JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEAR'S RELATIONS

1. If $R = \{(x, y); x, y \in Z, x^2 + 3y^2 \le 8\}$ is a relation on the set of integers Z, then the domain of R^{-1} is :

[JEE Main-2020 (September)]

- (a) $\{0,1\}$ (b) $\{-2,-1,1,2\}$
- (c) $\{-1, 0, 1\}$ (d) $\{-2, -1, 0, 1, 2\}$
- **2**. Let R_1 and R_2 be two relation defined as follows :

[JEE Main-2020 (September)]

 $R_1 = \{(a, b) \in R^2 : a^2 + b^2 \in Q\}$ and

 $R_2 = \{(a,b) \in R^2 : a^2 + b^2 \in Q\}$, where Q is the set of the rational numbers. Then :

- (a) Neither R_1 nor R_2 is transitive.
- (b) R_2 is transitive but R_1 is not transitive
- (c) R_1 and R_2 are both transitive.
- (d) R_1 is transitive but R_2 is not transitive.

FUNCTION

3. If
$$f(x) + 2f\left(\frac{1}{x}\right) = 3x, x \neq 0$$
 and

$$S = \left\{ x \in R : f(x) = f(-x) \right\}; \text{ then } S:$$

[JEE Main -2016]

- (a) is an empty set.
- (b) contains exactly one element
- (c) contains exactly two elements
- (d) contains more than two elements

4. The function
$$f: R \rightarrow \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 defined as $f(x) = \frac{x}{1+x^2}$, is:
[*JEE Main - 2017*]

- (a) neither injective nor surjective.
- (b) invertible.
- (c) injective but not surjective.
- (d) surjective but not injective
- 5. Let $S = \{x \in R : x \ge 0 \text{ and }$

$$2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$$
. Then S:

[JEE Main - 2018]

- (a) contains exactly one element.
- (b) contains exactly two elements.
- (c) contains exactly four elements.
- (*d*) is an empty set.
- 6. For $x \in R-[0, 1]$, let $f_1(x) = \frac{1}{x}, f_2(x) = 1-x$ and
 - $f_3(x) = \frac{1}{1-x}$ be three given functions. If a function, J(x) satisfies $(f_2 \circ J \circ f_1)(x) = f_3(x)$ then J(x) is equal to :

[JEE Main - 2019 (January)]

(a)
$$f_3(x)$$
 (b) $\frac{1}{x}f_3(x)$

(c)
$$f_2(x)$$
 (d) $f_1(x)$

7. Let $A = \{x \in R : x \text{ is not a positive integer}\}$ Define a function

$$f: A \rightarrow R$$
 as $f(x) = \frac{2x}{x-1}$ then f is

[JEE Main - 2019 (January)]

- (a) injection but nor surjective
- (b) not injective
- (c) surjective but not injective
- (d) neither injective nor surjective

 Let N be the set of natural numbers and two functions f and g be defined as f, g : N → N such that

$$f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \\ \text{and } g(n) = n - (-1)^n. \text{ Then fog is:} \end{cases}$$

[JEE Main - 2019 (January)]

- (a) onto but not one-one.
- (b) one-one but not onto.
- (c) both one-one and onto.
- (d) neither one-one nor onto.
- 9. Let a function $f: (0, \infty) \to (0, \infty)$ be defined by

$$f(x) = \left| 1 - \frac{1}{x} \right|$$
. Then f is: [JEE Main - 2019 (January)]

- (a) not injective but it is surjective
- (*b*) injective only
- (c) neither injective nor surjective
- (d) both injective as well as surjective

