Chemical Kinetics

Conceptual MCQs

- 1. A reaction involving two different reactants can never be
 - bimolecular reaction
- (b) second order reaction
- first order reaction
- (d) unimolecular reaction
- Which of these does not influence the rate of reaction?
 - (a) Nature of the reactants
 - (b) Concentration of the reactants
 - (c) Temperature of the reaction
 - (d) Molecularity of the reaction
- $3A \rightarrow 2B$, rate of reaction $\frac{d[B]}{dt}$ is equal to
 - (a) $-\frac{3}{2}\frac{d[A]}{dt}$
- (c) $-\frac{1}{3}\frac{d[A]}{dt}$
- (d) $+2\frac{d[A]}{dt}$
- 4. $3A \rightarrow B + C$, it would be a zero order reaction when
 - (a) the rate of reaction is proportional to square of concentration of A.
 - (b) the rate of reaction remains same at any concentration ofA.
 - (c) the rate remains unchanged at any concentration of B
 - the rate of reaction doubles if concentration of B is increased to double.
- For *n*th order reaction, the half-life period $t_{1/2}$ is proportional to initial concentration as:
 - (a) $\frac{1}{a^{n-1}}$ (b) a^{n+1} (c) a^{n-1} (d) $\frac{1}{a^n}$

- For a reaction $\frac{1}{2}A \rightarrow 2B$, rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression
 - (a) $-\frac{d[A]}{dt} = \frac{1}{2} \frac{d[B]}{dt}$ (b) $-\frac{d[A]}{dt} = \frac{1}{4} \frac{d[B]}{dt}$
 - (c) $-\frac{d[A]}{dt} = \frac{d[B]}{dt}$ (d) $-\frac{d[A]}{dt} = 4\frac{d[B]}{dt}$

Point out the wrong statement:

For a first order reaction

- time for half-change $(t_{1/2})$ is independent of initial concentration.
- change in the concentration unit does not change the rate constant (k).
- time for half-change \times rate constant = 0.693.
- (d) the unit of k is mol⁻¹ min⁻¹.
- 8. If the rate of the reaction is equal to the rate constant, the order of the reaction is:
- (b) 0
- (c) 1
- 9. The half-life period of a first order reaction is 100 sec. The rate constant of the reaction is:
 - (a) $6.93 \times 10^{-3} \,\mathrm{s}^{-1}$
- (b) $6.93 \times 10^{-4} \,\mathrm{s}^{-1}$
- (c) $0.693 \,\mathrm{s}^{-1}$
- (d) 69.3 s^{-1}
- The rate constant of a reaction is 3.00×10^3 L mol⁻¹ s⁻¹. The 10. order of this reaction will be:
 - (a) 0
- (b) 1
- (c) 2
- If the rate of a gaseous reaction is independent of pressure, the order of reaction is:
- (b)
- (c) 2
- (d) 3

12. For the reaction.

> $CH_3COCH_3 + I_2 \xrightarrow{H^+}$ products. The rate is governed by expression

$$\frac{\mathrm{dx}}{\mathrm{dt}} = k[\mathrm{acetone}][\mathrm{H}^+].$$

The order w.r.t. I₂ is:

- - (b) 0
- (c) 3
- (d) 2
- Activation energy of a chemical reaction can be determined by
 - (a) evaluating rate constant at standard temperature.
 - evaluating velocities of reaction at two different temperatures.
 - evaluating rate constants at two different temperatures.
 - (d) changing concentration of reactants.
- The reason for almost doubling the rate of reaction on increasing the temperature of the reaction system by 10 °C is:
 - The value of threshold energy increases
 - Collision frequency increases
 - The fraction of the molecule having energy equal to threshold energy or more increases
 - (d) Activation energy decreases

