + 2x 7}$
 - (1) Lies between 4 and 7

(2) Lies between 5 and 9

(3) Has no value between 4 and 7

(4) Has no value between 5 and 9

Sol. Answer (4)

Let
$$y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7}$$

$$\Rightarrow x^2(y-1) + x(2y-34) + 71 - 7y = 0$$

For real x, discriminant should be ≥ 0

$$\Rightarrow$$
 $(2y-34)^2-4(y-1)(71-7y) \ge 0 \Rightarrow 4(y-17)^2-4(y-1)(71-7y) \ge 0$

$$\Rightarrow (y-17)^2 - (-7y^2 + 78y - 71) \ge 0 \Rightarrow 8y^2 - 112y + 360 \ge 0$$

$$\Rightarrow v^2 - 14v + 45 \ge 0 \Rightarrow (v - 9)(v - 5) \ge 0$$

$$\Rightarrow$$
 $y \ge 9$ or $y \le 5$ $\frac{+ - + +}{5}$

- 10. Let a, b, $c \in R$ and $a \ne 0$ be such that $(a + c)^2 < b^2$, then the quadratic equation $ax^2 + bx + c = 0$ has
 - (1) Imaginary roots

- (2) Real roots
- (3) Exactly one real root lying in the interval (-1, 1)
- (4) Exactly two roots in (-1, 1)

Sol. Answer (3)

Here we observe that $(a + c)^2 < b^2$

$$\Rightarrow$$
 $(a-b+c)(a+b+c)<0$

 \Rightarrow Exactly one real root of the given equation lies in (-1, 1).

$$ax^2 + bx + c = 0$$

$$D = b^2 - 4ac > (a+c)^2 - 4ac = (a-c)^2$$

$$\Rightarrow \Delta \geq 0$$

:. Roots are real.

- 11. If a_1 , a_2 , a_3 , a_4 ,....., a_{n-1} , a_n are distinct non-zero real numbers such that $(a_1^2 + a_2^2 + a_3^2 + \dots + a_{n-1}^2)x^2 + 2(a_1a_2 + a_2a_3 + a_3a_4 + \dots + a_{n-1}^2)x + (a_2^2 + a_3^2 + a_4^2 + \dots + a_n^2) \le 0$ then a_1 , a_2 , a_3 ,....., a_{n-1} , a_n are in
 - (1) A.P.

(2) G.P

- (3) H.P.
- (4) A.G.P.

Sol. Answer (2)

We have, given expression

$$(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_2^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + a_3^2 + a_3^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2(a_1^2 + \dots + a_{\mathsf{n}-1}^2)x^2 + 2($$

$$\Rightarrow$$
 $(a_1x + a_2)^2 + (a_2x + a_3)^2 + (a_3x + a_4)^2 + \dots + (a_{n-1}x + a_n)^2 \le 0$

$$\Rightarrow (a_1x + a_2)^2 + (a_2x + a_3)^2 + (a_3x + a_4)^2 + \dots + (a_{n-1}x + a_n)^2 = 0,$$

as sum of square cann't be negative.

$$\Rightarrow a_1x + a_2 = 0 = a_2x + a_3 = a_3x + a_4 = \dots = a_{n-1}x + a_n$$

$$\Rightarrow -x = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \dots = \frac{a_n}{a_{n-1}}$$

$$\Rightarrow a_1, a_2, a_3, \dots, a_{n-1}, a_n$$
 are in G.P.

- 12. The roots of $ax^2 + bx + c = 0$, whose $a \neq 0$, b, $c \in R$, are non-real complex and a + c < b. Then
 - (1) 4a + c > 2b
- (2) 4a + c < 2b
- (3) 4a + c = 2b
- (4) None of these

Sol. Answer (2)

$$f(x) = ax^2 + bx + c$$
, given $f(-1) = a - b + c < 0$

 $f(x) < 0, \forall x \in R$ as roots are non-real complex

$$\therefore$$
 $f(-2) < 0 \Rightarrow 4a - 2b + c < 0 \Rightarrow 4a + c < 2b$

13. The number of irrational roots of the equation

$$(x-1)(x-2)(3x-2)(3x+1) = 21$$
 is

$$(2)$$
 2

Sol. Answer (2)

$$(x-1)(3x-2)(3x+1)(x-2)=21$$

$$(3x^2 - 5x + 2)(3x^2 - 5x - 2) = 21$$

Put,
$$3x^2 - 5x = t$$

$$(t+2)(t-2) = 21 \implies t^2 = 25 \implies t = 5, t = -5$$

Now,
$$3x^2 - 5x = 5$$
 and $3x^2 - 5x = -5$

$$\Rightarrow 3x^2 - 5x - 5 = 0$$
 and $3x^2 - 5x + 5 = 0$

 $3x^2 - 5x - 5 = 0$ has two irrational roots.

whereas roots of $3x^2 - 5x + 5 = 0$ are imaginary.

14. If α , β are the roots of the equation $ax^2 - bx + c = 0$, then equation $(a + cy)^2 = b^2y$ in y has the roots

(1)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$

(2)
$$\alpha^2$$
, β^2

(3)
$$\frac{\alpha}{\beta}$$
, $\frac{\beta}{\alpha}$

(4)
$$\frac{1}{\alpha^2}$$
, $\frac{1}{\beta^2}$

Sol. Answer (4)

Since, α , β are the roots of the equation $ax^2 - bx + c = 0$

So,
$$\alpha + \beta = \frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$

Now, we have to observe root of the equation

$$(a + cy)^2 = b^2y$$

$$\Rightarrow a^2 + 2acv + c^2v^2 = b^2v$$

$$\Rightarrow c^2 y^2 + (2ac - b^2)y + a^2 = 0$$

$$\Rightarrow y^2 + \left(\frac{2ac - b^2}{c^2}\right)y + \frac{a^2}{c^2} = 0$$

$$\Rightarrow y^2 - \left(\frac{b^2}{c^2} - \frac{2a}{c}\right)y + \frac{a^2}{c^2} = 0$$

$$\Rightarrow y^2 - \left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)y + \frac{1}{\alpha^2 \beta^2} = 0$$

Hence the equation $(a + cy)^2 = b^2y$ has roots $\frac{1}{\alpha^2}, \frac{1}{\beta^2}$

15. If a, b, c are in G.P., then the equation $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if

$$\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$$
 are in

(1) A.P.

(2) G.P.

- (3) H.P.
- (4) ab = cd

Sol. Answer (1)

Since a, b, c are in G.P.,

So.
$$b^2 = ac$$

$$\Rightarrow 4b^2 - 4ac = 0$$

$$D = 0$$
 for the equation $ax^2 + 2bx + c = 0$

Hence, it will have equal roots, and root will be

$$x = -\frac{b}{a}$$

Now, $ax^2 + 2bx + c$ and $dx^2 + 2ex + f = 0$ have a common root,

So, $x = -\frac{b}{a}$ will satisfy the equation

$$dx^2 + 2ex + f = 0$$

$$\Rightarrow d.\frac{b^2}{a^2} - 2e.\frac{b}{a} + f = 0$$

$$\Rightarrow \frac{db^2 - 2aeb + a^2f}{a^2} = 0$$

$$\Rightarrow db^2 - 2aeb + a^2f = 0$$

$$\Rightarrow$$
 dac - 2aeb + $a^2f = 0$

$$\Rightarrow$$
 dc + af = 2eb

$$\frac{d}{a} + \frac{f}{c} = \frac{2e}{b}$$

So,
$$\frac{d}{a}$$
, $\frac{c}{b}$, $\frac{f}{c}$ are in A.P.