10. Let
$$f_k(x) = \frac{1}{k} (\sin^k x + \cos^k x)$$
 for $k = 1, 2, 3....$ Then for all x

- 11. Let $f(x) = a^{x} (a > 0)$ be written $asf(x) = f_{1}(x) + f_{2}(x)$, where $f_{1}(x)$ is an even function of $f_{2}(x)$ is an odd function. Then $f_{1}(x+y) + f_{1}(x-y)$ equals [*JEE Main - 2019(April*)] (a) $2f_{1}(x)f_{1}(y)$ (b) $2f_{1}(x)f_{2}(y)$ (c) $2f_{1}(x+y)f_{2}(x-y)$ (d) $2f_{1}(x+y)f_{1}(x-y)$
- 12. Let $\sum_{k=1}^{10} f(a+k) = 16(2^{10}-1)$, where the function f

satisfies f(x + y) = f(x) f(y) for all natural numbers x, y and f(a) = 2 then the natural number 'a' is

	(JEE Main - 2019(Apru)
(<i>a</i>) 4	<i>(b)</i> 3
(<i>c</i>) 16	(<i>d</i>) 2

13. If the function $f: R - \{1, -1\} \rightarrow A$ defined by

$$f(x) = \frac{x^2}{1 - x^2}, \text{ is surjective, then A is equal to} \\ [JEE Main - 2019(April)] \\ (a) R-[-1,0) (b) R-(-1,0) \\ (c) R-\{-1\} (d) [0,\infty) \end{cases}$$

- 14. Let $f(x) = x^2$, $x \in \mathbb{R}$. For any $A \subseteq \mathbb{R}$, define $g(a) = \{x \in \mathbb{R}, f(x) \in A\}$. If S = [0, 4], then which one of the following statements is not true? [*JEE Main 2019(April)*] (a) $f(g(S)) \neq f(S)$ (b) f(g(S)) = S(c) g(f(S)) = g(S) (d) $g(f(S)) \neq S$
- 15. Let $f(x) = \log_e(\sin x)$, $(0 < x < \pi)$ and $g(x) = \sin^{-1}(e^{-x})$, $(x \ge 0)$. If α is a positive real number such that $a = (fog)'(\alpha)$ and $b = (fog)(\alpha)$, then :

$$[JEE Main - 2019(April)]$$
(a) $a\alpha^2 - b\alpha - a = 0$
(b) $a\alpha^2 + b\alpha - a = -2\alpha^2$
(c) $a\alpha^2 + b\alpha + a = 0$
(d) $a\alpha^2 - b\alpha - a = 1$

16. For
$$x \in \left(0, \frac{3}{2}\right)$$
, let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and

h(x) =
$$\frac{1-x^2}{1+x^2}$$
. If $\phi(x) = ((hof)og)(x)$, then $\phi = \left(\frac{\pi}{3}\right)$ is

equal to :

(a)
$$\tan \frac{\pi}{12}$$
 (b) $\tan \frac{7\pi}{12}$

(c)
$$\tan \frac{11\pi}{12}$$
 (d) $\tan \frac{5\pi}{12}$

17. If $g(x) = x^2 + x - 1$ and (gof) (x) = $4x^2 - 10x + 5$, then $f\left(\frac{5}{4}\right)$

is equal to

(a)
$$\frac{1}{2}$$
 (b) $\frac{-3}{2}$
(c) $\frac{-1}{2}$ (d) $\frac{3}{2}$

18. The inverse function of $f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$, $x \in (-1, 1)$ is

[JEE Main-2020 (January)]

[JEE Main-2020 (January)]

[JEE Main - 2019(April)]

(a)
$$\frac{1}{4}\log_{e}\left(\frac{1+x}{1-x}\right)$$

(b)
$$\frac{1}{4}\log_{e}\left(\frac{1-x}{1+x}\right)$$

(c)
$$\frac{\log_{8}e}{4}\log_{e}\left(\frac{1+x}{1-x}\right)$$

(d)
$$\frac{\log_{8}e}{4}\log_{e}\left(\frac{1-x}{1+x}\right)$$

19. Let f: R \rightarrow R be a function which satisfies f(x + y) = f(x) + f

$$f(\mathbf{y}) \forall \mathbf{x}, \mathbf{y} \mathbf{R}$$
. If $f(a) = 2$ and $g(n) = \sum_{k=1}^{(n-1)} f(k), n \in \mathbb{N}$ then the formula $f(\mathbf{x}) \in \mathbb{N}$ is the formula $f(\mathbf{x}) \in \mathbb{N}$. If $f(\mathbf{x}) \in \mathbb{N}$ is the formula

he value of n, for which g(n) = 20, is :

[JEE Main-2020 (September)]

20. The domain of the function

$$f(x) = \sin^{-1}\left(\frac{|x|+5}{x^2+1}\right)$$
 is [JEE Main-2020 (September)]

$$(-\infty, -a] \cup [a,\infty)$$
. Then a is equal to:

21. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f : A \rightarrow B | 2 \in f(a) \text{ and } f \text{ is not one-one}\}$ is _____.

