

# UIŇ 2011

SINGLE CORRECT CHOICE TYPE

Each of these questions has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct.

- The dissociation constants of a weak acid HA and weak 1. base BOH are 2  $\times 10^{-5}$  and 5  $\times 10^{-6}$  respectively. The equilibrium constant for the neutralization reaction of the two is :
  - (b)  $1.0 \times 10^{-10}$ (a)  $1.0 \times 10^{-4}$
  - (c)  $2.5 \times 10^{-1}$ (d)  $1.0 \times 10^4$
- At certain temperature  $K_w$  for water  $4.0 \times 10^{-14}$ . Which of 2. the following is wrong for pure water at this temperature?
  - (a) pH = 6.699; water is acidic
  - (b) pH = 6.699; water is neutral
  - (c) pOH = 6.699; water is neutral
  - (d) pH + pOH = 13.398; water is neutral
- If the equilibrium constant of BOH  $\implies$  B<sup>+</sup> + OH<sup>-</sup> at 25°C 3. is  $2.5 \times 10^{-6}$ , then equilibrium constant for BOH +  $H_3^+O \implies B^+ + 2H_2O$  at the same temperature is :

(a)  $4.0 \times 10^{-9}$ (b)  $2.5 \times 10^8$ 

- (c)  $4.0 \times 10^9$ (d)  $2.5 \times 10^{-8}$
- The degree of dissociation of 1.0 M weak acid, HA, is 4. 0.5%. If 2 ml of 1.0 M HA solution is diluted to 32 ml, the degree of dissociation of the acid and H<sub>3</sub>O<sup>+</sup> ion concentration in the resulting solution will be respectively:
  - 0.02 and  $3.125 \times 10^{-4}$ (a)
  - (b) 0.02 and  $1.25 \times 10^{-3}$
  - (c)  $1.25 \times 10^{-3}$  and 0.02
  - (d) 0.02 and  $8.0 \times 10^{-12}$
- Ionization constants of a weak acid HA and weak base 5. BOH are  $3.0 \times 10^{-7}$  each at 298 K. The percent degree of hydrolysis of their salt at the dilution of 10 L is :
  - (a) 40 (b) 50 (d) 25
  - (c) 75

**A** 

- 6. pH of a solution obtained on mixing 50 ml of 0.1 M NaCN and 50 ml of 0.2 M HCl will be ( $p^{Ka}$  for HCN = 9.40) (a) 1.30 (b) 1.00 (c) 9.40 (d) 9.10 7. Which of the following increasing order of pH of 0.1 M solution of the compounds (A)  $HCOONH_4$ , (B) CH<sub>3</sub>COONH<sub>4</sub>, (C) CH<sub>3</sub>COONa and (D) NH<sub>4</sub>Cl is correct? (a) A < D < B < C(b)  $D \le A \le C \le B$ (d)  $D \le A \le B \le C$ (c) A < D < C < B8. The pH of a weak mono acid base at 80% neutralization with a strong acid in a dilute solution is 7.40. The ionization constant of the base is : (a)  $1.0 \times 10^{-6}$ (b)  $1.6 \times 10^{-7}$ (c)  $1.0 \times 10^{-5}$ (d) none of these pH of a solution containing 0.3 MHA and 0.1  $MA^-(K_h$  for 9.  $A^{-} = 1.0 \times 10^{-5}$ ) is : (a)  $5 + \log 3$ (b)  $5 - \log 3$ (c)  $9 + \log 3$ (d)  $9 - \log 3$ The pH at the equivalence point of titration of  $0.2 M \text{ NH}_3$ 10. with 0.2 M HCl is : (p<sup>Kb</sup> of NH<sub>3</sub> = 4.74) (a) 9.72 (b) 9.87 (c) 5.13 (d) 4.98 11. A weak base BOH is titrated with a strong acid HA. When 10 ml of HA is added, the pH is found to be 9.00 and when 25 ml is added, pH is 8.00. The volume of the acid required to reach the equivalence point (a) 35ml (b) 40 ml (c) 30 ml (d) 50 ml 12. pH of 0.5 MBa(CN)<sub>2</sub> solution (pK<sub>b</sub> of CN<sup>-</sup>=9.30) is : (a) 8.35 (b) 3.35
  - (c) 9.35 (d) 9.50

| ManuVour              | 1. abcd  | 2. abcd  | 3. abcd | 4. abcd | 5. abcd  |
|-----------------------|----------|----------|---------|---------|----------|
| Mark Your<br>Response | 6. abcd  | 7. abcd  | 8. abcd | 9. abcd | 10. abcd |
|                       | 11. abcd | 12. abcd |         |         |          |

13. At the isoelectric pH the ion  $H_3 \overset{+}{N} CH_2 COO^-$ , when subjected to electric field, migrates

- (a) toward cathode
- (b) toward anode
- (c) toward both anode and cathode
- (d) in neither direction
- 14. The pH of a solution of a weak base at its half neutralization with a strong acid is 8.  $K_b$  for the base is

(a) 
$$1.0 \times 10^{-8}$$
 (b)  $1.0 \times 10^{-6}$ 

- (c)  $1.0 \times 10^{-4}$  (d) none of these
- 15. On increasing the temperature of pure water
  - (a) Both pH and pOH increase
  - (b) both pH and pOH decrease
  - (c) pH increases and pOH decreases
  - (d) pH decreases and pOH increases
- 16. Solubility of  $CaF_2$  in a solution of 0.1  $MCa(NO_3)_2$  is given by
  - (a)  $[Ca^{2+}]$  (b)  $[F^{-}]$

(c) 
$$\frac{1}{2}[F^-]$$
 (d)  $2[NO_3^-]$ 

- 1.0 ml of dilute solution of NaOH is added to 100 ml of a buffer of pH 4. The pH of the resulting solution
  - (a) becomes 7.0
  - (b) becomes 9.0
  - (c) becomes 3.0

Æn

- (d) remains practically unchanged
- **18.** In which of the following cases pH is greater than 7?
  - (a) 50 ml of 0.1 M HCl + 50 ml of 0.1 M NaCl
  - (b)  $50 \text{ ml of } 0.1 M \text{H}_2 \text{SO}_4 + 50 \text{ ml of } 0.2 M \text{NaOH}$
  - (c)  $50 \text{ ml of } 0.1 M \text{CH}_3 \text{COOH} + 50 \text{ ml of } 0.1 M \text{KOH}$
  - (d)  $50 \text{ ml of } 0.1 M \text{HNO}_3 + 50 \text{ ml of } 0.1 M \text{NH}_3$
- **19.** The solubility product of an electrolyte  $AB_3$  type is  $2.7 \times 10^{-19}$  (mol L<sup>-1</sup>)<sup>4</sup>. The molarity of its saturated solution is
  - (a)  $3.0 \times 10^{-5}$  (b)  $1.0 \times 10^{-5}$

(c) 
$$27^{1/4} \times 10^{-5}$$
 (d)  $3.0 \times 10^{-4}$ 

**20.**  $K_{sp}$  of Mg(OH)<sub>2</sub> is  $4.0 \times 10^{-12}$ . The number of moles of Mg<sup>2+</sup> ions in one litre of its saturated solution in 0.1 *M* NaOH is :

| (a) | $4.0 \times 10^{-10}$ | (b) | $1.0 \times 10^{-4}$ |
|-----|-----------------------|-----|----------------------|
|-----|-----------------------|-----|----------------------|

