Ratio and Proportion

STUDY NOTES

- If a and b are two non-zero quantities of the same kind and in the same units, then the fraction $\frac{a}{b}$ is called the ratio between a and b, written as a : b.
- A ratio is purely a number. It has no units attached to it. In the ratio a : b, we call a, the first term or antecedent and b, the second term or consequent.
- The value of a ratio remains unchanged, if both of its terms are multiplied or divided by the same non-zero number.
- When a and b have no common factor, other than 1, we say that a : b is in its lowest terms. Generally a ratio is expressed in its lowest terms.
- Comparison of Ratios

(i)
$$(a:b) > (c:d) \Leftrightarrow \frac{a}{b} > \frac{c}{d} \Leftrightarrow ad > bc.$$
 (ii) $(a:b) = (c:d) \Leftrightarrow \frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc.$
(iii) $(a:b) < (c:d) \Leftrightarrow \frac{a}{b} < \frac{c}{d} \Leftrightarrow ad < bc.$

- An equality of two ratios is called a proportion.
- Four (non-zero) quantities a, b, c, d are said to be in proportion if a : b = c : d, i.e., if $\frac{a}{b} = \frac{c}{d}$. We write it as a:b::c:d.
- If a : b : : c : d, then :
 - (i) a, b, c, d are known as first, second, third and fourth terms respectively.
 - (ii) d is called the *fourth proportional* to a, b, c.
 - (iii) a and d are called *extremes*, while b and c are *means*.
- If a:b::c:d, then the product of extremes is equal to the product of means
 - i.e., $a:b::c:d \Leftrightarrow \frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$.
- If a:b::b:c::c:d, or $\frac{a}{b} = \frac{b}{c} = \frac{c}{d}$, then the quantities a, b, c, d ... are said to be in *continued proportion*.
- Let *a*, *b*, *c* be in continued proportion.

Then,
$$\frac{a}{b} = \frac{b}{c}$$
 or $b^2 = ac$ or $b = \sqrt{ac}$

Here, b is called the mean proportion or geometric mean between a and c.

Here c is called the third proportional to a and b.

- If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$, then each of the ratios is equal to $\frac{a+c+e}{b+d+f}$. Also, each of the ratios is equal to $\frac{la+mc+ne}{lb+md+nf}$.
- If $\frac{a}{b} = \frac{c}{d}$, then each ratio is equal to $\frac{a-c}{b-d}$.
- Invertendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{b}{a} = \frac{d}{c}$
- Componendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{b} = \frac{c+d}{d}$
- Componendo and Dividendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$ Convertendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{a-b} = \frac{c}{c-d}$
- Alternendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{c} = \frac{b}{d}$
- Dividendo : $\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a-b}{b} = \frac{c-d}{d}$

QUESTION BANK

A. Multiple Choice Questions

Choose the correct option: 1. If x^2 , 4 and 9 are in continued proportion, then the value of x is : (d) $\frac{16}{9}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (a) $\frac{2}{3}$ **2.** If a : b = 5 : 3, then (5a + 8b) : (6a - 7b) is equal to : (c) 49 : 9 (a) 40 : 9 (b) 9 : 49 (d) 25 : 9 3. The fourth proportional to 7, 13 and 35 is : (c) 52 (d) 50 (a) 65 (b) 62 4. The third proportional to 9 and 15 is : (a) 10 (b) 15 (c) 18 (d) 25 5. If $\frac{7m+2n}{7m-2n} = \frac{5}{3}$, then m : n is : (a) 7:8 (b) 2 : 7 (d) 1 : 8 (c) 8 : 7 6. The mean proportion between 28 and 63 is : (a) 42 (c) 36 (d) 32 (b) 45 7. The fourth proportional to 3, 12, 15 is : (a) 40 (b) 45 (c) 60 (d) 62 8. If x : y = 2 : 3, then $\frac{3x + 2y}{2x + 5y}$ is : (a) $\frac{12}{19}$ (b) $\frac{19}{12}$ (c) $\frac{12}{13}$ (d) $\frac{19}{21}$ 9. The mean proportion between x - y and $x^3 - x^2 y$ is : (c) $x^2(x + y)$ (b) $x^2(x-y)$ (a) x(x + y)(d) x(x - y)**10.** If a : b = 2 : 3 and b : c = 4 : 5, then a : c is : (b) 15 : 7 (c) 15 : 8 (d) 8 : 15 (a) 12 : 15 11. If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+c}{b+d}$ is equal to : (a) $\frac{a}{b}$ (b) $\frac{c}{d}$ (c) both (a) and (b) (d) neither (a) nor (b) 12. The fourth proportional to 3, 6 and 4.5 is : (a) 10 (b) 9 (c) 8.5 (d) 6 **13.** The third proportional to x - y and $x^2 - y^2$ is : (b) $(x - y) (x^2 + y^2)$ (a) $(x + y) (x^2 - y^2)$ (c) $(x^2 - y^2) (x^2 + y^2)$ (d) (x + y) (x - y)14. If $\frac{a}{b}$: $\frac{c}{d}$, then each ratio is equal to : (a) a + b : c + d(b) a + c : b + d(c) a + d : b + c (d) a - b : c - d**15.** The mean proportion between a^2b and $\frac{1}{b}$ is : (a) a (b) a^2 (a) *a* (c) *ab* (d) \sqrt{ab} 16. If 2x = 3y and 4y = 5z, then $\frac{8x}{z}$ is equal to : (a) 5 (b) 15 (c) 10 (d) 8 17. Two numbers are in the ratio 1 : 4. If the mean proportion between them is 28 and third proportional to them is 224, then the smaller number is :

