HYDROGEN [JEE ADVANCED PREVIOUS YEAR SOLVED PAPERS] ## JEE Advanced ## **Single Correct Answer Type** - 1. The temporary hardness of water due to calcium bicarbonate can be removed by adding - **a.** $Ca_3(PO_4)_2$ - **b.** $Ca(OH)_2$ - c. Na₂CO₃ - d. NaOCl (IIT-JEE 1979) - 2. Heavy water is - **a.** H_2O^{18} - **b.** water obtained by repeated distillation - c. D_2O - **d.** water at 4°C (IIT-JEE 1983) - 3. The oxide that gives H_2O_2 on treatment with a dilute acid is - **a.** PbO_2 - **b.** Na_2O_2 **c.** MnO_2 **d.** TiO_2 (IIT-JEE 1985) - 4. The species that do not contain peroxide ions is - **a.** PbO_2 - **b.** H_2O_2 - c. SrO₂ - **d.** BaO_2 (IIT-JEE 1992) - 5. Complete hydrolysis of 1 mol of peroxodisulphuric acid produces - a. 2 mol of sulphuric acid - b. 2 mol of peroxomonosulphuric acid - c. 1 mol of H₂SO₄ and 1 mol of peroxomonosulphuric acid - d. 2 mol of H_2SO_4 and 1 mol of H_2O_2 (IIT-JEE 1996) - 6. Polyphosphates are used as water softening agents because they - a. form soluble complexes with anionic species - b. precipitate anionic species - form soluble complexes with cationic species - d. precipitate cationic species. (IIT-JEE 2002) ### **Multiple Correct Answers Type** 1. When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with | a. H[®] ions b. Ca²⁺ ions c. SO₄²⁻ ions d. Mg²⁺ ions (IIT-JEE 1990) 2. The reagent used for softening the temporary hardness of water is/are a. Ca₃(PO₄)₂ b. Ca(OH)₂ c. Na₂CO₃ d. NaOCl (IIT-JEE 2010) 3. Hydrogen peroxide in its reaction with KIO₄ and NH₂OH respectively, is acting as a a. reducing agent, oxidising agent b. reducing agent, reducing agent c. oxidising agent, oxidising agent d. oxidising agent, oxidising agent d. oxidising agent agent JEE Advanced 2014) 4. Fe³⁺ is reduced to Fe²⁺ by using a. H₂O₂ in presence of NaOH b. Na₂O₂ in water c. H₂O₂ in presence of H₂SO₄ | Fill in the Blanks Type 1. The adsorption of hydrogen by palladium is commonly known as (IIT-JEE 1983) 2. Hydrogen gas is liberated the action of aluminium with concentrated solution of (IIT-JEE 1987) Subjective Type Give reasons in one or two sentences for the following: 1. 'H ₂ O ₂ is a better oxidizing agent than water'. (IIT-JEE 1986) 2. The mixture of hydrazine and hydrogen peroxides with a copper (II) catalyst is used as a rocket propellant. (IIT-JEE 1987) 3. Hydrogen peroxide acts both as an oxidizing and as a reducing agent in alkaline solution towards certain first row transition metal ions. Illustrate both these properties of H ₂ O ₂ using chemical equations. (IIT-JEE 1998) | |---|---| | d. Na_2O_2 in presence of H_2SO_4 (JEE Advanced 2015) | er Key | | JEE Advanced | | | Single Correct Answer Type 1. b. 2. c. 3. b. 4. a. 5. d. 6. c. | | | Multiple Correct Answers Type 1. b., d. 2. b., c., d. 3. a. 4. c., d. | | | Fill in the Blanks Type 1. occlusion 2. sodium hydroxide | | ## **Hints and Solutions** ## JEE Advanced ## **Single Correct Answer Type** Temporary hardness of water is due to the presence of bicarbonates of calcium and magnesium. $$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$ The temporary hardness of water can be removed by the addition of calculated quantity of milk of lime which converts soluble bicarbonates into insoluble carbonates which can be removed. - C. Heavy water is an oxide of heavy hydrogen, which is called deuterium oxide. It is D₂O. - 3. b. Only the true peroxides which have —O—O— bond give H₂O₂ with dilute acids as in Na₂O₂ oxidation state of 'O' is -1 so it is peroxide O—O. $$Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$$ - 4. a. Only true peroxide which have -O O bond give H₂O₂ with dilute acids. PbO₂ does not give H₂O₂ with dilute acids. So it is not a true peroxide. - **b.