HYDROGEN [JEE ADVANCED PREVIOUS YEAR SOLVED PAPERS]

JEE Advanced

Single Correct Answer Type

- 1. The temporary hardness of water due to calcium bicarbonate can be removed by adding
 - **a.** $Ca_3(PO_4)_2$
- **b.** $Ca(OH)_2$
- c. Na₂CO₃
- d. NaOCl (IIT-JEE 1979)
- 2. Heavy water is
 - **a.** H_2O^{18}
 - **b.** water obtained by repeated distillation
 - c. D_2O
 - **d.** water at 4°C

(IIT-JEE 1983)

- 3. The oxide that gives H_2O_2 on treatment with a dilute acid is
 - **a.** PbO_2
- **b.** Na_2O_2 **c.** MnO_2 **d.** TiO_2

(IIT-JEE 1985)

- 4. The species that do not contain peroxide ions is
 - **a.** PbO_2
- **b.** H_2O_2
- c. SrO₂
 - **d.** BaO_2

(IIT-JEE 1992)

- 5. Complete hydrolysis of 1 mol of peroxodisulphuric acid produces
 - a. 2 mol of sulphuric acid
 - b. 2 mol of peroxomonosulphuric acid
 - c. 1 mol of H₂SO₄ and 1 mol of peroxomonosulphuric acid
 - d. 2 mol of H_2SO_4 and 1 mol of H_2O_2 (IIT-JEE 1996)
- 6. Polyphosphates are used as water softening agents because they
 - a. form soluble complexes with anionic species
 - b. precipitate anionic species
 - form soluble complexes with cationic species
 - d. precipitate cationic species.

(IIT-JEE 2002)

Multiple Correct Answers Type

1. When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with

 a. H[®] ions b. Ca²⁺ ions c. SO₄²⁻ ions d. Mg²⁺ ions (IIT-JEE 1990) 2. The reagent used for softening the temporary hardness of water is/are a. Ca₃(PO₄)₂ b. Ca(OH)₂ c. Na₂CO₃ d. NaOCl (IIT-JEE 2010) 3. Hydrogen peroxide in its reaction with KIO₄ and NH₂OH respectively, is acting as a a. reducing agent, oxidising agent b. reducing agent, reducing agent c. oxidising agent, oxidising agent d. oxidising agent, oxidising agent d. oxidising agent agent JEE Advanced 2014) 4. Fe³⁺ is reduced to Fe²⁺ by using a. H₂O₂ in presence of NaOH b. Na₂O₂ in water c. H₂O₂ in presence of H₂SO₄ 	Fill in the Blanks Type 1. The adsorption of hydrogen by palladium is commonly known as (IIT-JEE 1983) 2. Hydrogen gas is liberated the action of aluminium with concentrated solution of (IIT-JEE 1987) Subjective Type Give reasons in one or two sentences for the following: 1. 'H ₂ O ₂ is a better oxidizing agent than water'. (IIT-JEE 1986) 2. The mixture of hydrazine and hydrogen peroxides with a copper (II) catalyst is used as a rocket propellant. (IIT-JEE 1987) 3. Hydrogen peroxide acts both as an oxidizing and as a reducing agent in alkaline solution towards certain first row transition metal ions. Illustrate both these properties of H ₂ O ₂ using chemical equations. (IIT-JEE 1998)
d. Na_2O_2 in presence of H_2SO_4 (JEE Advanced 2015)	er Key
JEE Advanced	
Single Correct Answer Type 1. b. 2. c. 3. b. 4. a. 5. d. 6. c.	
Multiple Correct Answers Type 1. b., d. 2. b., c., d. 3. a. 4. c., d.	
Fill in the Blanks Type 1. occlusion 2. sodium hydroxide	

Hints and Solutions

JEE Advanced

Single Correct Answer Type

 Temporary hardness of water is due to the presence of bicarbonates of calcium and magnesium.

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$

The temporary hardness of water can be removed by the addition of calculated quantity of milk of lime which converts soluble bicarbonates into insoluble carbonates which can be removed.

- C. Heavy water is an oxide of heavy hydrogen, which is called deuterium oxide. It is D₂O.
- 3. b. Only the true peroxides which have —O—O— bond give H₂O₂ with dilute acids as in Na₂O₂ oxidation state of 'O' is -1 so it is peroxide O—O.

$$Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$$

- 4. a. Only true peroxide which have -O O bond give H₂O₂ with dilute acids. PbO₂ does not give H₂O₂ with dilute acids. So it is not a true peroxide.
 - **b.** H—O—O—H \Rightarrow O_2^{2-} i.e., Peroxide linkage
 - c. SrO_2 2 + 2x = 0 $\Rightarrow 2x = -2$ $\Rightarrow x = -1$
 - d. BaO₂ same as C as Sr and Ba both are of group 2. So, oxidation state is +2.
- 5. d. Peroxodisulphuric acid (H₂S₂O₈) or Marshall's acid on complete hydrolysis gives 2 mol by H₂SO₄ and 1 mol of H₂O₂ H₂S₂O₈ + 2H₂O → 2H₂SO₄ + H₂O₂ But partial hydrolysis of H₂S₂O₈ gives 1 mol of H₂SO₄ and 1

$$H_2SO_4 + 2H_2O \longrightarrow H_2SO_4 + H_2SO_5$$

6. c. Polyphosphates are used as water softening agents because they form soluble complexes with cations responsible for the hardness of water. These polyphosphates are represented as Na₂[Na₄(PO₃)₆] known as calgon.