[*JEE Main-2020 (September)*] **22.** For a suitably chosen real constant a, let a function, f: R -

 $\{-a\} \rightarrow R$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, (fof)(x) = x.

Then
$$f\left(-\frac{1}{2}\right)$$
 is equal to :

[JEE Main-2020 (September)]

(a)
$$-3$$
 (b) $\frac{1}{3}$
(c) $-\frac{1}{3}$ (d) 3

23. If {p} denotes the fractional part of the number p, then

 $\left\{\frac{3^{200}}{8}\right\}$, is equal to :

[JEE Main-2020 (September)]

(a) $\frac{5}{8}$	(b) $\frac{1}{8}$
(c) $\frac{7}{8}$	(<i>d</i>) $\frac{3}{8}$

24. If
$$f(x+y) = f(x) f(y)$$
 and $\sum_{x=1}^{\infty} f(x) = 2, x, y \in N$,

Where N is the set of all natural numbers, then the value

of
$$\frac{f(4)}{f(2)}$$
 is :

[JEE Main-2020 (September)]

(a) $\frac{1}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) $\frac{2}{3}$

25. Let $f: N \rightarrow N$ be a function such that f(m+n) = f(m) + f(n) for every $m, n \in N$. If f(6) = 18, then f(2).f(3) is equal to: [JEE Main-2021 (August)] (a) 6 (b) 54 (c) 18 (d) 36

26. The domain of the function [JEE Main-2021 (August)]

$$f(x) = \sin^{-1} \left(\frac{3x^2 + x - 1}{(x - 1)^2} \right) + \cos^{-1} \left(\frac{x - 1}{x + 1} \right) \text{ is :}$$

(a) $\left[0, \frac{1}{4} \right]$ (b) $\left[-2, 0 \right] \cup \left[\frac{1}{4}, \frac{1}{2} \right]$
(c) $\left[\frac{1}{4}, \frac{1}{2} \right] \cup \{0\}$ (d) $\left[0, \frac{1}{2} \right]$

27. The domain of the function $\operatorname{cosec}^{-1}\left(\frac{1+x}{x}\right)$ is:

$$(a) \left(-1, -\frac{1}{2}\right] \cup (0, \infty) \qquad (b) \left[-\frac{1}{2}, 0\right] \cup [1, \infty)$$
$$(c) \left(-\frac{1}{2}, \infty\right) - \{0\} \qquad (d) \left[-\frac{1}{2}, \infty\right] - \{0\}$$

- **28.** Consider function $f: A \to B$ and $g: B \to C(A, B, C \subseteq R)$ such that $(gof)^{-1}$ exists, then :
 - (a) f and g both are one-one
 - (b) f and g both are onto
 - (c) f is one-one and g is onto
 - (d) f is onto and g is one-one
- **29.** Let N be the set of natural numbers and a relation R on

N be defined by
$$R = \begin{cases} (x, y) \in N \times N : \\ x^3 - 3x^2y - xy^2 + 3y^3 = 0 \end{cases}$$
. Then

the relation R is :

- (a) symmetric but neither reflexive nor transitive
- (b) reflexive but neither symmetric nor transitive
- (c) reflexive and symmetric, but not transitive
- (d) an equivalence relation
- **30.** If the domain of the function

$$f(x) = \frac{\cos^{-1}\sqrt{x^2 - x + 1}}{\sqrt{\sin^{-1}\left(\frac{2x - 1}{2}\right)}}$$
 is

the interval $(\alpha, \beta]$, then $\alpha + \beta$ is equal to:

(a)
$$\frac{3}{2}$$
 (b) 2

$$(c) \frac{1}{2} \qquad \qquad (d) 1$$

JEE-ADVANCED PREVIOUS YEAR'S

1. Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in \mathbb{R}$. Then the set of all x satisfying (f o g o g o f) (x) = (g o g o f) (x), where (f o g) (x) = f(g(x)), is [IIT JEE - 2012]

(a)
$$\pm \sqrt{n\pi}$$
, $n \in \{0, 1, 2,\}$

(b)
$$\pm \sqrt{n\pi}$$
, $n \in \{1, 2,\}$

(c)
$$\frac{\pi}{2}$$
 + 2n π , n \in {....-2, -1, 0, 1, 2,....}

(*d*) $2n\pi, n \in \{..., -2, -1, 0, 1, 2, ...\}$

- 2. The function $f: [0, 3] \rightarrow [1, 29]$, defined by $f(x)=2x^3-15x^2+36x+1$, is [IIT JEE-2012] (a) one-one and onto
 - (b) onto but not one-one
 - (c) one-one but not onto
 - (d) neither one-one nor onto

3. Let
$$f: (-1, 1) \to IR$$
 be such that $f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$ for
 $\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then the value(s) of $f\left(\frac{1}{3}\right)$ io
(are) [*IIT JEE-2012*]

(a)
$$1 - \sqrt{\frac{3}{2}}$$

(b)
$$1 + \sqrt{\frac{3}{2}}$$

(c)
$$1 - \sqrt{\frac{2}{3}}$$

(d) $1 + \sqrt{\frac{2}{3}}$

4. Let f:
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$$
 be given by
 $f(x) = (\log(\sec x + \tan x))^3$. Then [JEE Advanced-2014]
(a) $f(x)$ is an odd function
(b) $f(x)$ is a property one function

- (b) f(x) is a one-one function
- (c) f(x) is an onto function
- (d) f(x) is an even function

5. If
$$\alpha = 3\sin^{-1}\left(\frac{6}{11}\right)$$
 and $\beta = 3\cos^{-1}\left(\frac{4}{9}\right)$, where the inverse

trigonometric functions take only the principal values, then the correct option(s) is(are)

[JEE Advanced- 2015]

- (a) $\cos \beta > 0$ (b) $\sin \beta < 0$ (c) $\cos(\alpha + \beta) > 0$ (d) $\cos \alpha < 0$
- 6. Let the function $f: [0,1] \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{4^x}{4^x + 2}$

Then the value of

$$f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \dots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right) is \dots$$

[JEE(Advanced) - 2020]

JEE Mains & Advanced Past Years Questions

JEE-MAIN PREVIOUS YEAR'S

- 1. (c) Given $R = \{(x, y) : x, y \in Z, x^2 + 3y^2 \le 8\}$ So $R = \{(1, 1), (2, 1), (1, -1), (0, 1), (1, 0)\}$ So $D_{P^{-1}} = \{-1, 0, 1\}$
- **2**. (a) (i) If (a, b) $\in \mathbb{R}_1$ and (b,c) $\in \mathbb{R}_1$ $\Rightarrow a^2 + b^2 \in \mathbb{Q}$ and $b^2 + c^2 \in \mathbb{Q}$ then $a^2 + 2b^2 + c^2 \in \mathbb{Q}$ but we cannot say anything about $a^2 + c^2$, that it is rational or not. So \mathbb{R}_1 is not transitive.
 - (ii) If (a, b) ∈ R₂ and (b,c) ∈ R₂
 ⇒ a² + b² ∉ Q and b² + c² ∉ Q
 but we can't say anything about a² + c²
 that it is rational or irrational. So R₂ is not transitive.