** H—O—O—H \Rightarrow O_2^{2-} i.e., Peroxide linkage - c. SrO_2 2 + 2x = 0 $\Rightarrow 2x = -2$ $\Rightarrow x = -1$ - d. BaO₂ same as C as Sr and Ba both are of group 2. So, oxidation state is +2. - 5. d. Peroxodisulphuric acid (H₂S₂O₈) or Marshall's acid on complete hydrolysis gives 2 mol by H₂SO₄ and 1 mol of H₂O₂ H₂S₂O₈ + 2H₂O → 2H₂SO₄ + H₂O₂ But partial hydrolysis of H₂S₂O₈ gives 1 mol of H₂SO₄ and 1 $$H_2SO_4 + 2H_2O \longrightarrow H_2SO_4 + H_2SO_5$$ 6. c. Polyphosphates are used as water softening agents because they form soluble complexes with cations responsible for the hardness of water. These polyphosphates are represented as Na₂[Na₄(PO₃)₆] known as calgon. $$2CaSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Ca_2(PO_3)_6] + 2Na_2SO_4$$ $2MgSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Mg_2(PO_3)_6] + 2Na_2SO_4$ Note: This method is basically used for softening water for boiler use. ## **Multiple Correct Answers Type** 1. b., d. When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with both Ca²⁺ and Mg²⁺ ions. $$Na_2Z + Ca^{2+}$$ or $Mg^{2+} \longrightarrow CaZ$ or $MgZ + 2Na^+$ #### 2. b., c., d. Temporary hardness of water is due to the presence of bicarbonates of calcium and magnesium. $$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 + 2H_2O$$ Insoluble $$Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$$ Insoluble Insoluble This is known as Clark's method. It is essential to add only the calculated amount of Ca(OH)2. NaOCl + H₂O $$\Longrightarrow$$ HOCl + NaOH OH⁻ + HCO₃⁻ \longrightarrow CO₃²⁻ + H₂O Ca(HCO₃)₂ + Na₂CO₃ \longrightarrow CaCO₃ \downarrow +2NaHCO₃ #### 3. a. H₂O₂ reacts with KIO₄ in the following manner: $$KIO_4 + H_2O_2 \longrightarrow KIO_3 + H_2O + O_2$$ on reaction of KIO₄ with H₂O₂, oxidation state of I varies from +7 to +5, i.e., decreases. Thus KIO₄ get reduced hence, H₂O₂ is reducing agent here. H₂O₂ reacts with NH₂OH in the following manner: $$^{-1}$$ NH₂OH + H₂O₂ \longrightarrow $^{+3}$ N₂O₃ + H₂O In this reaction, oxidation state of N varies from -1 to +3 i.e., increases, hence H_2O_2 is acting on an oxidising agent here. #### 4. c., d. Fe3+ is reduced to Fe2+ by H2O2 and Na2O2 in acidic medium. ## Fill in the Blanks Type - The adsorption of hydrogen by palladium is commonly known as occlusion. Occlusion is general term for adsorption of gases on solid surface. - Hydrogen gas is liberated the action of aluminium with concentrated solution of sodium hydroxide. $$2A1 + 2NaOH + 2H_2O \longrightarrow 2NaAlO_2 + 3H_2$$ This liberated hydrogen is used to Clean drains. ### **Subjective Type** H₂O₂ is a better oxidizing agent than water because it can provide nascent oxygen easily. $$H_2O_2 \longrightarrow H_2O + [O]$$ 2. $N_2H_4 + 2H_2O_2 \longrightarrow N_2 + 4H_2O$ The mixture of N₂H₄ and H₂O₂ (in the presence of Cu(II) catalyst) is used as a rocket propellant because of two reasons: - The reaction is highly exothermic. - b. Large volume of gases are evolved. - 3. Oxidizing action of H₂O₂ in alkaline medium $$H_2O_2 + {}^-OH + 2e^- \longrightarrow 3 {}^-OH$$ (i) In alkaline medium it converts manganous salts to Mn⁴⁺ (converts MnSO₄ to MnO₂). i.e., $$Mn^{2+} \longrightarrow Mn^{4+} + 4e^-$$ (ii) Add Eqs. (i) and (ii). $$H_2O_2 + Mn^{2+} \longrightarrow Mn^{4+} + 3^-OH$$ Reducing action of H₂O₂ in alkaline medium $$H_2O_2 + 2^-OH \longrightarrow 2H_2O + O_2 + 2e^-$$ (iii) In alkaline medium it converts KMnO₄ to MnO₂ i.e., MnO₄ to MnO₂ Step 1: $$MnO_4 + 3e^- \longrightarrow MnO_2$$ $$L.H.S = -4$$ $R.H.S = 0$ $$MnO_4^- + 3e^- \longrightarrow MnO_2 + 4^-OH$$ Step 3: Balance 'O' $$L.H.S = 4 R.H.S = 6$$ $$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2 + 4^-OH$$ (iv) Multiply Eqs. (iii) \times 3 and (iv) \times 2 and add. $$2MnO_4^- + 3 H_2O_2 \longrightarrow 2 MnO_2 + 2 OH + 2H_2O + 3O_2$$