(c)  $2.0 \times 10^{-6}$  (d)  $8.0 \times 10^{-6}$ 

- **21.**  $K_{sp}$  of M(OH)<sub>2</sub> is  $3.2 \times 10^{-11}$ . The pH of its saturated solution in water is :
  - (a) 10.30 (b) 10.60
  - (c) 3.70 (d) 3.40
- 22. Solubility products of Al(OH)<sub>3</sub> and Zn(OH)<sub>2</sub> are  $2.7 \times 10^{-23}$  and  $3.2 \times 10^{-14}$  respectively. If to a solution of 0.1 *M* each of Al<sup>3+</sup> and Zn<sup>2+</sup> ions, NH<sub>4</sub>OH is added in increasing amounts which of the following will be precipitated first?
  - (a)  $Zn(OH)_2$  (b)  $Al(OH)_3$
  - (c) both of them (d) none of them
- 23. On addition of increasing amount of AgNO<sub>3</sub> to 0.1 *M* each of NaCl and NaBr in a solution, what % of Br<sup>-</sup> ion gets precipitated when Cl<sup>-</sup> ion starts precipitating?  $K_{sp}$  (AgCl) =  $1.0 \times 10^{-10}$ ;  $K_{sp}$  (AgBr) =  $1 \times 10^{-13}$ 
  - (a) 0.1 (b) 0.01
  - (c) 99.9 (d) 99.99
- 24. At certain temperature saturated solution of  $Mg(OH)_2$  has a pH of 8.699.  $K_{sp}$  of  $Mg(OH)_2$  at this temperature is
  - (a)  $8.0 \times 10^{-15}$  (b)  $6.25 \times 16^{-17}$
  - (c)  $4.0 \times 10^{-10}$  (d)  $2.0 \times 10^{-10}$
- 25. The ionization constant of an acid-base indicator (a weak acid) is  $1.0 \times 10^{-6}$ . The ionized form of the indicator is red whereas the unionized form is blue. The pH change required to alter the colour of the indicator from 80% blue to 80% red is:
  - (a) 2.00 (b) 1.40
  - (c) 1.20 (d) 0.80
- 26.  $K_b$  of an acid-base indicator is  $1.0 \times 10^{-9}$ . The pH at which its  $10^{-3}$  M solution shows the colour change
  - (a) 9.0(b) 7.0(c) 5.0(d) 3.0
- 27. Which of the following statements is wrong for glycine ?
  - (a) It behaves as an acid when titrated with a strong base
  - (b) It behaves as a base when titrated with a strong acid
  - (c) Its acidic and basic groups ionize equally at isoelectric pH
  - (d) Its zwitter ion at isoelectric point migrates under the electric field.

| <i>ν</i>              |          |          |          |          |          |
|-----------------------|----------|----------|----------|----------|----------|
| MARYNON               | 13.abcd  | 14.abcd  | 15. abcd | 16. abcd | 17. abcd |
| Mark Your<br>Response | 18.abcd  | 19. abcd | 20. abcd | 21. abcd | 22. abcd |
|                       | 23. abcd | 24. abcd | 25. abcd | 26.abcd  | 27. abcd |

- Mass loss of 1.0000 g of the AgCl ( $K_{sp} = 1.0 \times 10^{-10}$ ) on 28. repeated washing with 10L of water is
  - (Ag = 108; Cl = 35.5)
  - (a)  $1.43 \times 10^{-3}$  g (b)  $1.0 \times 10^{-4}$  g (c)  $1.43 \times 10^{-2}$  g (d) none
- $K_{sp}$  of SrF<sub>2</sub> in water is  $3.2 \times 10^{-11}$ . Molarity of F<sup>-</sup> ions in its 29. saturated solution of 0.1 M NaCl is
  - (a)  $3.2 \times 10^{-9}$ (b)  $2 \times 10^{-4}$
  - (c)  $4 \times 10^{-4}$ (d)  $6.4 \times 10^{-9}$
- 30. In the precipitation of sulphides of second group of basic radicals, H<sub>2</sub>S is passed into the acidified solution with dilute HCl. If the solution is not acidified, then which is the correct statement ?
  - (a) Only the sulphides of second group get precipitated
  - (b) Only the sulphides of fourth group get precipitated
  - (c) Neither of the sulphides of second and fourth groups get precipitated
  - (d) Sulphides of both the groups get precipitated.
- 31. In the precipitation of hydroxides in third group of basic radicals, if NaCl and NaOH are used in place of NH<sub>4</sub>Cl and  $NH_4OH$ , then what happens ?
  - (a) No precipitation of third group hydroxides
  - (b) Only the precipitation of third group hydroxides
  - (c) Precipitation of 3rd group hydroxides along with those of higher groups
  - (d) No precipitation of 3rd group hydroxides but the precipitation of higher group hydroxides.
- 32. On addition of few drops of concentrated HCl to BaCl<sub>2</sub> solution (which is not too dilute), a white precipitate appears. The precipitate is :
  - (a)  $BaSO_4$ (b)  $Ba(OH)_2$
  - (c) Ba(OH)Cl (d) BaCl<sub>2</sub>
- The correct order of increasing solubility of AgCl in (A) 33. water, (B) 0.1 M NaCl, (C) 0.1 M BaCl<sub>2</sub> and (D) 0.1 M NH<sub>3</sub> is :
  - (a) A < B < C < D(b) B < C < A < D(d) C < B < A < D(c) C < B < D < A
- 34. Buffer capacity may be defined as the number of moles of a strong acid or a strong base required to be added to one
  - litre of buffer so as to change the molarity of  $H_3O^+$  ion by a factor of () 100 (1) 10 1/10

| (a) | 100   | (b) 10 or 1/10 |  |
|-----|-------|----------------|--|
| (c) | 1/100 | (d) unity      |  |

Ø

- 35. Which of the following solutions will have pH close to 1.0?
  - (a) 100 ml of 0.1 M HCl + 100 ml of 0.1 M NaOH
  - (b) 55 ml of 0.1 M HCl + 45 ml of 0.1 M NaOH
  - (c) 75 ml of 0.2 M HCl + 25 ml of 0.2 M NaOH
  - (d) 10 ml of 0.1 M HCl + 90 ml of 0.1 M NaOH
- 36. A solution of  $NH_4Cl$  and  $NH_3$  has pH = 8. Which of the following hydroxides may be precipitated when this solution is mixed with equal volume of 0.2 M of metal ion?
  - (a) Mg(OH)<sub>2</sub>  $(K_{sp} = 3.5 \times 10^{-4})$
  - (b)  $Ca(OH)_2 (K_{sp}^{P} = 2.1 \times 10^{-5})$