- 15. In a reversible reaction the energy of activation of the forward reaction is 50 kcal. The energy of activation for the reverse reaction will be
 - < 50 kcal
 - (b) either greater than or less than 50 kcal
 - (c) 50 kcal
 - (d) > 50 kcal
- The slope in Arrhenius plot, is equal to:
 - (a) $-\frac{E_a}{2.303R}$ (b) $\frac{E_a}{R}$
 - (c) $-\frac{R}{2.303E_a}$
- (d) None of these
- 17. For a reaction, activation energy $(E_s) = 0$ and rate constant is 3.2×10^6 s⁻¹at 300 K. What is the value of the rate constant at 310 K
 - (a) $3.2 \times 10^{-12} \,\mathrm{s}^{-1}$
- (b) $3.2 \times 10^6 \,\mathrm{s}^{-1}$
- (c) $6.4 \times 10^{12} \,\mathrm{s}^{-1}$
- (d) $6.4 \times 10^6 \,\mathrm{s}^{-1}$

- The rate constant is given by the equation $k = PZe^{-E/RT}$. Which factor should register a decrease for the reaction to proceed more rapidly
- (b) Z
- (c) E
- 19. Which of the following statements is not true according to collision theory of reaction rates?
 - (a) Collision of molecules is a precondition for any reaction
 - (b) All collisions result in the formation of the products.
 - (c) Only activated collisions result in the formation of the
 - Molecules which have acquired the energy of activation can collide effectively.
- The ΔH value of the reaction $H_2 + Cl_2 \rightleftharpoons 2HCl$ is -44.2 k cal. If E₁ is the activation energy of the products, then for the above reaction
 - (a) $E_1 > E_2$
 - (b) $E_1 < E_2$
 - (c) $E_1 = E_2$
 - (d) ΔH is not related to E_1 and E_2

Application Based MCQs

- **21.** For the reaction system :
 - $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to O₂ and second order with respect to NO, the rate of reaction will
 - (a) diminish to one-eighth of its initial value
 - increase to eight times of its initial value
 - increase to four times of its initial value
 - (d) diminish to one-fourth of its initial value
- 22. For the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$, rate and rate constant are 1.02 \times 10⁻⁴ mol $L^{-1}s^{-1}$ and 3.4 \times 10⁻⁵ s^{-1} respectively then concentration of N₂O₅ at that time will be
 - (a) 1.732 M
- (b) 3 M
- (c) $3.4 \times 10^5 \text{ M}$
- (d) 1.02×10^{-4} M
- Select the rate law that corresponds to data shown for the following reaction
 - $A + B \longrightarrow products.$

Exp.	[A]	[B]	Initial rate	
1	0.012	0.035	0.1	
2	0.024	0.070	0.8	
3	0.024	0.035	0.1	
4	0.012	0.070	0.8	

- (a) rate = $k [B]^3$
- (b) rate = $k [B]^4$
- (c) rate = $k [A] [B]^3$
- (d) rate = $k [A]^2 [B]^2$
- A substance 'A' decomposes by a first order reaction starting initially with [A] = 2.00 M and after 200 min, [A] becomes 0.15 M. For this reaction $t_{1/2}$ is
 - (a) 53.72 min
- 50.49 min (b)
- 48.45 min
- (d) 46.45 min

- Consider the reaction, $2A + B \rightarrow products$. When 25. concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is
 - (a) s^{-1}
- (b) $L \text{ mol}^{-1} \text{ s}^{-1}$
- (c) no unit
- (d) $\text{mol } L^{-1} s^{-1}$.
- 26. In a 1st order reaction, reactant concentration C varies with
 - $\frac{1}{C}$ increases linearly with t
 - (b) $\log C$ decreases linearly with t
 - (c) C decreases with $\frac{1}{2}$
 - (d) $\log C$ decreases with $\frac{1}{2}$
- 27. A reaction proceeds by first order, 75% of this reaction was completed in 32 min. The time required for 50% completion is
 - (a) 8 min (b) 16 min
- (c) 20min
- (d) 24 min
- The rate constant of a first order reaction is $6.9 \times 10^{-3} \,\mathrm{s}^{-1}$. 28. How much time will it take to reduce the initial concentration to its 1/8th value?
 - (a) 100 s (b) 200 s
- (c) $300 \, s$
- (d) 400 s
- If a reaction follows the Arrhenius equation, the plot lnk vs $\frac{1}{(RT)}$ gives straight line with a gradient (-y) unit. The energy required to activate the reactant is:
 - (a) y/R unit
- (b) y unit
- (c) yR unit
- (d) -y unit