3. (c)
$$f(x) + 2f\left(\frac{1}{x}\right) = 3x$$
(1)
 $f\left(\frac{1}{x}\right) + 2f(x) = \frac{3}{x}$ (2)
Multiply eq (2) by 2 & subtract from eq (1)

 $f(x) = \frac{2}{x} - x$ Now, f(x) = f(-x) $\frac{2}{x} - x = \frac{2}{-x} + x$ $\Rightarrow 2x = \frac{4}{x} \Rightarrow 2x^{2} = 4 \Rightarrow x = \pm \sqrt{2}$

So, S contains exactly two elements.

4. (d)
$$f: R \to \left[-\frac{1}{2}, \frac{1}{2}\right],$$

 $f(x) = \frac{x}{1+x^2} \forall x \in R$
 $\Rightarrow f'(x) = \frac{(1+x^2) \cdot 1 - x \cdot 2x}{(1+x^2)^2} = \frac{-(x+1)(x-1)}{(1+x^2)^2}$
 $y = \frac{(1+x^2)^2}{(1+x^2)^2} = \frac{-(x+1)(x-1)}{(1+x^2)^2}$

singn of f'(x)

- ∴ From above diagram of f(x), f(x) is surjective but not injective.
- **5.** (*b*) Case I: $x \in [0,9]$ $2(3-\sqrt{x})+x-6\sqrt{x}+6=0$ $\Rightarrow x - 8\sqrt{x} + 12 = 0 \Rightarrow \sqrt{x} = 4, 2$ $x = 16, 4 \Longrightarrow x = 4$ ↑ rejected Case - II : $x \in [9,\infty]$ $2(\sqrt{x}-3) + x - 6\sqrt{x} + 6 = 0$ $x - 4\sqrt{x} = 0 \Longrightarrow x = 16, 0$ rejected So. x = 4.16**6.** (*a*) $\mathbf{x} \in \mathbf{R} - \{0, 1\}$ $f_1(x) = \frac{1}{x}, f_2(x) = 1 - x, f_3(x) = \frac{1}{1 - x}$ Given $f_2(J(f_1(x))) = f_3(x)$ $1 - J(f_1(x)) = f_3(x)$ $J(f_1(x)) = 1 - f_3(x) = 1 - \frac{1}{1 - x}$ $J(f_1(x)) = \frac{x}{x-1}$ $J\left(\frac{1}{x}\right) = \frac{x}{x-1} = \frac{1}{1-\frac{1}{x-1}}$ $J(x) = \frac{1}{1-x} = f_3(x)$ 7. (a) $f(x) = 2\left(1 + \frac{1}{x-1}\right)$ $f'(x) = -\frac{2}{(x-1)^2}$ \Rightarrow f is one – one but not onto 8. (a) $\begin{cases} f(g(1)) = 1 \\ f(g(2)) = 1 \end{cases}$ Many one f(g(2)) = kf(g(2k+1)) = k+1

9. (c)
$$y = \left|1 - \frac{1}{x}\right|$$

$$y = 1$$
(1, 0)

Neither one-one nor Onto

10. (a)
$$F_4(x) = \frac{\sin^4 x + \cos^4 x}{4} = \frac{1 - 2\sin^2 x \cdot \cos^2 x}{4}$$

$$= \frac{1}{4} - \frac{1}{2}\sin^2 x \cdot \cos^2 x$$

$$F_6(x) = \frac{\sin^6 x + \cos^6 x}{6}$$

$$= \frac{1 - 3\sin^2 x \cdot \cos^2 x (\sin^2 + \cos^2 x)}{6}$$

$$= \frac{1}{6} - \frac{1}{2}\sin^2 x \cdot \cos^2 x$$

$$F_4(x) - f_6(x) = \frac{1}{4} - \frac{1}{6} = \frac{6-4}{24} = \frac{2}{24} = \frac{1}{12}$$