  - (c) Ba(OH)<sub>2</sub>  $(K_{sp} = 1.1 \times 10^{-4})$ (d) Fe(OH)<sub>2</sub>  $(K_{sp} = 8.1 \times 10^{-16})$
- The pH of a solution containing equimolar amounts of 37.  $CH_2COOH (p^{Ka} = 4.74 \text{ at } 25^{\circ}C)$  and sodium acetate at 50°C is :
  - (a) 4.74 (b) <4.74
  - (c) >4.74 (d) none of these
- 38. pH of Ba(OH)<sub>2</sub> solution is 13. Millimoles of Ba(OH)<sub>2</sub> present in 10 ml of solution would be
  - (a) 1.00 (b) 0.50 (c) 10.00 (d) 15.00
- 39. Which of the following constitutes a set of amphoteric species :
  - (a)  $H_3O^+, H_2PO_4^-, HCO_3^-$
  - (b)  $H_2O$ ,  $HPO_4^{2-}$ ,  $H_2PO_2^{-}$
  - (c)  $H_2O$ ,  $H_2PO_3^-$ ,  $HPO_4^{2-}$
  - (d)  $HC_2O_4^-, H_2PO_4^-, SO_4^{2-}$
- 40. A buffer solution contains 500 ml of 0.2 MCH<sub>3</sub>COONa and 500 ml of 0.1M CH<sub>3</sub>COOH. 1 L of water is added to this buffer. pH before and after dilution :  $(p^{Ka} \text{ of } CH_3 COOH =$ 4.74)
  - (a) 5.04, 3.74 (b) 5.04, 5.04 (c) 5.04, 4.89 (d) 9.56, 9.56
- 41. In order to prepare a buffer of pH 8.26, the amount of  $(NH_{4})_{2}SO_{4}$  required to be mixed with 1L of  $0.1MNH_{3}(p^{Kb})$ = 4.74) is

| (a) | 1.0 mole  | (b) | 10.0 mole |
|-----|-----------|-----|-----------|
| (c) | 0.50 mole | (d) | 5 mole    |

| ManyVour              | 28.abcd  | 29. abcd | 30. abcd | 31. abcd | 32. abcd |
|-----------------------|----------|----------|----------|----------|----------|
| Mark Your<br>Response | 33.abcd  | 34. abcd | 35. abcd | 36. abcd | 37. abcd |
|                       | 38. abcd | 39. abcd | 40. abcd | 41.abcd  |          |

42. Sucrose is hydrolysed into glucose and fructose in presence of  $H_3O^+$  as catalyst

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{[H_3O^+]} C_6H_{12}O_6 + C_6H_{12}O_6$$

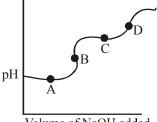
Rate of reaction =  $k [H_3O^+]$  [Sucrose]

The reaction will be fastest in :

(a) 
$$0.2 M HCl$$
 (b)  $0.2 M H_2 SO_4$ 

(c) 
$$0.5 M CH_3 COOH$$
 (d)  $0.5 M H_2 C_2 O_4$ 

**43.** Which of the following will have highest pH ?


| (a) | $0.1 M \text{NH}_4 \text{Br}$       | (b) | $0.1 M (\mathrm{NH}_4)_2 \mathrm{SO}_4$ |
|-----|-------------------------------------|-----|-----------------------------------------|
| (c) | $0.1 M \mathrm{NH}_4 \mathrm{NO}_3$ | (d) | $0.1 M (\mathrm{NH}_4)_3 \mathrm{PO}_4$ |

- **44.** Solution of potash alum is acidic in nature. This is due to hydrolysis of
  - (a)  $SO_4^{2-}$  (b)  $K^+$
  - (c)  $Al_2(SO_4)_3$  (d)  $Al^{3+}$
- **45.**  $K_{sp}$  of Ca(OH)<sub>2</sub> is  $4.0 \times 10^{-6}$ . At what minimum pH, Ca<sup>2+</sup> ions start precipitating in 0.01 *M* CaCl<sub>2</sub>?
  - (a)  $12 \log 2$  (b)  $12 + \log 2$
  - (c)  $2 \log 2$  (d)  $2 + \log 2$
- **46.** One litre of 0.5 *M* NaCl is electrolysed by passing 9650 coulombs of electricity. The pH of resulting solution is :
  - (a) 1.00 (b) 7.00 (c) 13.00 (d) none of these
- 47. Molarity of  $H_3PO_3$  solution is  $1.0 \times 10^{-2}$ . Which of the following is then correct?
  - (a)  $1.0 \times 10^{-2} M = [H_3PO_3] + [H_2PO_3^-] + [HPO_3^{2-}] + [PO_3^{2-}]$

(b) 
$$1.0 \times 10^{-2} M = [H_3 PO_3] + [H_2 PO_3^-] + [HPO_3^{3-}]$$

- (c)  $1.0 \times 10^{-2} M = [\text{H}_2\text{PO}_3^-] + [\text{HPO}_3^{2-}] + [\text{PO}_3^{3-}]$
- (d)  $1.0 \times 10^{-2} M = [H_3 PO_3] + [H_2 PO_3^-] + 2[HPO_3^{2-}]$
- 48. In which of the following, the buffer action ceases to act?
  - (a)  $100 \text{ ml of } 0.1 M \text{CH}_{3}\text{COOH} + 25 \text{ ml of } 0.1 M \text{NaOH}$
  - (b)  $100 \text{ m} \text{ of } 0.1 M \text{ CH}_3\text{COOH} + 50 \text{ m} \text{ of } 0.1 M \text{ NaOH}$
  - (c)  $100 \text{ ml of } 0.1 M \text{CH}_3 \text{COOH} + 80 \text{ ml of } 0.1 M \text{NaOH}$
  - (d)  $100 \text{ ml of } 0.1 M \text{ CH}_3\text{COOH} + 50 \text{ ml of } 0.1 M \text{ NaOH}$

- **49.** On addition of 10 ml of 1.0 *M* HCl, which of the following is no more a buffer solution ?
  - (a) 100 ml containing  $0.2 M \text{ NH}_3$  and  $\text{NH}_4\text{Cl}$  each
  - (b) 100 ml containing of  $0.2 M \text{ NH}_3$  and  $0.1 M \text{ NH}_4 \text{Cl}$
  - (c) 100 ml containing  $0.05 M \text{ NH}_3$  and  $\text{NH}_4\text{Cl}$  each
  - (d) 100 ml containing  $0.15 M \text{ NH}_3$  and  $\text{NH}_4\text{Cl}$  each
- **50.** What can be the maximum possible molarity of  $\text{Co}^{2+}$  ions in 0.1 *M* HCl saturated with H<sub>2</sub>S ( $K_a = 4 \times 10^{-21}$ ), given that  $K_{sp}$  for CoS is  $2 \times 10^{-21}$  and concentration of saturated H<sub>2</sub>S = 0.1 *M* 
  - (a) 1.00 M (b) 0.50 M
  - (c)  $4.48 \times 10^{-11} M$  (d) 0.10 M
- **51.** For the titration of a weak base with strong acid, the pH at the equivalence point is on the acidic side. It is because of
  - (a) slight excess of the acid
  - (b) slight excess of the base
  - (c) cationic hydrolysis of the salt formed
  - (d) anionic hydrolysis of the salt formed
- **52.** In the titration of a monoacid weak base with a strong acid, the pH at half of the equivalence point is
- 53. For the titration of a dibasic weak acid  $H_2A$  $(pK_{a(2)}-pK_{a(1)} \ge 2)$  with a strong base, pH versus volume of the base graph is as shown in the figure.  $pK_{a(1)}$  and  $pK_{a(3)}$  are equal to the pH values corresponding to the points :

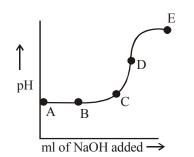


Volume of NaOH added

(a) *B* and *D* respectively (b) *A* and *B* respectively

(c) C and D respectively (d) A and C respectively

54. The solubility of mercurous chloride in water is given by


) 
$$S = K_{sp}$$
 (b)  $S = K_{sp/4}$ 

(c) 
$$S = \left(\frac{K_{sp}}{4}\right)^{1/2}$$
 (d)  $S = \left(\frac{K_{sp}}{4}\right)^{1/3}$ 

| ManyVour              | 42.abcd | 43. abcd | 44. abcd | 45. abcd | 46. abcd |
|-----------------------|---------|----------|----------|----------|----------|
| Mark Your<br>Response | 47.abcd | 48. abcd | 49. abcd | 50. abcd | 51. abcd |
|                       | 52.@b©d | 53. abcd | 54. abcd |          |          |