- **30.** The rate of a first order reaction is 1.5×10^{-2} mol L⁻¹ min⁻¹ at 0.5 M concentration of the reactant. The half life of the reaction is
 - (a) 0.383 min
- (b) 23.1 min
- (c) 8.73 min
- (d) 7.53 min
- 31. For a first order reaction (A) \rightarrow products the concentration of A changes from 0.1 M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M
 - (a) $1.73 \times 10^{-5} \,\text{M/min}$
- (b) $3.47 \times 10^{-4} \text{ M/min}$
- (c) 3.47×10^{-5} M/min
- (d) $1.73 \times 10^{-4} \text{ M/min}$
- $t_{1/4}$ can be taken as the time taken for the concentration of a reactant to drop to $\frac{3}{4}$ of its initial value. If the rate constant for a first order reaction is k, the $t_{1/4}$ can be written as
 - (a) 0.75/k (b) 0.69/k
- (c) 0.29/k
 - (d) 0.10/k
- 33. A reaction rate constant is given by

$$k = 1.2 \times 10^{14} e^{-(25000/RT)} \text{ sec}^{-1}$$
. It means

- (a) $\log k$ versus $\log T$ will give a straight line with slope as
- (b) log k versus T will give a straight line with slope as
- $\log k$ versus $\log 1/T$ will give a straight line with slope as - 25000
- (d) $\log k$ versus 1/T will give a straight line
- Two reactions R₁ and R₂ have identical pre-exponential factors. Activation energy of R₁ exceeds that of R₂ by 10 kJ mol⁻¹. If k₁ and k₂ are rate constants for reactions R₁ and R_2 respectively at 300 K, then $ln(k_2/k_1)$ is equal to: $(R = 8.314 \text{ J mol}^{-1}\text{K}^{-1})$
 - (a) 8
- (b) 12
- (c) 6
- (d) 4
- For the non stoichimetric reaction $2A + B \rightarrow C + D$, the following kinetic data were obtained in three separate experiments, all at 298 K.

Initial Concentration (A)	Initial Concentration (B)	Initial rate of formation of C (mol L^{-1} s ⁻¹)					
0.1 M	0.1 M	1.2×10^{-3}					
0.1 M	0.2 M	1.2×10^{-3}					
0.2 M	0.1 M	2.4×10^{-3}					

The rate law for the formation of C is:

- (a) $\frac{dc}{dt} = k[A][B]$
- (b) $\frac{dc}{dt} = k[A]^2[B]$
- (c) $\frac{dc}{dt} = k[A][B]^2$ (d) $\frac{dc}{dt} = k[A]$
- For the reaction, $2A + B \rightarrow \text{products}$, when the concentrations of A and B both were doubled, the rate of the reaction increased from 0.3 mol L⁻¹ s⁻¹ to 2.4 mol $L^{-1}s^{-1}$. When the concentration of A alone is doubled, the rate increased from 0.3 mol L⁻¹s⁻¹ to 0.6 mol L⁻¹s⁻¹. Which one of the following statements is correct?
 - (a) Total order of the reaction is 4
 - Order of the reaction with respect to B is 2
 - Order of the reaction with respect to B is 1
 - Order of the reaction with respect to A is 2

The rate law for a reaction between the substances A and B is given by Rate = $k [A]^n [B]^m$