(1) All roots real and distinct

(2) All roots real but not necessarily distinct

(3) All roots real and negative

(4) May be imaginary

Sol. Answer (1)

$$f(x) = (x - a)(x - c) + k(x - b)(x - d)$$

$$f(a) = k(a - b) (a - d)$$
 which is positive

$$f(b) = (b - a) (b - c)$$
 which is negative

$$f(c) = k(c - b) (c - d)$$
 which is negative

$$f(d) = (d - a) (d - c)$$
 which is positive

So, f(x) = 0 has a root in the interval (a, b) and another in (c, d). So the roots are real and distinct.

17. If the roots of the quadratic equation $x^2 - ax + 2b = 0$ are prime numbers, then the value of (a - b) is

(1) 0

(2) 2

(3) -2

(4) 4

Sol. Answer (2)

$$x^2 - ax + 2b = 0$$
 (Here a, b are integers)

Let α , β be roots

Now, sum of roots = a

product of roots = 2b (an even number)

∴ '2' is one root

Now,
$$4 - 2a + 2b = 0 \Rightarrow a - b = 2$$

18. The interval to which x belongs if

(1)
$$3^{72} \left(\frac{1}{3}\right)^x \left(\frac{1}{3}\right)^{\sqrt{x}} \ge 1$$
 is [1, 64]

(2)
$$x^2 - |x + 2| + x > 0$$
 is $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

(3)
$$x^2 - x + 1 > 0$$
 is $(0, \infty)$ only

(4)
$$x^2 - 4x + 3 < 0$$
 is (1, 4)

Sol. Answer (2)

(1) The given expression can be written as

$$3^{72-x-\sqrt{x}} \ge 1$$

$$\Rightarrow$$
 $72-x-\sqrt{x}\geq 0$

$$\Rightarrow x + \sqrt{x} - 72 \le 0$$

$$\Rightarrow (\sqrt{x} + 9)(\sqrt{x} - 8) \le 0$$

$$\Rightarrow x \leq 64$$

$$\Rightarrow$$
 $0 \le x \le 6$

(2) If
$$x \ge -2$$

$$\Rightarrow x^2 - (x+2) + x > 0$$

$$x^2 - 2 > 0$$

$$\Rightarrow x \in \left(-\infty, -\sqrt{2}\right) \cup \left(\sqrt{2}, \infty\right)$$

But
$$x > -2$$

Hence
$$x \in [-2, -\sqrt{2}] \cup [\sqrt{2}, \infty)$$

(3)
$$x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} > 0, \forall x \in \mathbb{R}$$

(4) $x^2 - 4x + 3 < 0$

(4)
$$x^2 - 4x + 3 < 0$$

$$\Rightarrow (x-1)(x-3) < 0$$

$$1 < x < 3$$
.

19. Which of the following is false?

(1)
$$(\log_5 x)^2 + \log_5 x - 2 < 0$$
 then $x \in \left(\frac{1}{25}, 5\right)$

(2) The greatest negative integer satisfying
$$x^2 - 4x - 77 < 0$$
 and $x^2 > 4$ is -3

(3)
$$x^{12} - x^9 + x^4 - x + 1 > 0$$
 then $x \in (-\infty, \infty)$

(4)
$$\frac{x}{x} = 1, x \in R$$

Sol. Answer (4)

(1)
$$(\log_5 x + 2)(\log_5 x - 1) < 0$$

$$\Rightarrow$$
 $-2 < \log_5 x < 1$

$$=\frac{1}{25} < x < 5$$

(2)
$$x^2 - 4x - 77 < 0$$

$$\Rightarrow (x-1)(x+7) < 0$$

$$\Rightarrow$$
 $-7 < x < 11$

$$x^2 - 4 > 0$$

$$(x-2)(x+2) > 0$$

$$\Rightarrow$$
 $x \in (-\infty, -2) \cup (2, \infty)$

Hence the greatest negative integer = -3

(3)
$$y = x^{12} - x^9 + x^4 - x + 1 > 0$$

(i) If
$$x < 0 \implies y = 0$$

(ii) If
$$x > 1 \Rightarrow y > 1$$

(iii) If
$$x \in (0, 1)$$

$$\Rightarrow y = (1 - x) + (x^4 - x^9) + x^{11} > 0$$

Hence $x \in (-\infty, \infty)$

$$(4) \quad \frac{x}{x} = 1 \quad \Rightarrow \quad x \neq 0$$

SECTION - B

Objective Type Questions (More than one options are correct)

If $\sin \alpha$, $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ ($c \neq 0$), then

(1)
$$a^2 - b^2 + 2ac = 0$$

$$(2) (a + c)^2 = b^2 + c^2$$

3)
$$\frac{b}{a} \in [-\sqrt{2}, \sqrt{2}]$$

(2)
$$(a + c)^2 = b^2 + c^2$$
 (3) $\frac{b}{a} \in [-\sqrt{2}, \sqrt{2}]$ (4) $\frac{c}{a} \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

Sol. Answer (1, 2, 3, 4)

$$\Rightarrow \sin \alpha + \cos \alpha = -\frac{b}{a}$$

$$\Rightarrow \sin \alpha . \cos \alpha = \frac{c}{a}$$

$$\Rightarrow \sin^2 \alpha + \cos^2 \alpha = 1$$

$$\Rightarrow \left(-\frac{b}{a}\right)^2 - \frac{2c}{a} = 1 \Rightarrow b^2 - 2ca = a^2$$

$$\Rightarrow a^2 - b^2 + 2ac = 0$$

Also
$$(a+c)^2 = b^2 + c^2$$
.

- 2. Let a, b, c be real numbers in G.P. such that a and c are positive, then the roots of the equation $ax^2 + bx + c = 0$
 - (1) Are real and are in the ratio b: ac
 - (2) Are real
 - (3) Are imaginary and are in ratio 1: ω where ω is a non-real complex cubic root of constant
 - (4) Are imaginary and are in the ratio ω^2 : 1 with usual notation
- **Sol.** Answer (3, 4)

$$ax^2 + bx + c = 0$$

Let a, b, c is a, ar, ar²

Now, $ax^2 + arx + ar^2 = 0$

$$\Rightarrow x^2 + rx + r^2 = 0 \Rightarrow x = r \left(\frac{-1 \pm \sqrt{3}i}{2} \right) \Rightarrow x = \omega r \text{ or } \omega^2 r$$

 \therefore Roots are imaginary and are in the ratio 1 : ω or ω^2 : 1.