(a

- **55.** Fear and excitement generally cause one to breather rapidly and it results in the decrease of  $CO_2$  concentration in the blood. In what way will it change the pH of the blood?
  - (a) pH will decrease
  - (b) pH will increase
  - (c) pH will adjust to 7
  - (d) pH willl remain unchanged.
- **56.** The curve in the figure shows the variation of pH during the course of titration of a weak acid, HA, with a strong base (NaOH). At which point in the titration curve is the concentration of the acid equal to that of its conjugate base ?



| (a) | Point D | (b) | Point E |
|-----|---------|-----|---------|
| (c) | Point C | (d) | Point B |

- **57.** 25 ml of a weak acid, HA required 15 ml of 0.1 M NaOH for the end point. During titration, the pH of the acid solution is found to be 5.70 upon the addition of 10 ml of the above alkali. The pK<sub>a</sub> of the weak acid is :
  - (a) 5.40 (b) 6.30
  - (c) 5.60 (d) 5.70
- **58.** At 25°C the pH of 0.01 M KOH is 12. If the temperature of this solution is raised to 50°C without changing the volume, which of the following is correct?
  - (a) Both pH and pOH will remain constant
  - (b) pH will decrease while pOH willl remain constant
  - (c) pH will increase while pOH will remain constant
  - (d) pH will increase while pOH will decrease.
- **59.** Which of the following molar ratio of  $NH_3$  and HCl in aqueous solution will constitute a buffer ?

| (a) | 1:2 | (b) | 1:3 |  |
|-----|-----|-----|-----|--|
| (c) | 1:1 | (d) | 2:1 |  |

μ'n

60. What will be the volumes of  $1 M \text{NH}_3$  and 1 M HCl required to prepare 300 ml of a buffer of pH = 9.26

 $(pK_a = 9.26 \text{ for } NH_4^+)$ 

| (a) | 150.0 ml, 150 ml | (b) | 100 ml, 200 ml |
|-----|------------------|-----|----------------|
| (c) | 200 ml, 100 ml   | (d) | 225 ml, 75 ml  |

- 61. At 25°C, the ionization constants of  $CH_3COOH$  and  $NH_3$  are almost equal. The pH of a solution of 0.01 M CH<sub>3</sub>COOH is 4.0 at 25°C. The pOH of 0.01 M NH<sub>4</sub>OH at the same temperature will be :
  - (a) 3.0 (b) 4.0 (c) 10.0 (d) 10.5

62. Which is the decreasing order of strength of the bases

OH<sup>-</sup>, NH<sub>2</sub><sup>-</sup>, H - C  $\equiv$  C<sup>-</sup> and CH<sub>3</sub>CH<sub>2</sub><sup>-</sup>?

- (a)  $CH_3CH_2^- > NH_2^- > H C \equiv C^- < OH^-$
- (b)  $H C \equiv C^{-} > CH_{3}CH_{2}^{-} > NH_{2}^{-} > OH^{-}$
- (c)  $OH^- > NH_2^- > H C \equiv C^- > CH_3CH_2^-$
- (d)  $NH_2^- > H C \equiv C^- > OH^- > CH_3CH_2^-$
- 63. Which of the following processes represents hydrolysis ?
  - (a)  $H_2PO_4^- + H_2O \longrightarrow HPO_4^{2-} + H_3O^+$
  - (b)  $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$
  - (c)  $C_6H_5NH_3^+ + H_2O \longrightarrow C_6H_5NH_2 + H_3O^+$
  - (d)  $HCO_3^- + H_2O \longrightarrow CO_3^{2-} + H_3O^+$
- 64. Calculate the pH of a solution obtained by mixing 2 ml of HCl of pH 2 and 3 ml of solution of KOH of pH = 12
  - (a) 10.30 (b) 3.70 (c) 11.30 (d) None of these

**65.** In the titration of 50 ml of  $0.1M \beta$  -hydroxybutric acid

- $HC_4H_7O_3$  with 0.2 *M* NaOH, the pH after the addion of 20 ml of NaOH is (pK<sub>a</sub>=4.39)
  - (a) 3.99 (b) 4.99 (c) 4.57 (d) 4.80

| ManyVoun              | 55.@bcd | 56. abcd | 57. abcd | 58. abcd | 59. abcd |
|-----------------------|---------|----------|----------|----------|----------|
| Mark Your<br>Response | 60.abcd | 61.abcd  | 62. abcd | 63. abcd | 64. abcd |
|                       | 65.@bcd |          |          |          |          |

66. The pH of blood is 7.4. If the buffer in blood is  $CO_2$  and 71.  $HCO_3^-$ , calculate the ratio of conjugate base to acid  $(H_2CO_3)$  to maintain the pH of the blood. Given  $K_1$  of  $H_2CO_3 = 4.5 \times 10^{-7}$ (a) 8.5 (b) 10.0 72. (c) 11.25 (d) none of these 67. pH of two solutions : 50 ml of 0.2 M HCl + 50 ml of 0.2 M HA I.  $(K_a = 1.0 \times 10^{-5})$  and 50 ml of 0.2 *M* HCl + 50 ml of 0.2 *M* NaA will be II. 73. respectively 0.70 and 2.85 (b) 1 and 2.85 (a) (c) 1 and 3 (d) 3 and 1 68. Methylamine in water has a weak basic property. This is explained by the equilibrium  $CH_3NH_3OH \implies CH_3NH_3^+ + OH^-$ (a) 74.  $CH_3NH_2 + 2H_2O \implies CH_3NH_2OH^- + H_3O^+$ (b)  $CH_3NH_2 + H_2O \implies CH_3NH_3^+ + OH^-$ (c) (d) none of these 69. In which of the following cases, [H<sub>2</sub>O] can not be omitted? 75.  $CH_3COOC_2H_5(0.1M) + H_2O$ (a)  $\implies$  CH<sub>3</sub>COOH + C<sub>2</sub>H<sub>5</sub>OH  $CH_3COOH(0.2M) + H_2O$ (b)  $\longrightarrow$  CH<sub>3</sub>COO<sup>-</sup> + H<sub>3</sub>O<sup>+</sup>  $CH_{3}COOC_{2}H_{5}(0.2mol) + H_{2}O(0.3mol)$ (c)

 $\stackrel{(0)}{\longleftarrow} CH_3COOH + C_2H_5OH$ 

(d) 
$$\operatorname{NH}_4^+(0.2M) + \operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{NH}_3^+ + \operatorname{H}_3\operatorname{O}^+$$

 Calculate the pH of a solution containing 0.1 mol of CH<sub>3</sub>COOH, 0.2 mol of CH<sub>3</sub>COONa and 0.05 mol of

NaOH in 1L ( $pK_a$  for CH<sub>3</sub>COOH = 4.74)