(a) 12 (b) 14 (c) 16 (d) 21

[1 Mark]

18. If three quantities a, b, c are in continued proportion, then the mean proportion between :

(d) $d : c - d$	
10. (d)	
20. (a)	

[3 Marks]

B. Short Answer Type Questions

1. If (3a + 2b) : (5a + 3b) = 18 : 29, find a : b.

Sol.
$$\frac{3a+2b}{5a+3b} = \frac{18}{29} \implies 87a+58b = 90a+54b$$
$$\implies 3a = 4b \implies \frac{a}{b} = \frac{4}{3}$$
i.e., $a: b = 4:3$

2. What least number must be added to each of the numbers 2, 5, 18 and 33, so that the resulting numbers are proportional? Sol. Let x be added such that 2 + x, 5 + x, 18 + x, 33 + x. are proportional.

 $\therefore \text{ Product of means} = \text{product of extremes} \\ \Rightarrow (5 + x) (18 + x) = (2 + x) (33 + x) \\ \Rightarrow 90 + 5x + 18x + x^2 = 66 + 33x + 2x + x^2 \\ \Rightarrow 12 x = 24 \\ \Rightarrow x = 2.$

3. If b is the mean proportion between a and c, show that b(a + c) is the mean proportion between $(a^2 + b^2)$ and $(b^2 + c^2)$. Sol. $\therefore b^2 = ac$ [Given]

:. Mean proportion between $(a^2 + b^2)$ and $(b^2 + c^2) = \sqrt{(a^2 + b^2)(b^2 + c^2)} = \sqrt{(a^2 + ac)(ac + c^2)}$ = $\sqrt{a(a+c)c(a+c)} = (a+c)\sqrt{ac} = (a+c)\sqrt{b^2} = b(a+c)$ Proved.

4. If a : b = c : d, then prove that $(a + b) : (c + d) = \sqrt{a^2 + b^2} : \sqrt{c^2 + d^2}$.

Sol. Let
$$\frac{a}{b} = \frac{b}{d} = k$$

 $\Rightarrow a = bk$ and $c = dk$

L.H.S.
$$= \frac{a+b}{c+d} = \frac{bk+b}{dk+d} = \frac{b}{d}$$
.
R.H.S. $= \frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}} = \frac{\sqrt{b^2k^2+b^2}}{\sqrt{d^2k^2+d^2}} = \sqrt{\frac{b^2}{d^2}} = \frac{b}{d}$.
Hence, L.H.S. = R.H.S. **Proved.**

- 5. If $\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b}$, then prove that ax + by + cz = 0.
- Sol. Let $\frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b} = k$ $\therefore x = k (b-c), y = k (c-a) \text{ and } z = k (a-b)$ L.H.S. = ax + by + cz = ak (b-c) + bk (c-a) + ck (a-b)= abk - ack + bck - abk + ack - bck = 0 = R.H.S. Proved.

6. If a, b, c, d are in continued proportion, prove that (b + c)(b + d) = (c + a)(c + d). Sol. \therefore a, b, c, d are in continued proportion.

$$\therefore \frac{a}{b} = \frac{b}{c} = \frac{c}{d} = k \text{ [Let]}$$

$$\Rightarrow a = bk, b = ck \text{ and } c = dk$$

$$\because b = ck = dk. \ k = dk^2$$
and $a = bk = dk^2. \ k = dk^3$
L.H.S. = $(b + c) \ (b + d) = (dk^2 + dk) \ (dk^2 + d) = kd^2 \ (k + 1) \ (k^2 + 1)$
R.H.S. = $(c + a) \ (c + d)$

$$= (dk + dk^3) \ (dk + d)$$

$$= dk \ (1 + k^2) \ d(k + 1) = kd^2 \ (k + 1) \ (k^2 + 1)$$
Hence, L.H.S. = R.H.S. **Proved**.