- 3. Let $\cos \alpha$ be a root of the equation $25x^2 + 5x 12 = 0$, -1 < x < 0, then the value of $\sin 2\alpha$ can be
 - (1) $\frac{20}{25}$

(2) $-\frac{12}{25}$

- (3) $\frac{24}{25}$
- $(4) -\frac{24}{25}$

Sol. Answer (3, 4)

$$25x^2 + 5x - 12 = 0 \implies (5x - 3)(5x + 4) = 0$$

$$\Rightarrow x = \frac{3}{5}, x = -\frac{4}{5} \quad \left(x \neq \frac{3}{5} \text{ as } -1 < x < 0\right)$$

$$\therefore \cos \alpha = -\frac{4}{5}$$

$$\Rightarrow \sin \alpha = \frac{3}{5} \text{ or } -\frac{3}{5}$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \times \frac{3}{5} \left(-\frac{4}{5} \right) = -\frac{24}{25}$$

or
$$2\left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right) = \frac{24}{25}$$

- 4. If the quadratic equations $x^2 + pqx + r = 0$ and $x^2 + prx + q = 0$ have a common root then the equation containing their other roots is/are
 - (1) $x^2 p(q + r)x + p^2qr = 0$

(2)
$$x^2p(q+r) + (q+r)x - pqr = 0$$

(3) $p(q + r)x^2 - (q + r)x + pqr = 0$

(4)
$$x^2 + p(q + r)x - p^2qr = 0$$

Sol. Answer (1, 2)

Let α be common root

$$\alpha^2 + pq\alpha + r = 0$$

$$\alpha + \beta = -pq$$
, $\alpha\beta = r$

$$\alpha^2 + pr\alpha + q = 0$$
,

$$\alpha + \gamma = -pr$$
, $\alpha \gamma = q$

$$\alpha p(q-r)+r-q=0$$
 $\Rightarrow \alpha = \frac{1}{p}$

Common root is $\alpha = \frac{1}{p}$

Other roots are, $\beta = rp$ and $\gamma = qp$

:. Equation containing other roots is

$$x^2 - p(r+q)x + p^2rq = 0$$

$$\therefore \frac{1}{p}$$
 is common root $\Rightarrow \left(\frac{1}{p}\right)^2 + pq\left(\frac{1}{p}\right) + r = 0$

$$\Rightarrow \frac{1}{p^2} = -(q+r)$$

Now,
$$x^2 - p(q+r)x + p^2qr = 0$$

$$\Rightarrow -p \left[-\frac{p}{p^2} x^2 + (q+r)x - pqr \right] = 0$$

$$\Rightarrow p(q+r)x^2 + (q+r)x - pqr = 0$$

- 5. The quadratic equation $x^2 (m-3)x + m = 0$ has
 - (1) Real and distinct roots if and only if $m \in (-\infty, 1) \cup (9, \infty)$
 - (2) Both roots positive if and only if $m \in (9, \infty)$
 - (3) Both roots negative if and only if $m \in (0, 1)$
 - (4) Both roots negative if $m \in (0, 3)$

Sol. Answer (1, 2, 4)

$$x^2 - (m-3)x + m = 0$$

For real distinct roots, $(m-3)^2 - 4m > 0$

$$\Rightarrow m^2 - 10m + 9 > 0$$

$$\Rightarrow (m-9)(m-1) > 0 \Rightarrow m \in (-\infty, 1) \cup (9, \infty) \qquad \dots (i)$$

For positive roots,

Sum > 0, product > 0

$$\Rightarrow m-3>0$$
, $m>0$...(ii)

From (i) and (ii), $m \in (9, \infty)$

For negative roots

sum <
$$0$$
, product > 0

$$\Rightarrow m-3 < 0, m > 0$$
 ...(iii)

From (i) and (iii), $m \in (0, 1)$

- 6. If both roots of the equation $x^2 2ax + a^2 1 = 0$ lies strictly between -3 and 4, then [a] can be, where $[\]$ represents the greatest integer function
 - (1) 1

(2) -1

(3) 2

(4) 0

Sol. Answer (1, 2, 3, 4)

$$x^2 - 2ax + a^2 - 1 = 0$$

$$(x-a)^2 = 1 \Rightarrow x = a + 1, a - 1.$$

Now,
$$-3 \le [a+1] < 4$$
 and $-3 \le [a-1] \le 4$

$$\Rightarrow -3 \le [a] + 1 < 4 \text{ and } -3 \le [a] - 1 \le 4$$

$$\Rightarrow$$
 $-4 \le [a] < 3$ and $-2 \le [a] \le 5$

$$\Rightarrow -2 \le [a] < 3 \Rightarrow [a] = -2, -1, 0, 1, 2$$

- 7. Let α , β be the roots of $x^2 4x + A = 0$ and γ , δ be the roots of $x^2 36x + B = 0$. If α , β , γ , δ forms an increasing G.P. Then
 - (1) B = 81 A
- (2) A = 3

- (3) B = 243
- (4) A + B = 251

Sol. Answer (1, 2, 3)

$$\alpha + \beta = 4$$
, $\alpha\beta = A$

$$\gamma + \delta = 36$$
, $\gamma \delta = B$

Let
$$\alpha$$
, β , γ , δ be a, ar, ar^2 , ar^3

$$a + ar = 4$$

$$ar^2 + ar^3 = 36 \implies \frac{1+r}{r^2(1+r)} = \frac{1}{9}$$

$$\Rightarrow r^2 = 9 \Rightarrow r = \pm 3, a = 1.$$

$$A = \alpha \beta \Rightarrow a(ar) = A \Rightarrow A = 3$$

$$B = \gamma \delta \implies B = (ar^2) (ar^3) \implies B = 243 \implies B = 81A.$$

- 8. For the equation $x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x \frac{5}{4}} = \sqrt{2}$, which one of the following is true?
 - (1) Has at least one real solution

- (2) Has exactly three real solutions
- (3) Has exactly one irrational solutions
- (4) Has non-real complex roots

Sol. Answer (1, 2, 3)

$$x^{\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}} = \sqrt{2}$$

Taking log with base 2 on both side.

$$\left[\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}\right] \log_2 x = \log_2 \sqrt{2} = \frac{1}{2}$$

Put
$$\log_2 x = t$$
, $\left(\frac{3}{4}t^2 + t - \frac{5}{4}\right)t = \frac{1}{2}$

$$\Rightarrow 3t^3 + 4t^2 - 5t - 2 = 0 \Rightarrow (t - 1)(3t^2 + 7t + 2) = 0$$

$$\Rightarrow t = 1, -\frac{1}{3}, -2 \Rightarrow \log_2 x = 1, -\frac{1}{3}, -2 \Rightarrow x = 2, 2^{-1/3}, 2^{-2}$$

- 9. If $f(x) = ax^2 + bx + c$, $g(x) = -ax^2 + bx + c$, where $ac \ne 0$ then f(x).g(x) = 0 has
 - (1) At least three real roots

(2) No real roots

(3) At least two real roots

(4) At most two imaginary roots

Sol. Answer (3, 4)

Let D_1 and D_2 be the respective discriminates.

then
$$D_1 = b^2 - 4ac$$

and
$$D_2 = b^2 + 4ac$$

Adding we get $D_1 + D_2 = 2b^2$

$$D_1 + D_2$$
 is positive

- \Rightarrow at least one of D_1 or D_2 is positive.
- \Rightarrow at least 2 real roots.
- 10. The value of a for which the equation $x^2 + ax + a^2 + 6a < 0$ is satisfied for all $x \in (1, 2)$

$$(1) \quad \left(\frac{-7-\sqrt{45}}{2}, -2\right)$$

(2)
$$\left(\frac{-7-\sqrt{45}}{2}, -3\right)$$

(3)
$$\left(\frac{-7-\sqrt{45}}{2}, -4+2\sqrt{3}\right)$$

(4)
$$\left(\frac{-7+\sqrt{45}}{2}, 4+3\sqrt{3}\right)$$

Sol. Answer (1, 2, 3)

Let α , β be the roots of the corresponding equation

$$x^2 + ax + a^2 + 6a = 0$$

As the coefficient of $x^2 = 1 > 0$ $x^2 + ax + a^2 + 6x < 0$ will be satisfied for all values of $x \in (\alpha, \beta)$ if α , β are real and unequal (let $\alpha < \beta$).