- (a) 4.74 (b) 5.04
- (c) 5.44 (d) 5.20
- ¢n—

- 71. To 1L solution containing 0.1 mol each of  $NH_3$  and  $NH_4Cl$ , 0.05 mol of NaOH is added. The change in pH will be (pK<sub>b</sub> for  $NH_3 = 4.74$ ) (a) -0.48 (b) 0.48
  - (a) -0.48 (b) 0.48(c) 0.30 (d) -0.30
- 72. The base imidazole has  $K_b$  of  $1.0 \times 10^{-7}$ . What volumes of 0.02 *M* HCl and 0.02 *M* imidazole should be mixed to make 150 mL of a buffer of pH 7 ?
  - (a) 100 mL and 50 mL (b) 50 mL and 100 mL
  - (c) 75 mL and 75 mL (d) 60 mL and 90 mL
- 73. Which of the following, when mixed, will give a solution with pH > 7?
  - (a) 100 ml 0.1 M HCl + 100 ml 0.1 M KCl
  - (b)  $100 \text{ ml } 0.1 M \text{ H}_2 \text{SO}_4 + 100 \text{ ml } 0.1 M \text{NaOH}$
  - (c)  $100 \text{ ml } 0.1 M \text{CH}_3 \text{COOH} + 100 \text{ ml } 0.1 M \text{KOH}$
  - (d)  $50 \text{ ml } 0.1 M \text{HCl} + 50 \text{ ml } 0.1 M \text{CH}_3 \text{COONa}$
- 74. What is OH<sup>-</sup> ion concentration is 0.01 *M* solution of aniline hydrochloride ( $K_h$  for aniline =  $4 \times 10^{-10}$ )?
  - (a)  $2 \times 10^{-11} M$  (b)  $2 \times 10^{-10} M$
  - (c)  $5 \times 10^{-4} M$  (d)  $5 \times 10^{-5} M$
- 75. In the titration of 100 ml of  $0.01 M \text{ NH}_3$  with 0.1 M HCl, at the stages of addition of 5, 10 and 11 ml of acid solution, the pH values are 9.26, 5.62 and 3 respectively. The reaction

 $NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+$  is expected to occur at

- (a) half neutralization point
- (b) equivalence point
- (c) beyond the equivalence point
- (d) isoelectric point

76. In the titrations of

- I. C<sub>6</sub>H<sub>5</sub>SO<sub>3</sub>H with KOH solution
- II. Pyridine with HCl solution
- III. Propanoic acid with NaOH solution,
- the equivalence points would be respectively
- (a) acidic, neutral, basic (b) neutral, acidic, basic
- (c) all acidic (d) all basic

| MenyVour              | 66. abcd | 67. abcd | 68. abcd | 69. abcd | 70. abcd |
|-----------------------|----------|----------|----------|----------|----------|
| Mark Your<br>Response | 71.abcd  | 72. abcd | 73. abcd | 74. abcd | 75. abcd |
|                       | 76.@bcd  |          |          |          |          |

- 77. What concentration of NH<sub>3</sub> must be present which just prevents the precipitation of AgCl in 0.004 M Ag<sup>+</sup> and 0.001 *M* Cl<sup>-</sup>? Given  $K_{sp}$  of AgCl =  $1.0 \times 10^{-10}$ ,  $K_d$  for  $Ag(NH_3)_2^+ = 1.0 \times 10^{-8}$ (a) 0.01 M(b) 0.002*M* (c) 0.02 M(d) 0.1 M The solubility of AgSCN in 0.002 M NH<sub>3</sub> is  $(K_{sp}$  for 78. AgSCN =  $1.0 \times 10^{-12}$ ;  $K_d$  for Ag(NH<sub>3</sub>)<sup>+</sup><sub>2</sub> =  $1.0 \times 10^{-8}$ ) (a)  $3 \times 10^{-5} M$ (b)  $4 \times 10^{-4} M$ (c)  $4 \times 10^{-5} M$ (d)  $2 \times 10^{-5} M$
- **79.** Which of the following is false ?
  - (a)  $0.1 M \text{Fe}^{2+} + 0.1 M \text{NH}_3 \longrightarrow \text{Precipitation of}$ Fe(OH)<sub>2</sub>
  - (b)  $0.1 M \text{Mg}^{2+} + 0.1 M \text{NH}_3 + 0.1 M \text{NH}_4^+ \longrightarrow \text{No}$ precipitation of Mg(OH)<sub>2</sub>
  - (c)  $0.01 M \text{Ag}^+ + 0.1 M \text{NH}_3 \longrightarrow \text{Precipitation of}$ AgOH
  - (d)  $0.01 M \text{Ag}^+ + 0.1 M \text{NH}_3 \longrightarrow \text{No precipitation of}$ AgOH

80. Calculate the dissociation constant of the monocomplex of  $M^{3+}$  and  $SCN^-$ . Given that total metal concentration  $= 2 \times 10^{-3} M$ , total  $SCN^-$  concentration  $= 1.51 \times 10^{-3} M$ and free  $SCN^-$  concentration  $= 1.0 \times 10^{-5} M$ .

- (a)  $2.0 \times 10^5$  (b)  $2.0 \times 10^{-5}$
- (c)  $3.0 \times 10^5$  (d)  $3.3 \times 10^{-6}$

81. Minimum moles of NH<sub>3</sub> required to be added to 1L solution so as to dissolve 0.1 mol of AgCl  $(K_{sp} = 1.0 \times 10^{-10})$  by the reaction :

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_3^+] + Cl^-;$$

 $K_f$  for Ag(NH<sub>3</sub>)<sup>+</sup><sub>2</sub> = 1.0×10<sup>8</sup>

(a) 0.5 mol (b) 1.0 mol (c) 1.1 mol (d) 1.2 mol

- 82. Calculate Ag<sup>+</sup> ion concentration in a solution containing 0.02 mol of AgNO<sub>3</sub> and 0.14 mol of NH<sub>3</sub> in 1 L ( $K_d$  for Ag(NH<sub>3</sub>)<sup>+</sup><sub>2</sub> = 1.0×10<sup>-8</sup>
  - (a)  $2 \times 10^{-7} M$  (b)  $1.0 \times 10^{-8} M$
  - (c)  $2 \times 10^{-8} M$  (d)  $2 \times 10^{-9} M$
- 83. The increasing order of  $Ag^+$  ion concentration in
  - I. Saturated solution of AgCl
  - II. Saturated solution of AgI
  - III.  $1 M \text{Ag}(\text{NH}_3)_2^+ \text{ in } 0.1 M \text{NH}_3$
  - IV.  $1 M \operatorname{Ag}(\operatorname{CN})_2^-$  in 0.1 *M*KCN

Given:

- $K_{sp} \text{ of } AgCl = 1.0 \times 10^{-10},$   $K_{sp} \text{ of } AgI = 1.0 \times 10^{-16},$   $K_{d} \text{ of } Ag(NH_{3})_{2}^{+} = 1.0 \times 10^{-8}$   $K_{d} \text{ of } Ag(CN)_{2}^{-} = 1.0 \times 10^{-21}$ (a) I < II < III < IV (b) IV < III < II < II < II (c) IV < II < III < II (d) IV < III < I < III | III < III < III | III < III | III < III < III | III < III < III < III < III | III < III
- 84. If 50 ml of 0.2 M NaCN is mixed with 50 ml of 0.2 M HCl,
  - then  $(K_b \text{ for } \text{CN}^- = 2 \times 10^{-5})$
  - (a)  $[CN^{-}] = 0.1 M$
  - (b)  $[H_3O^+] = 0.1 M$
  - (c) HCN = 0.1 M
  - (d)  $[H_3O^+] = [CN^-] = 7 \times 10^{-6} M$
- 85. An acid-base indicator HIn in a buffer of  $pH = pK_{in} 1$  is ionized to the extent of
  - (a) 90.9% (b) 9.1%
  - (c) 10% (d) 90%
- 86. An acid-base indicator of  $pK_a = 4$  will be suitable for the titration
  - (a) HCl with  $NH_3$
  - (b)  $CH_3COOH$  with  $NH_3$
  - (c) CH<sub>3</sub>COOH with NaOH
  - (d) HCl with KOH

| Mark Your | 77.@bcd  | 78. abcd | 79. abcd | 80. abcd | 81. abcd |
|-----------|----------|----------|----------|----------|----------|
| Response  | 82. abcd | 83. abcd | 84. abcd | 85. abcd | 86. abcd |