11. (a) $f(x) = a^x, a > 0$

$$f(x) = \frac{a^{x} + a^{-x} + a^{x} - a^{-x}}{2}$$

$$\Rightarrow f_{1}(x) = \frac{a^{x} + a^{-x}}{2}$$

$$\Rightarrow f_{2}(x) = \frac{a^{x} - a^{-x}}{2}$$

$$\Rightarrow f_{1}(x + y) + f_{1}(x - y)$$

$$= \frac{a^{x+y} + a^{-x-y}}{2} + \frac{a^{x-y} + a^{-x+y}}{2}$$

$$= \frac{\left(a^{x} + a^{-x}\right)}{2} \left(a^{y} + a^{-y}\right)$$

$$= f_{1}(x) \times 2f_{1}(y)$$

$$= 2f_{1}(x) f_{1}(y)$$

12. (b) From the given functional equation : $f(x) = 2x \qquad \forall x \in N$ $2^{a+1} + 2^{a+2} + \dots + 2^{a+10} = 16(2^{10} - 1)$ $2^{a} (2 + 2^{2} + \dots + 2^{10}) 16(2^{10} - 1)$ $2^{a} \cdot \frac{2 \cdot (2^{10} - 1)}{1} = 16(2^{10} - 1)$ $2^{a+1} = 16 = 2^{4}$ a = 3

13. (a)
$$y = \frac{x^2}{1-x^2}$$

Range of y : R-[-1,0)

for surjective function, A must be same as above range.

14. (d)
$$g(S) = [-2, 2]$$

So, $f(g(S)) = [0, 4] = S$
And $f(S) = [0, 16]$
 $\Rightarrow f(g(S) \neq f(S)$
Also, $g(f(S)) = [-4, 4] \neq g(S)$
So, $g(f(S) \neq S$
15. (d) $fog(x) = (-x) \Rightarrow (fg(\alpha)) = -\alpha = b$
 $(fg(x))' = -1 \Rightarrow (fg(\alpha))' = -1 = a$
16. (c) $f(x) = \sqrt{x}$, $g(x) = tanx$, $h(x) = \frac{1-x^2}{1+x^2}$
 $fog(x) = \sqrt{tan x}$
 $hofog(x) = h(\sqrt{tan x}) = \frac{1-tan x}{1+tan x}$
 $= -tan(\frac{\pi}{4} - x)$
 $\phi(x) = tan(\frac{\pi}{4} - x)$
 $\phi(\frac{\pi}{3}) = tan(\frac{\pi}{4} - \frac{\pi}{3}) = tan(-\frac{\pi}{12}) = -tan\frac{\pi}{12}$
 $= tan(\pi - \frac{\pi}{12}) = tan\frac{11\pi}{12}$
17. (c) $g((x)) = f^2(x) + f(x) - 1$
 $g(f(\frac{5}{4})) = 4(\frac{5}{4})^2 - 10, \frac{5}{4} + 5 = -\frac{5}{4}$
 $g(f(\frac{5}{4})) = f^2(\frac{5}{4}) + f(\frac{5}{4}) - 1$

$$f^{2}\left(\frac{5}{4}\right) + f\left(\frac{5}{4}\right) + \frac{1}{4} = 0$$
$$\left(f\left(\frac{5}{4}\right) + \frac{1}{2}\right)^{2} = 0$$
$$f\left(\frac{5}{4}\right) = \frac{-1}{2}.$$

18. (c)
$$y = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$$

 $\frac{1+y}{1-y} = \frac{8^{2x}}{8^{-2x}} \Rightarrow 8^{4x} = \frac{1+y}{1-y}$
 $4x = \log_8\left(\frac{1+y}{1-y}\right) \Rightarrow x = \frac{1}{4}\log_8\left(\frac{1+y}{1-y}\right)$
 $f^{-1}(x) = \frac{1}{4}\log_8\left(\frac{1+x}{1-x}\right) = \frac{\log_8 e}{4}\log_8\left(\frac{1+x}{1-x}\right).$
19. (c) $f(x+y) = f(x) + f(y) \forall x, y R. If f(1) = 2$
 $\Rightarrow f(x) = 2x$
Now, $g(n) = \sum_{k=1}^{(n-1)} f(k)$
 $= f(1) + f(2) + f(3) +f(n-1)$
 $= 2 + 4 + 6 + + 2(n-1)$
 $= 2[1 + 2 + 3 + + (n-1)]$
 $= 2 \times \frac{(n-1)(n)}{2} = n^2 - n$
So, $n^2 - n = 20$ (given)
 $\Rightarrow n^2 - n - 20 = 0$
 $(n-5)(n+4) = 0$
 $\Rightarrow n = 5$
22. (a) $\because f(x) = \sin^{-1}\left(\frac{|x| + 5}{x^2 + 1}\right)$
 $\therefore -1 \le \frac{|x| + 5}{x^2 + 1} \le 1$
 $\therefore x^2 - |x| - 4 \ge 0$
 $\left(|x| - \frac{1 - \sqrt{17}}{2}\right) \left(|x| - \frac{1 + \sqrt{17}}{2}\right) \ge 0$
 $\therefore |x| \ge \frac{1 - \sqrt{17}}{2}$
21. (19)The desired functions will contain either one of or two elements in its codomain of which '2'