Hence the inequality will hold for all real $x \in (1, 2)$ if the interval (1, 2) is a subject of the interval (α, β) . Thus for (1) we should have D > 0 and $\alpha < 1$, $\beta > 1$ as well as $\alpha < 2$, $\beta > 2$.

Now, $D > 0 \Rightarrow a^2 - 4(a^2 + 6a) > 0$

$$\Rightarrow a^2 + 8a < 0$$

$$\Rightarrow$$
 $a \in (-8, 0)$

...(ii)

$$\alpha$$
 < 1, β > 1 \Rightarrow α - 1 < 0, β - 1 > 0

$$(\alpha - 1)(\beta - 1) < 0$$

$$\Rightarrow a^2 + 7a + 1 < 0$$

$$a \in \left(\frac{-7-\sqrt{45}}{2}, \frac{-7+\sqrt{45}}{2}\right)$$

...(iii)

$$\alpha$$
 < 2, β > 2 \Rightarrow (α – 2) (β – 2) < 0

$$\Rightarrow a^2 + 8a + 4 < 0$$

$$\Rightarrow a \in (-4 - 2\sqrt{3}, -4 + 2\sqrt{3})$$
 ...(iv)

Common values of a satisfying (ii), (iii) and (iv) are

$$a \in \left(\frac{-7 - \sqrt{45}}{2}, -4 + 2\sqrt{3}\right)$$
 ...(v)

Hence answer is (1), (2), (3) those are subset of (v)

11. If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign and its product is α

(1)
$$p + q = r$$

(2)
$$p + q = 2r$$

(3)
$$\alpha^2 = \frac{p^2 + q^2}{2}$$

(3)
$$\alpha^2 = \frac{p^2 + q^2}{2}$$
 (4) $\alpha = -\left(\frac{p^2 + q^2}{2}\right)$

Sol. Answer (2, 4)

The given equation is

$$\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$$

$$\Rightarrow \frac{x+q+x+p}{(x+p)(x+q)} = \frac{1}{r}$$

$$\Rightarrow$$
 $(2x + p + q)r = x^2 + (p + q)x + pq$

$$\Rightarrow x^2 + (p + q - 2r)x + (pq - qr - rp) = 0$$

According to the question the given equation has roots equal in magnitude but opposite in sign, hence

Coefficient of x = 0

$$\Rightarrow p + q - 2r = 0$$

$$\Rightarrow r = \frac{p+q}{2}$$

Product of roots

$$= -\left[(p+q)r - pq\right]$$

$$= -\left(\frac{(p+q)^2}{2} - pq\right)$$

$$= -\frac{1}{2}(p^2 + q^2)$$

12. The integral values of a for which the equation $(a + 2)x^2 + 2(a + 1)x + a = 0$ will have both roots integers

$$(2) - 1$$

$$(3) - 2$$

$$(4) - 3$$

Sol. Answer (1, 2, 4)

$$(a + 2) x^2 + 2(a + 1)x + a = 0$$

Let α , β be roots

$$\alpha + \beta = \frac{-2(a+1)}{a+2} \text{ (integer)}$$

$$\alpha\beta = \frac{a}{a+2}$$
 (integer)

$$\frac{a}{a+2}$$
 will integer if

For
$$a = 0$$
, $a = -1$, $a = -3$

Also for
$$a = 0$$
, $a = -1$, $a = -3$

$$\alpha + \beta = \frac{-2(a+1)}{a+2}$$
 is integer

- 13. If $(x-1)^2$ is a factor of $ax^3 + bx^2 + c$, then roots of the equation $cx^3 + bx + a = 0$ may be
 - (1) 1

(2) - 1

- (3) 2
- (4) 0

Since 1 is the repeated roots of $ax^3 + bx^2 + c = 0$

So,
$$1 + 1 + \alpha = -\frac{b}{a}$$

$$1.1 + \alpha + \alpha = 0 \Rightarrow \alpha = -\frac{1}{2}$$

$$1.1.\alpha = -\frac{c}{a} = -\frac{1}{2} \Rightarrow \frac{c}{a} = \frac{1}{2}$$

$$\frac{b}{a} = -\frac{3}{2}$$

$$\therefore \frac{b}{c} = -3$$

Now, by the equation,

$$cx^3 + bx + a = 0$$

$$\Rightarrow x^3 + \frac{b}{c}x + \frac{a}{c} = 0$$

$$\Rightarrow x^3 - 3x + 2 = 0$$

$$x^3 - x^2 + x^2 - x - 2x + 2 = 0$$

$$\Rightarrow x^2(x-1) + x(x-1) - 2(x-1) = 0$$

$$\Rightarrow$$
 $(x-1)(x^2+x-2)=0$

$$\Rightarrow$$
 $(x-1)(x^2+2x-x-2)=0$

$$\Rightarrow$$
 $(x-1)(x-1)(x+2)=0$

$$\Rightarrow x = +1, -2$$

Hence answer is (1), (3)

- 14. If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$ then all roots of the equation will be real if
 - (1) b > 0, a < 0, c > 0

(2) b > 0, a > 0, c > 0

(3) b < 0, a > 0, c > 0

(4) b > 0, a < 0, c < 0

Sol. Answer (3, 4)

Let
$$x^2 = y$$

So the equation $ay^2 + by + c = 0$ should have both roots non-negative in order to all roots of the equation $ax^4 + bx^2 + c = 0$ are real for this

$$\alpha + \beta = -\frac{b}{a} > 0 \implies \frac{b}{a} < 0$$

$$\alpha\beta = \frac{c}{a} > 0$$

From (i) and (ii)

$$b > 0$$
, $a < 0$, $c < 0$

or
$$b < 0$$
, $a > 0$, $c > 0$

15. The difference between the roots of the equation $x^2 + kx + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of k is

$$(1) (-3, 0)$$

$$(3) (-3, 3)$$

Sol. Answer (1, 2, 3)

$$|\alpha - \beta| \propto \sqrt{5}$$

$$\Rightarrow (\alpha - \beta)^2 < 5$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta < 5$$

$$\Rightarrow k^2 - 4 < 5$$

$$\Rightarrow k^2 < 9 \Rightarrow k \in (-3, 3)$$

Hence answers is (1, 2, 3)

16. The set of real values of a for which $a^2 + 2a$, 2a + 3 and $a^2 + 3a + 8$ are the sides of a triangle may be

$$(1) \left(6, \frac{13}{2}\right)$$

Sol. Answer (1, 2, 3)

We know that in a triangle sum of two sides of a triangle is greater than third side.