- 87. 100 mL of 1.0 *M* solution of a monobasic aicd  $(pK_a = 5)$  is titrated against Ca  $(OH)_2$  solution. At equivalence point the pH of solution is
  - (a) 7 (b) 6
  - (c) 4.5 (d) 9.5
- **88.** If the pH value of 0.1 *M* HCN is 5.2, then its  $K_a$  value is

- (c)  $3.97 \times 10^{-10}$  (d)  $6.3 \times 10^{-10}$
- 89. The number of  $H^+$  ions in 1 cc of a solution, having pH = 13, is
  - (a)  $6.023 \times 10^7$  (b)  $6.023 \times 10^{13}$
  - (c)  $1 \times 10^{16}$  (d)  $1 \times 10^{-13}$
- **90.** This reaction given below represents a titration reaction at equilibrium, when a strong monoacid base (BOH) is titrated against a monobasic asid.

 $B^+ + 2H_2O \implies BOH + H_3O^+$ 

- (a) at the start of titration
- (b) before the equivalence point
- (c) at the equivalence point

(An

В

- (d) after the equivalence point
- **91.** The dissocation constant of a weak acid is  $1.0 \times 10^{-4}$ . The equilibrium constant for its reaction with a strong base is
  - (a)  $1.0 \times 10^{-4}$  (b)  $1.0 \times 10^{-10}$
  - (c)  $1.0 \times 10^{10}$  (d)  $1.0 \times 10^{-14}$

- **92.** The degree of dissociation of acetic acid in an aqueous solution of the acid is practically unaffected
  - (a) by adding a pinch of NaCl
  - (b) by adding a drop of HCl
  - (c) by adding water
  - (d) by raising the temperature
- **93.** According to Pearson, a hard base is one whose donor atom has
  - (a) low electronegativity, low polarizability and which is difficult to oxidise
  - (b) high electronegativity, high polarisability and easy to oxidise.
  - (c) high electronegativity, low polarisability and difficult to oxidise
  - (d) low electronegativity, high polarisability and difficult to oxidise.
- **94.** Which of the following is a soft acid according to Pearson's concept of hard and soft acids?
  - (a)  $Ag^+$  (b)  $I^{7+}$ (c)  $Sr^{2+}$  (d)  $Al^{3+}$
- **95.** Which of the following is not a hard base according to Pearson's concept of hard and soft bases?
  - (a) F<sup>-</sup> (b) I<sup>-</sup>
  - (c)  $NO_3^-$  (d)  $O^{2-}$

| Mark Your | 87.abcd | 88.abcd  | 89. abcd | 90. abcd | 91. abcd |
|-----------|---------|----------|----------|----------|----------|
| Response  | 92.abcd | 93. abcd | 94. abcd | 95. abcd |          |

### COMPREHENSION TYPE

This section contains groups of questions. Each group is followed by some multiple choice questions based on a paragraph. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct.

### PASSAGE-1

Acid-base indicator such as methyl-orange, phenolphthalein and bromothymol blue are substances which change colour according to the hydrogen ion concentration of solution to which they are added.

Most indicators are weak acids (or more rarely weak bases) in which the undissociated and dissociated forms have different and distinct colours. If methyl-orange is used as an example and the undissociated form is written as HMe, then dissociation occurs as shown below :

**Reaction I:** HMe 
$$\longrightarrow$$
 H<sup>+</sup>  $H^+$  He<sup>-</sup> Yellow

The indicator should have a sharp colour change at the equivalence point of the titration. Usually, the colour change of the indicator occurs over a range of about two pH units. It should be noted that the eye cannot detect the exact end point of the titration. The  $pK_a$  of the indicator should be near the pH of the solution at the equivalence point.

- 1. What factor must the hydrogen ion concentration change at the equivalence point for the indicator in solution to change colour?
  - (a) 2 (b) 10 (c) 100 (d) 200
- 2. Which of the following situation exists at the equivalence point of a titration?

(a) 
$$[H^+] = 10^{-7} M$$
 (b)  $[H^+] = [OH^-]$ 

(c) 
$$[OH^{-}] = 10^{-7} M$$
 (d)  $\frac{[H^{+}]}{[OH^{-}]} = 10^{-14}$ 

**3.** Titration between equimolar concentration of hydrochloric acid and sodium hydroxide has an equivalence point with a pH of 7. Given the following information, which indicator is most suitable for detecting the end point of this titration?

| Indicator              | K <sub>a</sub>        |
|------------------------|-----------------------|
| Bromothymol blue       | $3.16 \times 10^{-7}$ |
| Cresol red             | 7.00×10 <sup>-9</sup> |
| Bromophenol<br>blue    | 1.58×10 <sup>-4</sup> |
| <i>p</i> -Xylenol blue | 1.10×10 <sup>-2</sup> |

- (a) Bromothymol blue (b) Cresol red
- (c) Bromophenol blue (d) p-Xylenol blue
- 4. Given that the  $K_a$  (methyl-orange) =  $4.0 \times 10^{-4}$ , a solution of pH = 2 containing the indicator would be :
  - (a) orange(b) yellow(c) colourless(d) red
- 5. When indicators are used, what can be done to minimize their interfering with the titration?
  - (a) Only add a few drops of the indicator
  - (b) Add excess of the titrant to negate its effect
  - (c) Add excess of the solution to be titrated to negate its effect
  - (d) Only use indicators with large  $K_a$  values

(An

### PASSAGE-2

#### pH of mixture of acids and bases : In a mixture of strong acid and

a strong base, concentration of  $\mathrm{H}^+$  ions or  $\mathrm{OH}^-$  ions can be calculated as

$$[H^+] \text{ or } [OH^-] = \frac{\text{m eqvts of strong acid} \sim \text{m eqvts of strong base}}{\text{Total volume(ml) of mixture}}$$

At the equivalence point of titration of a strong acid with a strong base, pH = 7 at 25°C. The salt formed does not hydrolyse.

In case of weak acid with a strong base, before the equivalence point pH is calculated using the concept of acid buffer i.e., by using Henderson's equation. At the equivalence point, pH is calculated taking into consideration of salt hydrolysis.

$$pH = \frac{1}{2}(pK_w + pK_a + \log C)$$

Where  $K_a$  is the dissociation constant of the acid and C mol L<sup>-1</sup> is the concentration of the salt formed, more correctly the concentration of the anion of the salt.

Beyond the equivalence point, there is an excess of base which mainly determines the pH.

In case of weak base with strong acid, before the equivalence point, buffer concept is used. At the equivalence point salt hydrolysis is taken into consideration.

$$pH = \frac{1}{2}(pK_w - pK_b - \log C)$$

Where  $K_b =$  dissociation constant of weak base and C mol L<sup>-1</sup> is the concentration of the salt, more correctly that of the cation of the salt.