- element always belongs to f(A).
 - \therefore The set B can be $\{2\}, \{1, 2\}, \{2, 3\}, \{2, 4\}$ Total number of functions $1 + (2^3 - 2)3$

$$= 1 + (2)$$

= 19

22. (d)
$$f(f(x)) = \frac{a - \left(\frac{a - x}{a + x}\right)}{a + \left(\frac{a - x}{a + x}\right)} = x$$

$$\Rightarrow \frac{a^{2} + ax - a + x}{a^{2} + ax + a - x} = x$$

$$\Rightarrow a^{2} + (a + 1)x - a = a^{2}x + (a - 1)x^{2} + ax$$

$$\Rightarrow (a - 1)x^{2} + (a^{2} - 1)x + (a - a^{2}) = 0$$

$$\forall x \in \mathbb{R} - \{-a\}$$
Hence $a = 1$

$$\therefore f(x) = \frac{1 - x}{1 + x} \Rightarrow f\left(-\frac{1}{2}\right) = 3$$
23. (b) $\frac{3^{200}}{8} = \frac{1}{8}(9^{100})$

$$= \frac{1}{8}(1 + 8)^{100}$$

$$= \frac{1}{8} + \text{Integer} \therefore \left\{\frac{3^{200}}{8}\right\} = \left\{\frac{1}{8} + \text{intger}\right\}$$

$$= \frac{1}{8}$$
24. (b) Let $f(1) = a$
then $f(1 + 1) = a^{2}$
 $f(2 + 1) = a^{2}$
and so on.

$$\sum_{x=1}^{\infty} f(x) = 2 \Rightarrow a + a^{2} + a^{3} + \dots \infty = 2$$

$$\Rightarrow \frac{a}{1 - a} = 2$$

$$\Rightarrow \frac{a}{1 - a} = 2$$

$$\Rightarrow a = \frac{2}{3}$$
Now, $\frac{f(4)}{f(2)} = \frac{a^{4}}{a^{2}} = a^{2} = \frac{4}{9}$
25. (b) $f(m + n) = f(m) + f(n)$
Put $m = 1, n = 1$
 $f(2) = 2f(1)$
Put $m = 2, n = 1$
 $f(3) = f(2) + f(1) = 3f(1)$
Put $m = 3, n = 3$
 $f(6) = 2f(3) \Rightarrow f(3) = 9$
 $\Rightarrow f(1) = 3, f(2) = 6$
 $f(2) \cdot f(3) = 6 \times 9 = 54$

28. (c) \therefore (gof) $^{-1}$ exist \Rightarrow gof is bijective \Rightarrow 'f' must be one-one and 'g' must be ONTO.

29. (b)
$$x^3 - 3x^2y - xy^2 + 3y^3 = 0$$

 $\Rightarrow x(x^2 - y^2) - 3y(x^2 - y^2) = 0$
 $\Rightarrow (x - 3y)(x - y)(x + y) = 0$
30. (a) $0 \le x^2 - x + 1 \le 1$

$$\Rightarrow x^{2} - x \le 0 \Rightarrow x \in [0,1]$$
Also, $0 < \sin^{-1}\left(\frac{2x-1}{2}\right) \le \frac{\pi}{2}$

$$\Rightarrow 0 < \frac{2x-1}{2} \le 1$$

$$\Rightarrow 0 < 2x - 1 \le 2$$

$$1 < 2x \le 3$$

$$\frac{1}{2} < x \le \frac{3}{2}$$
Taking intersection
$$x \in \left(\frac{1}{2}, 1\right]$$

$$\Rightarrow \alpha = \frac{1}{2}, \beta = 1$$

$$\Rightarrow \alpha = \frac{1}{2}, \beta = 1$$
$$\Rightarrow \alpha + \beta = \frac{3}{2}$$