So,
$$a^2 + 2a + 2a + 3 > a^2 + 3a + 8 \Rightarrow 4a > 3a + 5 \Rightarrow a > 5$$

$$a^2 + 2a + a^2 + 3a + 8 > 2a + 3 \Rightarrow 2a^2 + 3a + 5 > 0 \Rightarrow a \in R$$

$$2a + 3 + a^2 + 3a + 8 > a^2 + 2a \Rightarrow 3a > -11 \Rightarrow a > -\frac{11}{3}$$

Combining these three,

$$a \in (5, \infty)$$

Hence answer is (1, 2, 3)

SECTION - C

Linked Comprehension Type Questions

Comprehension-I

Let us consider an equation $f(x) = x^3 - 3x + k = 0$. Then the values of k for which the equation has

1. Exactly one root which is positive, then k belongs to

$$(1) (-\infty, -2)$$

$$(4)$$
 $(-2,0)$

Sol. Answer (1)

$$f(x) = x^3 - 3x + k$$

$$f'(x) = 3x^2 - 3 = 0 \implies x = \pm 1$$

For exactly one positive root

$$f(-1) < 0$$
 and $f(1) < 0$

$$\Rightarrow$$
 -1 + 3 + k < 0 and 1 - 3 + k < 0

$$\Rightarrow$$
 $k < -2$ and $k < 2 \Rightarrow k \in (-\infty, -2)$

$$(2)$$
 $(0, 2)$

$$(3) (-2, 0)$$

$$(4) (-\infty, -2)$$

Sol. Answer (1)

For exactly one negative root,

$$f(-1) > 0$$
, $f(1) > 0$

$$\Rightarrow$$
 -1 + 3 + $k > 0$. 1 - 3 + $k > 0$

$$\Rightarrow k > -2, k > 2$$

$$\Rightarrow k \in (2, \infty)$$

One negative and two positive root if *k* belongs to

$$(2)$$
 $(0, 2)$

Sol. Answer (2)

For one negative and two positive root

$$f(-1) > 0$$
, $f(0) > 0$, $f(1) < 0$

$$\Rightarrow$$
 -1 + 3 + k > 0, k > 0, 1 - 3 + k < 0

$$\Rightarrow k>-2, k>0, k<2$$

$$\Rightarrow$$
 0 < k < 2 i.e., k \in (0, 2)

Comprehension-II

The values of 'k' for which the equation $|x|^2 (|x|^2 - 2k + 1) = 1 - k^2$, has

No real root, when k belongs to

(2)
$$\left(-1, \frac{5}{4}\right)$$

(3)
$$(-\infty, -1) \cup \left(\frac{5}{4}, \infty\right)$$
 (4) R

Sol. Answer (3)

$$|x|^2 (|x|^2 - 2k + 1) = 1 - k^2$$

$$\Rightarrow x^2(x^2 - 2k + 1) = 1 - k^2 \Rightarrow x^4 - (2k - 1)x^2 + k^2 - 1 = 0$$

All roots are imaginary, if $D = b^2 - 4ac < 0$

$$\Rightarrow (2k-1)^2-4(k^2-1)<0$$

$$\Rightarrow k > \frac{5}{4}$$

Also roots are imaginary if D > 0, but x^2 is negative, i.e. roots of $(x^2)^2 - (2k-1)(x^2) + k^2 - 1 = 0$ are both negative.

- ∴ Sum < 0, and product > 0
- \Rightarrow 2k-1<0 and $k^2-1>0 \Rightarrow k \in (-\infty, -1)$
- \therefore All roots are imaginary if $k \in (-\infty, -1) \cup \left(\frac{5}{4}, \infty\right)$
- 2. Exactly two real roots, when k belongs to
 - (1) (-∞, -1)
- (2) (-1, 1)
- (3) $\left(1, \frac{5}{4}\right)$
- (4) R

Sol. Answer (2)

For exactly two real roots of

$$t^2 - (2k-1)t + k^2 - 1 = 0$$

D > 0 and one value of $t = x^2$ is positive and one is negative.

$$\Rightarrow (2k-1)^2-4(k^2-1)>0$$

$$\Rightarrow k < \frac{5}{4}$$

...(i)

Product =
$$k^2 - 1 < 0 \implies -1 < k < 1$$

...(ii)

From (1) and (2)
$$k \in (-1, 1)$$
.

3. Repeated roots, when k belongs to

$$(1)$$
 $\{1, -1\}$

$$(3) \{0, -1\}$$

(4) {2 3}

Sol. Answer (1)

For repeated roots $\Delta = 0$, $k = \frac{5}{4}$

or
$$P = 0$$
, $\Rightarrow k^2 - 1 = 0$, $k = \pm 1$

When product = 0, x = 0 is repeated root.

Comprehension-III

Let $f(x) = px^2 + qx + r$, $p \ne 0$, p, q, $r \in Z$. Suppose that f(1) = 0, f(3) < f(3

- 1. The least value of $px^2 + qx + r$ is
 - (1) $\frac{3}{4}$

(2) $\frac{9}{2}$

- (3) $-\frac{9}{8}$
- (4) $\frac{2}{5}$

Sol. Answer (3)

Given, f(1) = p + q + r = 0, 50 < 49p + 7q + r < 60 and 70 < 64p + 8q + r < 80

$$\Rightarrow$$
 8p + q = 9 and 9p + q = 11 \Rightarrow p = 2, q = -7 and r = 5

$$\Rightarrow$$
 $f(x) = 2x^2 - 7x + 5$

Least value =
$$\frac{-D}{4a} = \frac{-(49-40)}{4.2} = \frac{-9}{8}$$

- Number of integral values of x for which f(x) < 0 is
 - (1) 0

(2) 1

(3) 2

(4) 3

Sol. Answer (2)

Given,
$$f(1) = p + q + r = 0$$
, $50 < 49p + 7q + r < 60$ and $70 < 64p + 8q + r < 80$

$$\Rightarrow$$
 8p + q = 9 and 9p + q = 11 \Rightarrow p = 2, q = -7 and r = 5

$$\Rightarrow$$
 $f(x) = 2x^2 - 7x + 5$

$$f(x) < 0 \Rightarrow 2x^2 - 7x + 5 < 0 \Rightarrow x \in \left(1, \frac{5}{2}\right)$$

 \Rightarrow x = 2 only integral solution.

SECTION - D

Matrix-Match Type Questions

For the quadratic equation $x^2 - (k-3)x + k = 0$, match the condition in column I with the corresponding values of k in column II.

Column-I

- (A) Both the roots are positive
- (B) Both the roots are negative
- (v, 1]
 (t) [125, 1250]

 U

 List to be real $(k-3)^2 4k \ge 0$ $\Rightarrow k^2 6k + 9 4k \ge 0 \Rightarrow k^2 10k + 9 \ge 0 \Rightarrow (k-1)(k-9) \ge 0$ $\Rightarrow k \in (-\infty, 1] \cup [9, \infty]$ (A) For both roots to be positive, $f(0) > 0 \text{ and } \frac{k-3}{2} > 0$ k > 0and k > 3
- Column-II
- (p) ϕ
 - (q) $(-\infty, 1) \cup (9, \infty)$
- **Sol.** Answer A(r, t), B(s), C(q, r, s, t), D(p)

$$x^2 - (k-3)x + k = 0$$

$$(k-3)^2-4k>0$$

$$\Rightarrow k^2 - 6k + 9 - 4k \ge 0 \Rightarrow k^2 - 10k + 9 \ge 0 \Rightarrow (k - 1)(k - 9) \ge 0$$

$$\Rightarrow k \in (-\infty \ 11 \cup [9 \ \infty])$$

$$f(0) > 0$$
 and $\frac{k-3}{2} > 0$

From (i), (ii) and (iii)

$$k \in [9, \infty]$$

(B) For both roots to be negative

$$D \ge 0$$

$$k > 0$$
, $(k - 3) / 2 < 0$, $\Rightarrow k < 3$, $\Rightarrow k \in (0, 1]$

- (C) For both roots to be real $k \in (-\infty, 1] \cup [9, \infty)$
- (D) f(-1) < 0, f(1) < 0

$$1 + (k-3) + k < 0$$
 also $1 - (k-3) + k < 0$

$$\Rightarrow$$
 2k - 2 < 0 \Rightarrow k < 1, 4 < 0

No such value is possible

2. Match the following

Column-I

- (A) If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real and less than 3, then a belongs to
- (B) If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real and greater than 3, then a belongs to
- (C) If exactly one root of the above equation lies in the interval (1, 3), then *a* belongs to
- (D) If the roots of the above equation are such that one root is greater than 3 and other roots is smaller than 1, then *a* belongs to