In case of titration of weak acid with a weak base, at the equivalence point pH is calculated considering the salt hydrolysis.

$$pH = \frac{1}{2}(pK_w + pK_a - pK_b)$$

- 6. 100ml of 0.1*M* HCl is titrated with 0.1 *M* NaOH. The pH of the reaction mixture after the addition of 50ml, 100ml and 150ml are respectively
  - (a) 1.3,7.0,9.23 (b) 1.48,7.0,12.3 (c) 1.48,7.0,1.7 (d) 7.0,1.3,12.3
- 7. 100 ml of 0.1 *M* monoacid weak base *B* ( $K_b = 2 \times 10^{-5}$ ) is titrated with 0.1 *M* HCl. pH of the reaction mixture at the titre value of 50ml and 100ml are respectively

| (a) | 9.3, 9.3 | (b) | 9.3, 6.6 |
|-----|----------|-----|----------|
| (c) | 9.3, 5.3 | (d) | 4.7, 6.6 |

| Mark Your | 1. abcd | 2. abcd | 3. abcd | 4. abcd | 5. abcd |
|-----------|---------|---------|---------|---------|---------|
| Response  | 6. abcd | 7. abcd |         |         |         |

8. 50 ml of 0.1 *M* HCOOH ( $K_a = 1.8 \times 10^{-4}$ ) is titrated with 0.1 *M* NH<sub>3</sub> ( $K_b = 1.8 \times 10^{-5}$ ). pH at the equivalence point will be

| 1   |     |     |     |
|-----|-----|-----|-----|
| (a) | 7.0 | (b) | 6.5 |
| (c) | 7.5 | (d) | 5.5 |

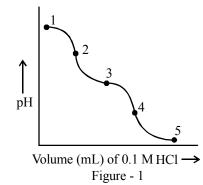
9. Ionic product of water at  $80^{\circ}$ C is  $4 \times 10^{-14}$ . pH at the equivalence point of titration of 20 ml of 0.1 *M* HCl with 0.1 *M* NaOH at  $80^{\circ}$ C is

| (a) | 7.0 | (b) | 7.3           |
|-----|-----|-----|---------------|
| (c) | 6.7 | (d) | None of these |

10. When 50 ml of 0.2M HA ( $K_a = 1.0 \times 10^{-5}$ ) is mixed with 50ml of 0.2M KOH at 25°C, the pH of the resulting mixture would be

| (a) | 9.0  | (b) | 9.15 |
|-----|------|-----|------|
| (c) | 8.50 | (d) | 8.2  |

### PASSAGE-3


The titration cure for a 0.100 M solution of the weak base piperazine with 0.200 M HCl is depicted in the Fig.-1. If the most basic form of piperazine is represented as B, then acid constants for the species

 $BH^{+}(aq)$  and  $BH_{2}^{+}(aq)$  are given as follows :

$$BH_2^{2+}(aq) \implies BH^+(aq) + H^+(aq)$$
  
 $K_1 = 4.65 \times 10^{-6}$ 

$$BH^+(aq) \implies B_{(aq)} + H^+(aq)$$

 $K_2 = 1.86 \times 10^{-10}$ 



| 11. | At which the numbered points on the titration curve wou |                                        |  |  |  |
|-----|---------------------------------------------------------|----------------------------------------|--|--|--|
|     | the species $BH^+(aq)$                                  | and $BH_2^{2+}(aq)$ be found in almost |  |  |  |
|     | equal quantities?                                       |                                        |  |  |  |
|     | (a) Point 2                                             | (b) Point 3                            |  |  |  |
|     | (c) Point 4                                             | (d) Point 5                            |  |  |  |

- 12. If the original volume of 0.100 M B solution was 20mL, what is the approximate volume of acid that has been added at point 2?
  - (a) 5 mL (b) 10 mL (c) 15 mL (d) 20 mL
- **13.** What is the approximate pH at point 4 on the titration curve?
  - (a) 3 (b) 7 (c) 10 (d) 13
- 14. What is the predominant pH determining reaction in the titration flask before any HCl is added?
  - (a)  $BH_2^+(aq) \Longrightarrow BH^+(aq)^+ H^+(aq)$
  - (b)  $BH^+(aq) \rightleftharpoons B(aq) + H^+(aq)$
  - (c)  $B_{(aq)} + H_2O_{(l)} \Longrightarrow BH^+_{(aq)} + OH^-_{(aq)}$
  - (d)  $BH^+(aq) + OH^-(aq) \Longrightarrow B_{(aq)} + H_2O_{(l)}$

### **PASSAGE-4**

We know that sparingly soluble substance (e.g. AgCl,  $BaSO_4$ ,  $PbSO_4$  etc.) are only slightly soluble in water and thus in aqueous solution only this small amount of sparingly soluble substance remains completely ionised. Since no more of substance can be dissolved in solution at this temperature so it is a saturated solution.

The  $K_{sp}$  of sparingly soluble salt is equal to the product of ionic concentrations in a saturated solution at the specified temperature, each raised to appropriate powers.

For precipitation it is essential that the product of ionic concentrations is more than  $K_{sp}$ .

15. At 25°C the solubility of calcium phosphate (molecular weight = M) was found to be w g/100 ml. The  $K_{sp}$  for calcuim phosphate at 25°C is approximately.

(a) 
$$10^2 \left(\frac{w}{M}\right)^5$$
 (b)  $10^4 \left(\frac{w}{M}\right)^5$ 

(c) 
$$10^7 \left(\frac{w}{M}\right)^5$$
 (d)  $10^9 \left(\frac{w}{M}\right)^5$ 

| MARK YOUR | 8. abcd | 9. abcd  | 10. abcd | 11. abcd | 12. abcd |
|-----------|---------|----------|----------|----------|----------|
| Response  | 13.abcd | 14. abcd | 15. abcd |          |          |

16. The solubility product  $(K_{SP})$  of a sparingly soluble salt MX at 25°C is 2.5 ×10<sup>-9</sup>. The solubility of salt (in mol L<sup>-1</sup>) at 25°C is

| (a) | $1 \times 10^{-14}$   | (b) $5.0 \times 10^{-8}$ |
|-----|-----------------------|--------------------------|
| (c) | $1.25 \times 10^{-9}$ | (d) $5.0 \times 10^{-5}$ |

17. The  $K_{SP}$  of AgCl is  $4.0 \times 10^{-10}$  at 298K. The solubility of AgCl in 0.04 *M* CaCl<sub>2</sub> will be

| (a) $2.0 \times$ | 10 <sup>-5</sup> m | (b) | $10 \times 10^{-4}$ m |
|------------------|--------------------|-----|-----------------------|
|------------------|--------------------|-----|-----------------------|

| (c) 5.0 | $10^{-9}$ m | (d) | $2.2 \times 10^{-4}$ m |
|---------|-------------|-----|------------------------|
|---------|-------------|-----|------------------------|

### PASSAGE-5

Henderson's equation can be used to calculate the pH values of buffer mixtures.