JEE-ADVANCED PREVIOUS YEAR'S

1. (a)
$$f(x) = x^2$$
; $g(x) = \sin x \Rightarrow gof(x) = \sin x^2$
 $\Rightarrow gogof(x) = \sin (\sin x^2)$
 $\Rightarrow (fogogof)(x) = (\sigma in (\sin x^2))^2 = \sin^2 (\sin x^2)$
Nowsin² (sin x²) = sin (sin x²)
 $\Rightarrow sin (sin x^2) = 0, 1$
 $\Rightarrow sin x^2 = n\pi, (4n+1) \frac{\pi}{2}; \eta \in I$
 $\Rightarrow sin x^2 = 0$
 $\Rightarrow x^2 = n\pi$
 $\Rightarrow x = \pm \sqrt{n\pi}; n \in W$
2. (b) F: [0,3] \rightarrow [1,29]
 $f(x) = 2x^3 - 15x^2 + 36x + 1$
 $f'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6) = 6(x - 2)(x - 3)$

in given domain function has local maxima, it is many-one

Now at
$$x=0$$
 $f(0)=1$
 $x=2f(2)=16-60+72+1=29$
 $x=3f(3)=54-135+108+1=163-135=28$
Has range = [1, 29]

Hence given fun $\chi\tau\iota on$ is onto

3. (*ab*)**NOTE :** Since a functional mapping can't have two images for pre-image 1/3, so this is ambiguity in this question perhaps the answer can be A or B or AB or marks to all.

$$\cos 4\theta = \frac{1}{3} \Longrightarrow 2\cos^2 2\theta - 1 = \frac{1}{3} \Longrightarrow \cos^2 2\theta = \frac{2}{3}$$

$$\Rightarrow \cos 2\theta = \pm \sqrt{\frac{2}{3}}$$

Now
$$f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta} = \frac{1 + \cos 2\theta}{\cos 2\theta} = 1 + \frac{1}{\cos 2\theta}$$

$$\Rightarrow f\left(\frac{1}{3}\right) = 1 \pm \sqrt{\frac{3}{2}}$$

4.
$$(a,b,c)$$
 (i) $f(-x) = -f(x)$ so it is odd function
(ii) $f(x) = 3(\log(\sec x + \tan x))^2 \frac{1}{(\sec x + \tan x)}(\sec x \tan x + \sec^2 x) > 0$
(iii) Range of $f(x)$ is R as $f\left(-\frac{\pi}{2}\right) \Rightarrow -\infty$
5. $(b,c,d) \alpha = 3\sin^{-1}\frac{6}{11} > 3\sin^{-1}\frac{6}{12}$ and
 $\beta = -3\cos^{-1}\frac{4}{9} > 3\cos^{-1}\frac{4}{8}$
 $\Rightarrow \alpha > \frac{\pi}{2}$
 $\Rightarrow \alpha + \beta > \frac{3\pi}{2}$
6. $(19.00) f(x) + f(1-x) = \frac{4^x}{4^x + 2} + \frac{4^{1-x}}{4^{1-x} + 2}$
 $= \frac{4^x}{4^x + 2} + \frac{4}{4 + 2.4^x}$
 $= \frac{4^x}{4^x + 2} + \frac{4}{4 + 2.4^x}$
 $= \frac{4^x}{4^x + 2} + \frac{2}{2 + 4^x}$
 $= 1$
so, $f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + \dots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right)$
 $= 19 + f\left(\frac{1}{2}\right) - f\left(\frac{1}{2}\right) = 19$