Sol. Answer A(s), B(p), C(r), D(p)

(A) For real roots, $D \ge 0$

$$\Rightarrow (-2a)^2 - 4(a^2 + a - 3) \ge 0$$

$$\Rightarrow 4[a^2-a^2-a+3) \ge 0 \Rightarrow a \le 3$$

$$f(3) > 0 \implies 9 - 6a + a^2 + a - 3 > 0$$

$$\Rightarrow a^2 - 5a + 6 > 0$$

$$\Rightarrow a \in (-\infty, 2) \cup (3, \infty)$$

$$-\frac{b}{2a} < 3 \implies \frac{2a}{2} < 3 \implies a < 3$$

from (i), (ii) and (iii) $a \in (-\infty, 2)$

(B) $D \ge 0 \Rightarrow a \le 3$

$$f(3) > 0 \Rightarrow a \in (-\infty, 2) \cup (3, \infty)$$

For greater than 3,

$$-\frac{b}{2a} > 3 \Rightarrow a > 3$$

From (i), (ii) and (iii), $a \in \phi$.

(C)
$$D > 0 \Rightarrow a < 3$$

$$(1-2a+a^2+a-3)(9-6a+a^2+a-3)<0$$

$$\Rightarrow$$
 $(a^2-a-2)(a^2-5a+6)<0 \Rightarrow (a-2)^2(a+1)(a-3)<0$

$$\Rightarrow$$
 $a \in (-1, 3) - \{2\}$

 $\in (-1, 3) - \{2\}$

From (i) and (ii)

$$a \in (-1, 2) \cup (2, 3)$$

Column-II

(p) a does not exist

(q)
$$\left(\frac{3}{2},3\right)$$

- (r) $(-1, 2) \cup (2, 3)$
- (s) (-∞, 2)

...(i)

...(ii)

...(iii)

A G

...(ii)

5

...(i)

...(ii)

(D)
$$D \ge 0 \Rightarrow a \le 3$$

$$f(1) < 0 \Rightarrow (1-2a+a^2+a-3) < 0$$

$$\Rightarrow (a^2 - a - 2) < 0$$

$$\Rightarrow$$
 -1 < a < 2

$$f(3) < 0 \implies (9-6a+a^2+a-3) < 0$$

$$\Rightarrow a^2 - 5a + 6 < 0$$

$$\Rightarrow$$
 2 < a < 3

...(iii)

From (i), (ii) and (iii)

 $a \in \phi$.

For given equation $x^2 - ax + b = 0$, match conditions in column I with possible values in column II 3.

Column-I

Column-II

- (A) If roots differ by unity then a^2 is equal to
- (B) If roots differ by unity then $1 + a^2$ is equal to
- (C) If one of the root be twice the other then $2a^2$ is equal to
- (D) If the sum of roots of the equation equal to the sum of
- (p) b(ab + 2)
- (q) 1 + 4b
- (r) 2(1+2b)
- squares of their reciprocal then a2 is equal to
- Sol. Answer A(q), B(r), C(s), D(p)

(A)
$$\rightarrow$$
 (q), (B) \rightarrow (r)

$$x^2 - ax + b = 0$$

$$\alpha + \beta = a$$
, $\alpha\beta = b$

$$|\alpha - \beta| = 1 = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \sqrt{a^2 - 4b}$$

$$\Rightarrow a^2 - 4b = 1$$

$$\Rightarrow a^2 = 1 + 4b$$

$$\Rightarrow a^2 + 1 = 2 + 4b = 2(1 + 2b)$$

(C)
$$\alpha + 2\alpha = a \implies \alpha = \frac{a}{3}$$

$$2\alpha.\alpha = b \implies \alpha^2 = \frac{b}{2}$$

$$\left(\frac{a}{3}\right)^2 = \frac{b}{2} \implies a^2 = \frac{9b}{2} \implies 2a^2 = 9b.$$

(D)
$$\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$(\alpha + \beta)(\alpha^2\beta^2) = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$\Rightarrow a(b)^2 = a^2 - 2b$$

$$\Rightarrow a^2 = ab^2 + 2b = b(ab + 2)$$

If α , β , γ be the roots of the equation $x(1 + x^2) + x^2(6 + x) + 2 = 0$, then match the entries of column-I with those of column-II.

Column I

- (A) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ is less than or equal to
- (B) $\alpha^2 + \beta^2 + \gamma^2$ equals
- (C) $(\alpha^{-1} + \beta^{-1} + \gamma^{-1}) (\alpha + \beta + \gamma)$ is less than or equal to
- (D) $[\alpha^{-1} + \beta^{-1} + \gamma^{-1}]$ equals where [·] denotes

the greatest integer less than or equal to

Column II

- (p) 8
- (q) $-\frac{1}{2}$
- (r) -1
- (s) 3
- (t) $\frac{5}{2}$

Sol. Answer A(p, q, s, t), B(p), C(p, s, t), D(r)

 α , β , γ be the roots of the equation

$$x(1 + x^2) + x^2(6 + x) + 2 = 0$$

$$\Rightarrow x^3 + x + 6x^2 + x^3 + 2 = 0$$

$$\Rightarrow$$
 2 $x^3 + 6x^2 + x + 2 = 0$

So,
$$\alpha + \beta + \gamma = -3$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2}$$

$$\alpha\beta\gamma = -1$$

Now.

(A)
$$\alpha^{-1} + \beta^{-1} + \gamma^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = -\frac{1}{2}$$

(B)
$$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 9 - 2 \cdot \frac{1}{2} = 8$$

(C)
$$(\alpha^{-1} + \beta^{-1} + \gamma^{-1}) - (\alpha + \beta + \gamma) = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} - (\alpha + \beta + \gamma) = -\frac{1}{2} + 3 = \frac{5}{2}$$

(D) $\left[\alpha^{-1} + \beta^{-1} + \gamma^{-1}\right] = \left|-\frac{1}{2}\right| = -1$

SECTION - E

Assertion-Reason Type Questions

STATEMENT-1 : A root of the equation $(2^{10} - 3)x^2 - 2^{11}x + (2^{10} + 3) = 0$ is 1.

and

STATEMENT-2: The sum of the coefficients of a quadratic equation is zero, then 1 is a root of the equation.

Sol. Answer (1)

$$ax^2 + bx + c = 0$$

$$x = 1$$
, $a + b + c = 0$

If sum of coefficient is 0 then 1 is the root of the equation.

$$(2^{10} - 3) - 2^{11} + 2^{10} + 3 = 0$$

.: Both are true and Statement-2 is correct explanation of Statement-1

2. STATEMENT-1 : The equation whose roots are reciprocal of the roots of the equation $10x^2 - x - 5 = 0$ is $5x^2 + x - 10 = 0$.

and

STATEMENT-2: To obtain a quadratic equation whose roots are reciprocal of the roots of the given equation $ax^2 + bx + c = 0$ change the coefficients a, b, c to c, b, a. $(c \ne 0)$

Sol. Answer (1)

For reciprocal roots, replacing x by
$$\frac{1}{x}$$
 in $ax^2 + bx + c = 0$ $\frac{a}{x^2} + \frac{b}{x} + c = 0 \implies cx^2 + bx + a = 0$

Statement-2 is correct and is correct explanation of Statement-1

$$10x^2 - x - 5 = 0 \Rightarrow \frac{10}{x^2} - \frac{1}{x} - 5 = 0 \Rightarrow 5x^2 + x - 10 = 0$$

3. STATEMENT-1: The equation $x^2 - 2009x + 2008 = 0$ has rational roots.

and

STATEMENT-2: The quadratic equation $ax^2 + bx + c = 0$ has rational roots iff $b^2 - 4ac$ is a perfect square.

