
6.3 Crystalline structure

Bravais lattices
Volume of
primitive cell

V =(a×××b) ·c (6.1)
a,b,c primitive base vectors

V volume of primitive cell

Reciprocal
primitive base
vectorsa

a∗ =2πb×××c/[(a×××b) ·c] (6.2)

b∗ =2πc×××a/[(a×××b) ·c] (6.3)

c∗ =2πa×××b/[(a×××b) ·c] (6.4)

a ·a∗ =b ·b∗ = c ·c∗ =2π (6.5)

a ·b∗ =a ·c∗ =0 (etc.) (6.6)

a∗,b∗,c∗ reciprocal primitive base
vectors

Lattice vector Ruvw =ua+vb+wc (6.7)
Ruvw lattice vector [uvw]

u,v,w integers

Reciprocal lattice
vector

Ghkl =ha∗ +kb∗ + lc∗ (6.8)

exp(iGhkl ·Ruvw)=1 (6.9)

Ghkl reciprocal lattice vector [hkl]

i i2 =−1

Weiss zone
equationb hu+kv+ lw=0 (6.10) (hkl) Miller indices of planec

Interplanar
spacing (general)

dhkl =
2π

Ghkl

(6.11)
dhkl distance between (hkl)

planes

Interplanar
spacing
(orthogonal basis)

1

d2
hkl

=
h2

a2
+
k2

b2
+

l2

c2
(6.12)

aNote that this is 2π times the usual definition of a “reciprocal vector” (see page 20).
bCondition for lattice vector [uvw] to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice.
cMiller indices are defined so that Ghkl is the shortest reciprocal lattice vector normal to the (hkl) planes.

Weber symbols

Converting
[uvw] to
[UVTW ]

U=
1

3
(2u−v) (6.13)

V =
1

3
(2v−u) (6.14)

T =−1

3
(u+v) (6.15)

W =w (6.16)

U,V ,T ,W Weber indices

u,v,w zone axis indices

[UVTW ] Weber symbol

[uvw] zone axis symbol

Converting
[UVTW ] to
[uvw]

u=(U−T ) (6.17)

v=(V −T ) (6.18)

w=W (6.19)

Zone lawa hU+kV + iT + lW =0 (6.20) (hkil) Miller–Bravais indices

aFor trigonal and hexagonal systems.



Cubic lattices
lattice primitive (P) body-centred (I) face-centred (F)

lattice parameter a a a

volume of conventional cell a3 a3 a3

lattice points per cell 1 2 4

1st nearest neighboursa 6 8 12

1st n.n. distance a a
√

3/2 a/
√

2

2nd nearest neighbours 12 6 6

2nd n.n. distance a
√

2 a a

packing fractionb π/6
√

3π/8
√

2π/6

reciprocal latticec P F I

a1 =ax̂ a1 = a
2
(ŷ+ ẑ− x̂) a1 = a

2
(ŷ+ ẑ)

primitive base vectorsd a2 =aŷ a2 = a
2
(ẑ+ x̂− ŷ) a2 = a

2
(ẑ+ x̂)

a3 =aẑ a3 = a
2
(x̂+ ŷ− ẑ) a3 = a

2
(x̂+ ŷ)

aOr “coordination number.”
bFor close-packed spheres. The maximum possible packing fraction for spheres is

√
2π/6.

cThe lattice parameters for the reciprocal lattices of P, I, and F are 2π/a, 4π/a, and 4π/a respectively.
dx̂, ŷ, and ẑ are unit vectors.

Crystal systemsa

system symmetry unit cellb latticesc

triclinic none
a �=b �= c;
α �=β �= γ �=90◦ P

monoclinic one diad ‖ [010]
a �=b �= c;
α= γ=90◦, β �=90◦ P, C

orthorhombic three orthogonal diads
a �=b �= c;
α=β= γ=90◦ P, C, I, F

tetragonal one tetrad ‖ [001]
a=b �= c;
α=β= γ=90◦ P, I

trigonald one triad ‖ [111]
a=b= c;
α=β= γ<120◦ �=90◦ P, R

hexagonal one hexad ‖ [001]
a=b �= c;
α=β=90◦, γ=120◦ P

cubic four triads ‖ 〈111〉 a=b= c;
α=β= γ=90◦ P, F, I

aThe symbol “�=” implies that equality is not required by the symmetry, but neither is it forbidden.
bThe cell axes are a, b, and c with α, β, and γ the angles between b : c, c :a, and a :b respectively.
cThe lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and
rhombohedral primitive (R).
dA primitive hexagonal unit cell, with a triad ‖ [001], is generally preferred over this rhombohedral unit cell.



Dislocations and cracks

Edge
dislocation

l̂ ·b=0 (6.21)
l̂ unit vector ‖ line of

dislocation

b,b Burgers vectora

Screw
dislocation

l̂ ·b=b (6.22)
U dislocation energy per

unit length

µ shear modulus

Screw
dislocation
energy per
unit lengthb

b

b
r

L

l̂

l̂

U=
µb2

4π
ln

R

r0
(6.23)

∼µb2 (6.24)

R outer cutoff for r

r0 inner cutoff for r

L critical crack length

α surface energy per unit
area

Critical crack
lengthc L=

4αE

π(1−σ2)p2
0

(6.25)

E Young modulus

σ Poisson ratio

p0 applied widening stress
aThe Burgers vector is a Bravais lattice vector characterising the total relative slip
were the dislocation to travel throughout the crystal.
bOr “tension.” The energy per unit length of an edge dislocation is also ∼µb2.
cFor a crack cavity (long ⊥L) within an isotropic medium. Under uniform stress p0,
cracks ≥L will grow and smaller cracks will shrink.

Crystal diffraction

Laue
equations

a(cosα1 −cosα2)=hλ (6.26)

b(cosβ1 −cosβ2)=kλ (6.27)

c(cosγ1 −cosγ2)= lλ (6.28)

a,b,c lattice parameters

α1,β1,γ1 angles between lattice base
vectors and input wavevector

α2,β2,γ2 angles between lattice base
vectors and output wavevector

h,k,l integers (Laue indices)

Bragg’s lawa 2kin.G+ |G|2 =0 (6.29)
λ wavelength

kin input wavevector

G reciprocal lattice vector

Atomic form
factor

f(G)=

∫
vol

e−iG·rρ(r) d3r (6.30)

f(G) atomic form factor

r position vector

ρ(r) atomic electron density

Structure
factorb S(G)=

n∑
j=1

fj(G)e−iG·dj (6.31)
S(G) structure factor

n number of atoms in basis

dj position of jth atom within basis

Scattered
intensityc I(K)∝N2|S(K)|2 (6.32)

K change in wavevector
(=kout −kin)

I(K) scattered intensity

N number of lattice points
illuminated

Debye–
Waller
factord

IT = I0 exp

[
−1

3
〈u2〉|G|2

]
(6.33)

IT intensity at temperature T

I0 intensity from a lattice with no
motion

〈u2〉 mean-squared thermal
displacement of atoms

aAlternatively, see Equation (8.32).
bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice.
cThe Bragg condition makes K a reciprocal lattice vector, with |kin|= |kout|.
dEffect of thermal vibrations.