7. If
$$\frac{a}{b} = \frac{c}{d}$$
, then, show that $\frac{3a-5b}{3a+5b} = \frac{3c-5d}{3c+5d}$

Sol. Given,
$$\frac{a}{b} = \frac{c}{d}$$

or $\frac{3a}{5b} = \frac{3c}{5d}$ [Multiplying by $\frac{3}{5}$ on both sides]
Using componendo and dividendo, we get
 $\frac{3a + 5b}{3a - 5b} = \frac{3c + 5d}{3c - 5d}$
 $\Rightarrow \frac{3a - 5b}{3a + 5b} = \frac{3c - 5d}{3c + 5d}$ • **Proved**.

C. Long Answer Type Questions

1. If b is the mean proportion between a and c, prove that $\frac{a^2 + b^2 + c^2}{a^{-2} + b^{-2} + c^{-2}} = b^4$.

Sol. : *b* is the mean proportion between *a* and *c*, then $b^2 = ac$.

L.H.S. =
$$\frac{a^2 + b^2 + c^2}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}} = \frac{a^2 + b^2 + c^2}{\frac{b^2 c^2 + a^2 c^2 + a^2 b^2}{a^2 b^2 c^2}} = \frac{a^2 b^2 c^2 (a^2 + b^2 + c^2)}{b^2 c^2 + a^2 c^2 + a^2 b^2} = \frac{b^2 \times b^4 (a^2 + b^2 + c^2)}{b^2 c^2 + b^4 + a^2 b^2}$$

= $\frac{b^4 \times b^2 (a^2 + b^2 + c^2)}{b^2 (c^2 + b^2 + a^2)} = b^4$ = R.H.S. **Proved**.

2. If *a*, *b*, *c* are in continued proportion, prove that $\frac{2a^2 + 7b^2 - 5ab}{2b^2 + 7c^2 - 5bc} = \frac{a}{c}$ Sol. \therefore *a*, *b*, *c* are in continued proportion.

 $\therefore \frac{a}{b} = \frac{b}{c} \implies b^2 = ac$ L.H.S. $= \frac{2a^2 + 7b^2 - 5ab}{2b^2 + 7c^2 - 5bc} = \frac{2a^2 + 7ac - 5ab}{2ac + 7c^2 - 5bc} = \frac{a(2a + 7c - 5b)}{c(2a + 7c - 5b)}$ $= \frac{a}{c} = \text{R.H.S. Proved.}$

3. If a, b, c, d are in continued proportion, prove that

 $\sqrt{ab} + \sqrt{bc} - \sqrt{cd} = \sqrt{(a+b-c)(b+c-d)} \; .$

Sol. Since, a, b, c, d are in continued proportion.

$$\therefore \frac{a}{b} = \frac{b}{c} = \frac{c}{d} = k \text{ [Let]}$$

i.e., $a = bk, b = ck, c = dk$

[4 Marks]

or,
$$a = dk^3$$
, $b = dk^2$, $c = dk$.
L.H.S. $= \sqrt{ab} + \sqrt{bc} - \sqrt{cd} = \sqrt{dk^3 \cdot dk^2} + \sqrt{dk^2 \cdot dk} - \sqrt{dk \cdot d}$
 $= \sqrt{d^2k^5} + \sqrt{d^2k^3} - \sqrt{d^2k} = dk^2\sqrt{k} + dk\sqrt{k} - d\sqrt{k} = d\sqrt{k} (k^2 + k - 1)$
R.H.S. $= \sqrt{(a+b-c)(b+c-d)} = \sqrt{(dk^3 + dk^2 - dk)(dk^2 + dk - d)}$
 $= \sqrt{(dk(k^2 + k - 1) \cdot d(k^2 + k - 1)} = d(k^2 + k - 1) \cdot \sqrt{k}$.

Hence, L.H.S. = R.H.S. Proved.

4. If a : b = c : d, then show that $(a^2 + c^2 + ac) : (a^2 + c^2 - ac) = (b^2 + d^2 + bd) : (b^2 + d^2 - bd)$

Sol. Let $\frac{a}{b} = \frac{c}{d} = k$, then, a = bk and c = dk.