Sol. Answer (3)

The equation in first statement is $x^2 - 2009x + 2008 = 0$ can be written as (x - 2008)(x - 1) = 0

- \Rightarrow x = 1, 2008 are roots of the equation where are rationals also.
- ⇒ Statement 1 is True.

Statement 2 is not always true. When $D = b^2 - 4ac = a$ perfect square than roots of the equation $ax^2 + bx + c = 0$ are rational only when a, b, c are rationals, otherwise roots are irrationals.

To this end, let us consider an equation $4x^2 - 4\sqrt{3}x - 1 = 0$

whose discriminant = $48 + 16 = 64 = 8^2 = a$ perfect square but roots are

$$x = \frac{4\sqrt{3} \pm \sqrt{48 + 16}}{2 \times 4} = \frac{\sqrt{3} \pm 2}{2}$$
 which are not rationals.

Thus statement 2 is false.

Hence option (3) is correct.

4. STATEMENT-1: The quadratic equation $ax^2 + bx + c = 0$ has real roots if $(a + c)^2 > b^2$, $\forall a, b, c \in R$.

and

STATEMENT-2: The quadratic equation $ax^2 + bx + c = 0$ has real roots if $b^2 - 4ac \ge 0$.

Sol. Answer (4)

We observe that

$$(a + c)^2 > b^2$$

$$\Rightarrow (a + c)^2 - b^2 > 0$$

$$\Rightarrow$$
 $(a - b + c) (a + b + c) > 0$

$$\Rightarrow$$
 $f(-1)f(1) > 0$, where $f(x) = ax^2 + bx + c$

- \Rightarrow f(x) = ax² + bx + c = 0 has either no root in (-1, 1) or if real roots exist, then both roots lie in (-1, 1)
- ⇒ Statement 1 is not necessarily true

Hence statement 1 is false.

5. STATEMENT-1: There is just one quadratic equation with real coefficients, one of whose roots is $\frac{1}{3+\sqrt{7}}$

and

STATEMENT-2: In a quadratic equation with rational coefficients the irrational roots occur in pair.

Sol. Answer (4)

Statement-1 is wrong.

$$\frac{1}{3+\sqrt{7}}$$
 can be root of infinite equations with real coefficients, e.g., $(x-1)\left(x-\frac{1}{3}+\sqrt{7}\right)=0$

$$(x-2)\left(x-\frac{1}{3}+\sqrt{7}\right)=0...$$

6. STATEMENT-1: The roots of $x^2 + 2\sqrt{2008}x + 501 = 0$ are irrational.

and

STATEMENT-2: If the discriminant of the equation $ax^2 + bx + c = 0$, $a \ne 0$ ($a, b, c, \in R$) is a perfect square, then the roots are rational.

Sol. Answer (3)

$$x^2 + 2\sqrt{2008}x + 501 = 0$$

$$x = \frac{-2\sqrt{2008} \pm \sqrt{4 \times 2008 - 4(501)}}{2} = -\sqrt{2008} \pm \sqrt{1507}$$

Roots are rational.

STATEMENT-2 is wrong as roots are rational only when coefficients are rational and $b^2 = 4ac$ is perfect square.

7. STATEMENT-1 : If a, b, c not all equal and $a \ne 0$, $a^3 + b^3 + c^3 = 3abc$, then the equation $ax^2 + bx + c = 0$ has two real roots of opposite sign.

and

STATEMENT-2 : If roots of a quadratic equation $ax^2 + bx + c = 0$ are real and of opposite sign then ac < 0.

Sol. Answer (4)

$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = 0$$

a + b + c = 0 : a, b, c are not equal. The sign of other root depends on sign of ac.

Hence (4) is answer.

8. STATEMENT-1: Let a quadratic equation has a root 3 – 9i then the sum of roots is 6.

and

STATEMENT-2 : If one root of $ax^2 + bx + c = 0$, $a \ne 0$ a, b, $c \in R$ is $\alpha + i\beta$, α , $\beta \in R$ then the other root must be $\alpha - i\beta$.

Sol. Answer (4)

For, $ax^2 + bx + c = 0$, roots are conjugate of each other if a, b, c are real, which is not mentioned in statement-1.

SECTION - F

Integer Answer Type Questions

1. The number of value(s) of k, for which both the roots of the equation $x^2 - 6kx + 9(k^2 - k + 1) = 0$ are real, distinct and have values atmost 3 is ______.

Sol. Answer (0)

$$x^2 - 6kx + 9(k^2 - k + 1) = 0$$

For real and distinct roots

$$\Rightarrow k^2 - (k^2 - k + 1) > 0$$

$$\Rightarrow k-1>0$$

...(i)

$$f(3) \ge 0$$

$$9 - 18k + 9(k^2 - k + 1) \ge 0$$

$$\Rightarrow$$
 1 - 2k + k^2 - k + 1 \ge 0

$$\Rightarrow k^2 - 3k + 2 \ge 0$$

$$k \in (-\infty, 1] \cup [2, \infty)$$

...(ii)

Also
$$\frac{\text{sum of roots}}{2} < 3$$

$$\Rightarrow$$
 3k < 3

...(iii)

From (i), (ii), (iii)

We observe that there does not exist any real value of k.

2. The possible greatest integral value of a for which the expression $\frac{ax^2+3x+4}{x^2+2x+2}$ is less than 5 for all real x is

Sol. Answer (2)

We have

$$y = \frac{ax^2 + 3x + 4}{x^2 + 2x + 2}$$

As
$$\frac{ax^2 + 3x + 4}{x^2 + 2x + 2} < 5$$

$$\Rightarrow \frac{ax^2 + 3x + 4 - 5x^2 - 10x - 10}{x^2 + 2x + 2} < 0$$

$$\Rightarrow$$
 $(a-5)x^2-7x-6 < 0$ (as $x^2+2x+2 > 0$, $\forall x \in R$)

It is satisfied for all x if

$$a - 5 < 0$$
, $49 + 24 (a - 5) < 0$

$$a < \frac{71}{24}$$

$$\Rightarrow a < 3$$

The possible greatest integral value of a is 2.

- 3. Let $f(x) = ax^2 + bx + c$, where a, b, c are real numbers. If the numbers 2a, a + b and c are all integers, then the number of integral values between 1 and 5 that f(x) can take is
- Sol. Answer (5)

Firstly, let $f(x) = ax^2 + bx + c$; $a, b, c \in R$ be an integer whenever x is an integer

- \Rightarrow f(0), f(1), f(-1) are integers
- \Rightarrow c, a + b + c, a b + c are integers
- \Rightarrow c, a + b + c c, a b + c c are integers
- \Rightarrow c, a + b, a b are integers
- \Rightarrow c, a + b, a + b + a b are integers
- \Rightarrow c, a + b, 2a are integers

Secondly let 2a, a + b and c be integers. Let x be an integer.