On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

- (a) (m+n) (b) (n-m)
- (c) $2^{(n-m)}$
- **38.** Hydrogenation of vegetable ghee at 27 °C reduces pressure of H₂ from 2 atm to 1.2 atm in 50 minutes. The rate of reaction in terms of molarity per second is –
 - (a) 1.08×10^{-5}
- (b) 1.9×10^{-5}
- (c) 2.5×10^{-6}
- (d) 3.87×10^{-2}
- 39. The rate of a reaction doubles when its temperature changes from 300 K to 310 K. Activation energy of such a reaction will be: $(R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and } \log 2 = 0.301)$
 - (a) 53.6 kJ mol^{-1}
- (b) 48.6 kJ mol⁻¹
- (c) 58.5 kJ mol^{-1}
- (d) 60.5 kJ mol⁻¹
- A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial velocity is ten times the permissible value, after how many days will it be safe to enter the room?
 - (a) 100 days
- (b) 1000 days
- (c) 300 days
- (d) 10 days.
- A first order reaction is 20% complete in 10 minutes. What is the specific rate constant for the reaction?
 - (a) $0.0970 \,\mathrm{min.}^{-1}$
- (b) $0.009 \,\mathrm{min.^{-1}}$
- (c) $0.0223 \,\mathrm{min.}^{-1}$
- (d) 2.223 min.⁻¹
- Hydrolysis of DDT is a first order reaction, its half life is 10 years. Time to hydrolyse 10 g DDT to half is:
 - (a) 100 years
- (b) 50 years
- (c) 5 years
- (d) 10 years
- **43**. Consider a reaction $aG + bH \rightarrow Products$. When concentration of both the reactants G and H is doubled, the rate increases by eight times. However, when concentration of G is doubled keeping the concentration of H fixed, the rate is doubled. The overall order of the reaction is:
 - (a) 0
- (c) 2
- (d) 3
- Under the same reaction conditions, initial concentration of 1.386 mol dm⁻³ of a substance becomes half in 40 seconds and 20 seconds through first order and zero order kinetics, respectively. Ratio (k_1/k_0) of the rate constant for first order (k_1) and zero order (k_0) of the reaction is –
 - (a) $0.5 \text{ mol}^{-1} \text{ dm}^3$
- (b) $1.0 \, \text{mol dm}^{-3}$
- (c) 1.5 mol dm^{-3}
- (d) $2.0 \,\mathrm{mol^{-1}\,dm^3}$
- 45. The chemical reaction, $2O_3 \rightarrow 3O_2$ proceeds as

$$O_3 \rightleftharpoons O_2 + [O]$$
 (fast)

$$[O] + O_3 \rightarrow 2O_2$$
 (slow)

The rate law expression will be:

- (a) Rate = $k[O][O_3]$
- (b) Rate = $k[O_3]^2[O_2]^{-1}$
- (c) Rate = $k[O_2]^2$
- (d) Rate = $k[O_2][O]$

Skill Based MCQs

- The reaction $A \rightarrow B$ follows first order kinetics. The time taken for 0.8 mole of A to produce 0.6 mole of B is 1 hour. What is the time taken for conversion of 0.9 mole of A to produce 0.675 mole of B?
 - (a) 2 hr
- (b) 1 hr
- (c) $0.5 \, hr$
- (d) $0.25 \, hr$
- 47. Ethylene is produced by $C_4H_8 \xrightarrow{\Delta} 2C_2H_4$

The rate constant is 2.3×10^{-4} s⁻¹. Approximately in what time will the molar ratio of ethylene to cyclobutane in mixture attain the value equal to one? $(\log 2 = 0.3, \log 3 = 0.47)$

- (a) 1700 s (b) 1600 s
- (c) $2000 \, s$
- (d) 1200 s
- The reaction $2X \rightarrow B$ is a zeroth order reaction. If the initial concentration of X is 0.2 M, the half-life is 6 h. When the initial concentration of X is 0.5 M, the time required to reach its final concentration of 0.2 M will be:
 - (a) 9.0 h
- (b) 12.0 h
- (c) 18.0 h
- (d) 7.2 h
- For a reaction, consider the plot of ln k versus 1/T given in the figure. If the rate constant of this reaction at 400 K is 10^{-5} s⁻¹, then the rate constant at 500 K is:

- (a) 10^{-6} s^{-1}
- (b) $2 \times 10^{-4} \text{ s}^{-1}$
- (c) 10^{-4} s⁻¹
- (d) $4 \times 10^{-4} \,\mathrm{s}^{-2}$
- The time for half life period of a certain reaction A ----- Products is 1 hour. When the initial concentration of the reactant 'A', is 2.0 mol L⁻¹, how much time does it take for its concentration to come from 0.50 to 0.25 mol L⁻¹ if it is a zero order reaction?
 - (a) 4 hr
- (b) $0.5 \, hr$
- (c) $0.25 \, hr$
- (d) 1 hr
- **51.** Consider the reaction:

$$Cl_2(aq) + H_2S(aq) \rightarrow S(s) + 2H^+(aq) + 2Cl^-(aq)$$

The rate equation for this reaction is

rate =
$$k[Cl_2][H_2S]$$

Which of these mechanisms is/are consistent with this rate equation?

- A. $Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-$ (slow) $Cl^+ + HS^- \rightarrow H^+ + Cl^- + S$ (fast)
- $H_2S \rightleftharpoons H^+ + HS^-$ (fast equilibrium) $Cl_2 + HS^- \rightarrow 2Cl^- + H^+ + S \text{ (Slow)}$
- (a) Bonly
- (b) Both A and B
- (c) Neither A nor B
- (d) A only
- The half-life for radioactive decay of C-14 is 5730 years. An archaeological artifact containing wood had only 80% of the C-14 found in a living tree. The age of the sample is
 - (a) 1485 years
- (b) 1845 years
- (c) 530 years
- (d) 4767 years.
- 53. The following results were obtained during kinetic studies of the reaction;

 $2A + B \rightarrow Products$

Experiment		[B]	Initial Rate of				
	$(in mol L^{-1})$	(in mol L^{-1})	reaction				
		·	(in mol L^{-1} min ⁻¹)				
I	0.10	0.20	6.93×10^{-3}				
II	0.10	0.25	6.93×10^{-3}				
III	0.20	0.30	1.386×10^{-2}				

The time (in minutes) required to consume half of A is:

- (a) 5
- (b) 10
- (c) 1
- (d) 100
- At 518°C, the rate of decomposition of a sample of gaseous 54. acetaldehyde, initially at a pressure of 363 Torr, was 1.00 Torr s⁻¹ when 5% had reacted and 0.5 Torr s⁻¹ when 33% had reacted. The order of the reaction is:
 - (a) 2
- (b) 3
- (c) 1
- (d) 0
- 55. For a first order reaction $A \rightarrow P$, the temperature (T) dependent rate constant (k) was found to follow the equation

 $\log k = -(2000)\frac{1}{T} + 6.0$. The pre-exponential factor A and the activation energy E_a , respectively, are

- (a) $1.0 \times 10^6 \text{ s}^{-1}$ and 9.2 kJ mol^{-1}
- (b) $6.0 \,\mathrm{s}^{-1}$ and $16.6 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $1.0 \times 10^6 \,\mathrm{s}^{-1}$ and $16.6 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- (d) $1.0 \times 10^6 \,\mathrm{s}^{-1}$ and $38.3 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

	ANSWER KEY																		
	Conceptual MCQs																		
1	(d)	3	(b)	5	(a)	7	(d)	9	(a)	11	(a)	13	(c)	15	(b)	17	(b)	19	(b)
2	(d)	4	(b)	6	(b)	8	(b)	10	(c)	12	(b)	14	(b)	16	(a)	18	(c)	20	(a)
	Application Based MCQs																		
21	(b)	24	(a)	27	(b)	30	(b)	33	(d)	36	(b)	39	(a)	42	(d)	45	(b)		
22	(b)	25	(b)	28	(c)	31	(b)	34	(d)	37	(c)	40	(a)	43	(d)				
23	(a)	26	(b)	29	(b)	32	(c)	35	(d)	38	(a)	41	(c)	44	(a)				
	Skill Based MCQs																		
46	(b)	47	(a)	48	(c)	49	(c)	50	(c)	51	(d)	52	(b)	53	(a)	54	(a)	55	(d)