$$2CaSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Ca_2(PO_3)_6] + 2Na_2SO_4$$

 $2MgSO_4 + Na_2[Na_4(PO_3)_6] \longrightarrow Na_2[Mg_2(PO_3)_6] + 2Na_2SO_4$

Note: This method is basically used for softening water for boiler use.

Multiple Correct Answers Type

1. b., d.

When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with both Ca²⁺ and Mg²⁺ ions.

$$Na_2Z + Ca^{2+}$$
 or $Mg^{2+} \longrightarrow CaZ$ or $MgZ + 2Na^+$

2. b., c., d.

Temporary hardness of water is due to the presence of bicarbonates of calcium and magnesium.

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 + 2H_2O$$
Insoluble

$$Mg(HCO_3)_2 + 2Ca(OH)_2 \longrightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$$
Insoluble Insoluble

This is known as Clark's method.

It is essential to add only the calculated amount of Ca(OH)2.

NaOCl + H₂O
$$\Longrightarrow$$
 HOCl + NaOH
OH⁻ + HCO₃⁻ \longrightarrow CO₃²⁻ + H₂O
Ca(HCO₃)₂ + Na₂CO₃ \longrightarrow CaCO₃ \downarrow +2NaHCO₃

3. a.

H₂O₂ reacts with KIO₄ in the following manner:

$$KIO_4 + H_2O_2 \longrightarrow KIO_3 + H_2O + O_2$$

on reaction of KIO₄ with H₂O₂, oxidation state of I varies from +7 to +5, i.e., decreases. Thus KIO₄ get reduced hence, H₂O₂ is reducing agent here.

H₂O₂ reacts with NH₂OH in the following manner:

$$^{-1}$$
NH₂OH + H₂O₂ \longrightarrow $^{+3}$ N₂O₃ + H₂O

In this reaction, oxidation state of N varies from -1 to +3 i.e., increases, hence H_2O_2 is acting on an oxidising agent here.

4. c., d.

Fe3+ is reduced to Fe2+ by H2O2 and Na2O2 in acidic medium.

Fill in the Blanks Type

- The adsorption of hydrogen by palladium is commonly known as occlusion. Occlusion is general term for adsorption of gases on solid surface.
- Hydrogen gas is liberated the action of aluminium with concentrated solution of sodium hydroxide.

$$2A1 + 2NaOH + 2H_2O \longrightarrow 2NaAlO_2 + 3H_2$$

This liberated hydrogen is used to Clean drains.

Subjective Type

H₂O₂ is a better oxidizing agent than water because it can provide nascent oxygen easily.

$$H_2O_2 \longrightarrow H_2O + [O]$$

2. $N_2H_4 + 2H_2O_2 \longrightarrow N_2 + 4H_2O$

The mixture of N₂H₄ and H₂O₂ (in the presence of Cu(II) catalyst) is used as a rocket propellant because of two reasons:

- The reaction is highly exothermic.
- b. Large volume of gases are evolved.
- 3. Oxidizing action of H₂O₂ in alkaline medium

$$H_2O_2 + {}^-OH + 2e^- \longrightarrow 3 {}^-OH$$
 (i)

In alkaline medium it converts manganous salts to Mn⁴⁺ (converts MnSO₄ to MnO₂).

i.e.,
$$Mn^{2+} \longrightarrow Mn^{4+} + 4e^-$$
 (ii)

Add Eqs. (i) and (ii).

$$H_2O_2 + Mn^{2+} \longrightarrow Mn^{4+} + 3^-OH$$

Reducing action of H₂O₂ in alkaline medium

$$H_2O_2 + 2^-OH \longrightarrow 2H_2O + O_2 + 2e^-$$
 (iii)

In alkaline medium it converts

KMnO₄ to MnO₂ i.e., MnO₄ to MnO₂

Step 1:
$$MnO_4 + 3e^- \longrightarrow MnO_2$$

$$L.H.S = -4$$
 $R.H.S = 0$

$$MnO_4^- + 3e^- \longrightarrow MnO_2 + 4^-OH$$

Step 3: Balance 'O'

$$L.H.S = 4 R.H.S = 6$$

$$MnO_4^- + 3e^- + 2H_2O \longrightarrow MnO_2 + 4^-OH$$
 (iv)

Multiply Eqs. (iii) \times 3 and (iv) \times 2 and add.

$$2MnO_4^- + 3 H_2O_2 \longrightarrow 2 MnO_2 + 2 OH + 2H_2O + 3O_2$$