Then
$$f(x) = ax^2 + bx + c = 2a\left(\frac{x(x-1)}{2}\right) + (a+b)x + c$$

Since x is an integer $\Rightarrow x(x-1)$ is an even integer.

$$\Rightarrow 2a\left(\frac{x(x-1)}{2}\right) + (a+b)x + c \text{ is an integer as } 2a, a+b, c \text{ are integers.}$$

 \Rightarrow f(x) is an integer for all integer x.

- 4. If $x_1, x_2, x_3, x_4, x_5, x_6$ are non-zero distinct real roots of the equation $x^6 + ax^4 + bx + \lambda = 0$ for some $a, b, \lambda \in R$, then the value of $\prod_{i=1}^6 (1-x_i) \prod_{i=1}^6 (1+x_i) = kb$, then k is equal to
- Sol. Answer (2)

$$(x - x_1) (x - x_2) (x - x_3) (x - x_4) (x - x_5) (x - x_6) = x^6 + ax^4 + bx + \lambda$$

$$\Rightarrow (1 - x_1) (1 - x_2) \dots (1 - x_6) = 1 + a + b + \lambda \text{ and } (1 + x_1) (1 + x_2) \dots (1 + x_6) = 1 + a - b + \lambda$$

$$\Rightarrow \frac{6}{\pi} (1 - x_i) - \frac{6}{\pi} (1 + x_i) = 2b$$

- 5. If α , β are the roots of the equation $ax^2 15x + b = 0$ and $T_n = \alpha^n + \beta^n$, then $\frac{aT_{2019} + bT_{2017}}{5T_{2018}}$ is equal to
- Sol. Answer (3)

$$\frac{a(\alpha^{2019} + \beta^{2019}) + b(\alpha^{2017} + \beta^{2017})}{5(\alpha^{2018} + \beta^{2018})} = 3$$

- 6. If n_1 , n_2 , n_3 , n_4 are distinct integers such that $\prod_{i=1}^4 (x n_i) = 4$ has an integral root 15. Then sum of digits of $\prod_{i=1}^4 n_i$ is equal to
- Sol. Answer (4)

$$(\alpha - n_1) (\alpha - n_2) (\alpha - n_3) (\alpha - n_4) = 4$$

Let
$$n_1 < n_2 < n_3 < n_4$$

Then
$$\alpha - n_1 > \alpha - n_2 > \alpha - n_3 > \alpha - n_4$$

It follows that

$$\alpha - n_4 = -2$$
, $\alpha - n_3 = -1$, $\alpha - n_2 = 1$, $\alpha - n_4 = 2$

- 7. If α , β are roots of the equation $x^2 + x + 2 = 0$ and γ , δ are the roots of the equation $x^2 x + 7 = 0$, then the equation whose roots are $\alpha\gamma + \beta\delta$ and $\alpha\delta + \beta\gamma$ and having unity as leading coefficient will have constant term k, then value of (50 + k) is
- Sol. Answer (3)

$$(αγ + βδ) (αδ + βγ)$$

= $γδ (α² + β²) + βα (γ² + δ²)$
= $7 (-3) + 2 (-13)$
= $-47 \Rightarrow 50 + k = 3$

- 8. The number of solutions for the equation $\sum_{i=1}^{100} |x-i| = 2450$ will be
- Sol. Answer (0)

As we can see that:

$$|x-k|+|x-(101-k)| \ge |101-2k|$$

Adding all:-

$$\sum_{i=100}^{i=100} \left| x - i \right| \ge 2500$$

- 9. The sum of the values of λ if the equation $(x-1)^2 = |x-\lambda|$ has exactly three solutions, is
- Sol. Answer (3)

As we can see graphically such these cases at

$$\lambda = \frac{3}{4}, \frac{5}{4}, 1 \text{ exits}$$

- 10. If $ax^2 + bx + c = 0$ does not have any real root and 4a + c < 2b then the number of real solutions of the equation $x^4 + 3x^2 a = 0$ is
- Sol. Answer (0)

 $ax^2 + bx + c < 0$ for all $x \in R$

hence D < 0 and a < 0

$$\Rightarrow$$
 $x^4 + 3x^2 \ge 0 \ \forall \ x \in R$

$$\Rightarrow$$
 $x^4 + 3x^2 \neq a$ for any $x \in R$

- 11. The value of $\frac{-D}{a}$ for $D = b^2 4ac$ of $ax^2 + bx + c = 0$ and $a, b, c \in R \{0\}$, if $y = ax^2 + bx + c$ and $|y 3| \le 0$ have exactly one intersection point is
- Sol. Answer (12)

Hence
$$\frac{-D}{4a} = 3 \Rightarrow \frac{D}{a} = -12$$

$$\left|\sqrt{x}-2\right|+\sqrt{x}\left(\sqrt{x}-4\right)+2=0$$

$$\Rightarrow \left|\sqrt{x}-2\right|+\left(\sqrt{x}\right)^2-4\sqrt{x}+2=0$$

$$\Rightarrow \left| \sqrt{x} - 2 \right| + \left| \sqrt{x} - 2 \right|^2 - 2 = 0$$

$$\Rightarrow |\sqrt{x}-2|=-2,$$

$$x = 1, 9$$

- 13. If a+b+c=-46 and the roots α_1 , α_2 and α_3 of $x^3+ax^2+bx+c=0$ are integers and greater than 2 then $(\alpha_1 - \alpha_2 + \alpha_3)$ is equal to
- Sol. Answer (6)

$$\cdot \cdot \cdot$$
 Roots are α_1 , α_2 , α_3

then
$$\alpha_1 + \alpha_2 + \alpha_3 = -a$$
, $\alpha_1\alpha_2 + \alpha_2\alpha_3 + \alpha_3\alpha_1 = b$

and
$$\alpha_1 \cdot \alpha_2 \cdot \alpha_3 = -c$$

Now,
$$a + b + c + 1 = -45 \Rightarrow -a - b - c - 1 = 45$$

i.e.,
$$(\alpha_1 + \alpha_2 + \alpha_3) - (\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1) + \alpha_1 \alpha_2 \alpha_3 - 1 = 45$$

$$\Rightarrow$$
 $(\alpha_1 - 1)(\alpha_2 - 1)(\alpha_3 - 1) = 3 \times 3 \times 5$

$$a_1 = 4$$
, $a_2 = 4$, $a_3 = 6$

$$\therefore \alpha_1 - \alpha_2 + \alpha_3 = 6$$

- 14. Consider the following equation in real x, y: $(x-2y-1)^2 + (4x-3y-4)^2 + (x-2y-1)(4x-3y-4) = 0$. Then the number of solutions (x, y) is/are
- Sol. Answer (1)

The given expression is of form

$$\lambda^2 + \mu^2 + \lambda \mu = 0$$

:. It has no real solution.

But $\lambda = 0$ and $\mu = 0$ are two lines which intersect each other at a fixed point (1, 0) *i.e.*, solution.

- 15. If p and q are distinct zeroes of polynomial $x^3 2x + r$ and $p^2(2p^2 + 4pq + 3q^2) = 3$, then $q^2(3p^2 + 4pq + 2q^2)$ is equal to
- Sol. Answer (5)

$$(p^3-2p+r)-(q^3-2q+r)=0 \implies p^2+pq+q^2=2$$

Let
$$\lambda = \rho^2(2p^2 + 4pq + 3q^2)$$
, $\mu = (q^2(3p^2 + 4pq + 2q^2))$

$$\lambda + \mu - 8 = 2(pq + 2)(p^2 + pq + q^2 - 2) = 0$$

$$\Rightarrow$$
 3 + μ - 8 = 0

$$\therefore$$
 $\mu = 5$