L.H.S.
$$(a^2 + c^2 + ac) : (a^2 + c^2 - ac) = \frac{a^2 + c^2 + ac}{a^2 + c^2 - ac} = \frac{b^2k^2 + d^2k^2 + bk.dk}{b^2k^2 + d^2k^2 - bk.dk} = \frac{k^2(b^2 + d^2 + bd)}{k^2(b^2 + d^2 - bd)} = \frac{b^2 + d^2 + bd}{b^2 + d^2 - bd}$$

= $(b^2 + d^2 + bd) : (b^2 + d^2 - bd) =$ R.H.S. **Proved**.

5. If
$$ax = by = cz$$
, then prove that : $\frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} = \frac{bc}{a^2} + \frac{ca}{b^2} + \frac{ab}{c^2}$

Sol. Let
$$ax = by = cz = k$$
, then, $x = \frac{k}{a}$, $y = \frac{k}{b}$ and $z = \frac{k}{c}$
L.H.S. $= \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy}$
 $= \frac{k^2}{a^2 \cdot \frac{k}{b} \cdot \frac{k}{c}} + \frac{k^2}{b^2 \cdot \frac{k}{c} \cdot \frac{k}{a}} + \frac{k^2}{c^2 \cdot \frac{k}{a} \cdot \frac{k}{b}}$
 $= \frac{bc}{a^2} + \frac{ca}{b^2} + \frac{ab}{c^2} = \text{R.H.S. Proved.}$

6. If
$$x = \frac{\sqrt{a+3b} + \sqrt{a-3b}}{\sqrt{a+3b} - \sqrt{a-3b}}$$
, prove that $3bx^2 - 2ax + 3b = 0$

Sol.
$$x = \frac{\sqrt{a+3b} + \sqrt{a-3b}}{\sqrt{a+3b} - \sqrt{a-3b}}$$

Using componendo and dividendo, we have

$$\frac{x+1}{x-1} = \frac{\sqrt{a+3b}}{\sqrt{a-3b}}$$

Squaring on both sides, we have

$$\frac{x^2 + 2x + 1}{x^2 - 2x + 1} = \frac{a + 3b}{a - 3b}$$

Again using componendo and dividendo, we have

$$\frac{x^2 + 1}{2x} = \frac{a}{3b} \implies 3bx^2 + 3b = 2ax$$
$$\implies 3bx^2 - 2ax + 3b = 0.$$
 Proved.

7. If
$$p = \frac{4xy}{x+y}$$
, prove that $\frac{p+2x}{p-2x} + \frac{p+2y}{p-2y} = 2$.

Sol.
$$p = \frac{4xy}{x+y} \Rightarrow \frac{p}{2x} = \frac{2y}{x+y}$$
 and $\frac{p}{2y} = \frac{2y}{x+y}$

$$\Rightarrow \frac{p}{2x} = \frac{2y}{x+y}$$

$$\Rightarrow \frac{p+2x}{p-2x} = \frac{x+3y}{y-x} \text{ [Using componendo and dividendo]}$$

And $\frac{p}{2y} = \frac{2y}{x+y}$

$$\Rightarrow \frac{p+2y}{p-2y} = \frac{3x+y}{x-y} \text{ [using componendo and dividendo]}$$

So, $\frac{p+2x}{x-2x} + \frac{p+2y}{p-2y} = \frac{-x-3y+3x+y}{x-y} = \frac{2(x-y)}{x-y} = 2$ **Proved.**
8. If $\frac{\sqrt{x+15} + \sqrt{x-6}}{\sqrt{x+15} - \sqrt{x-6}} = \frac{7}{3}$, find the value of x.
1. $\frac{\sqrt{x+15} + \sqrt{x-6}}{\sqrt{x+15} - \sqrt{x-6}} = \frac{7}{3}$

Using componendo and dividendo, we have

$$\frac{\sqrt{x+15}}{\sqrt{x-6}} = \frac{7+3}{7-3} = \frac{10}{4}$$

Sol.

Squaring on both sides, we get

$$\frac{x+15}{x-6} = \frac{100}{16} \implies 16x + 240 = 100x - 600$$
$$\implies 84x = 840 \implies x = 10.$$

9. Using the properties of proportion, solve for *x*:

$$\frac{\sqrt{6x} + \sqrt{3x + 7}}{\sqrt{6x} - \sqrt{3x + 7}} = 11.$$

Sol. $\frac{\sqrt{6x} + \sqrt{3x + 7}}{\sqrt{6x} - \sqrt{3x + 7}} = 11$

Using componendo and dividendo, we have,

$$\frac{\sqrt{6x}}{\sqrt{3x+7}} = \frac{11+1}{11-1} = \frac{12}{10} \,.$$

Squaring on both sides, we get

$$\frac{6x}{3x+7} = \frac{144}{100} \implies 600x = 432x + 1008 \implies 168x = 1008 \implies x = 6.$$