For an acidic buffer;

$$pH = pK_a + \log \frac{[Salt]}{[acid]}$$

For a basic buffer

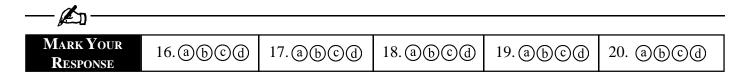
$$pOH = pK_b + log \frac{[Salt]}{[base]}$$

**18.** What will be the pH of a solution containing 0.05 M sodium acetate and 0.1 M acetic acid?

| [pK <sub>a</sub> | for acetic acid = $4.7$ | 73] |      |
|------------------|-------------------------|-----|------|
| (a) 4            | 4.0                     | (b) | 4.43 |

| (c) 5.0 (d | l) 4.73 |
|------------|---------|
|------------|---------|

**19.** What will be the pH of a buffer solution containing 0.20 M NH<sub>4</sub>OH and 0.25 M NH<sub>4</sub> Cl per litre?


| [Given : $K_b$ for NH <sub>2</sub> | $_4\text{OH} = 1.80 \times 10^{-5}$ ] |
|------------------------------------|---------------------------------------|
| (a) 7.0                            | (b) 8.0                               |

| ` ' |      | ( ) |       |
|-----|------|-----|-------|
| (c) | 9.16 | (d) | 10.32 |

**20.** The  $pK_a$  of a weak acid is 4. What should be the [salt] to [acid] ratio, if we have to prepare a buffer with pH equal to 5 using this acid and one of its salt ?

| (a) 1:10 ( | (b) | 10:1 |
|------------|-----|------|
|------------|-----|------|

| (c) $5:4$ (d) 4 | 1:5 |
|-----------------|-----|
|-----------------|-----|



| <ul> <li>REASONING TYPE</li> <li>In the following questions two Statement-1 (Assertion) and Statement-2 (Reason) are provided. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct. Mark your responses from the following options:         <ul> <li>(a) Both Statement-1 and Statement-2 are true and Statement-2 is the correct explanation of Statement-1.</li> <li>(b) Both Statement-1 and Statement-2 are true and Statement-2 is not the correct explanation of Statement-1.</li> <li>(c) Statement-1 is true but Statement-2 is false.</li> <li>(d) Statement-1 is false but Statement-2 is true.</li> </ul> </li> </ul> |                       |                                                                                                                    |                                                |    |             |                                          |                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----|-------------|------------------------------------------|-------------------------------------------------------------------------------|
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Statement-1 :         | In the third group of $NH_4Cl$ is added to NH                                                                      |                                                |    | Statement-2 | : The ionisation of a by the addition of | acetic acid is suppressed                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Statement-2 :         | This is to convert the their respective chlor                                                                      | e ions of group into                           | 4. | Statement-1 | •                                        | solution changes with                                                         |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Statement-1 :         | The pK <sub>a</sub> of a weak ac pH of the solution at                                                             |                                                |    | Statement-2 | • •                                      | anges with change in                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Statement-2 :         | titration.<br>The molar concent                                                                                    | -                                              | 5. | Statement-1 |                                          | solution of a weak acid<br>lt acts as a good buffer.                          |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Statement-1 :         | acceptor and proton of<br>at the midpoint of titra<br>The pH of the aq. so<br>remains unchanged<br>sodium acetate. | ation of a weak acid.<br>lution of acetic acid |    | Statement-2 | not change sub-                          | acid in the mixture does<br>stantially when small<br>or alkalies are added to |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - ¢                   |                                                                                                                    |                                                |    |             |                                          |                                                                               |
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mark Your<br>Response | 1. abcd                                                                                                            | 2. abcd                                        | 3. | abcd        | 4. abcd                                  | 5. abcd                                                                       |

| 6. | Statement-1 | : According to the principle of common ion affect, the solubility of $HgI_2$ is expected to be less in an aq. solution of KI than in water. But $HgI_2$ dissolves in an aq. solution of KI to form a clear solution. | 10. | Statement-2<br>Statement-1 | <ul> <li>At half equivalence point, it forms an acidic<br/>buffer and the buffer capacity is maximum<br/>where [acid] = [salt]</li> <li>Strong acids, like perchloric acid, hydro-<br/>chloric acid, nitric acid and sulphuric acid</li> </ul> |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Statement-2 | : Iodide ion, $I^-$ , is highly polarisable.                                                                                                                                                                         |     |                            | have equal strengths in aqueous solutions<br>but are not equally strong when acetic acid                                                                                                                                                       |
| 7. | Statement-1 | : The solubility of AgCl in water decreases if NaCl is added to it.                                                                                                                                                  |     |                            | is used as a solvent. In acetic acid the or-<br>der of strength is $HClO_4 > HBr > H_2SO_4 >$                                                                                                                                                  |
|    | Statement-2 | : NaCl is highly soluble in water whereas AgCl is sparingly soluble.                                                                                                                                                 |     | Statement-2                | $HCl > HNO_3$ .<br>: Water ionises to give H <sup>+</sup> as also OH <sup>-</sup> ions                                                                                                                                                         |
| 8. | Statement-1 | : $H_2SO_4$ , HCl and HNO <sub>3</sub> are all equally strong in water but not equally strong in acetic acid.                                                                                                        |     |                            | where as the ionisation of acetic acid pro-<br>duces only $H^+$ ions.<br>$H_2O \Longrightarrow H^+ + OH^-$                                                                                                                                     |
|    | Statement-2 | : $H_2O$ gives $H^+$ as well as $OH^-$ ions, but $CH_3COOH$ gives only $H^+$ and no $OH^-$ ions.                                                                                                                     |     |                            | $H_2O \longrightarrow H^+OH^-$<br>$CH_3COOH \longrightarrow CH_3COO^- + H^+$                                                                                                                                                                   |
| 9. | Statement-1 | : In a titration of weak acid and NaOH, the pH at half equivalence point is $pK_a$ .                                                                                                                                 | 11. | Statement-1<br>Statement-2 | <ul> <li>: HF is weaker acid as compared to H<sub>3</sub>BO<sub>3</sub>.</li> <li>: Higher the ionisation constant stronger is the acid.</li> </ul>                                                                                            |

| — <i>L</i> i |          |         |         |         |          |
|--------------|----------|---------|---------|---------|----------|
| Mark Your    | 6. abcd  | 7. abcd | 8. abcd | 9. abcd | 10. abcd |
| Response     | 11. abcd |         |         |         |          |

MULTIPLE CORRECT CHOICE TYPE
Each of these questions has 4 choices (a), (b), (c) and (d) for its answer, out of which ONE OR MORE is/are correct.

- 1. Which of the solutions will be acidic?
  - (a)  $0.1 M CH_3 COONa$
  - (b)  $0.1 M \text{FeSO}_4$
  - (c)  $0.1 M K_2 SO_4 Al_2 (SO_4)_3 24 H_2 O$
  - (d)  $0.1 M (NH_4)_2 SO_4$
- 2. On addition of  $(NH_4)_2SO_4$  to  $0.1 MNH_3$ 
  - (a)  $OH^{-}$  ion concentration will decrease
  - (b)  $H_3O^+$  ion concentration will decrease
  - (c) pH will increase
  - (d) pH will decrease
- **3.** To which of the following, addition of water would *not* affect the pH ?
  - (a)  $100 \text{ ml of } 0.2 M \text{CH}_3 \text{COOH} + 100 \text{ ml of } 0.2 M \text{NaOH}$
  - (b)  $200 \text{ ml of } 0.2 M \text{ CH}_3 \text{COOH} + 100 \text{ ml of } 0.1 M \text{ NaOH}$
  - (c)  $100 \text{ ml of } 0.2 M \text{CH}_3 \text{COOH} + 200 \text{ ml of } 0.2 M \text{NaOH}$
  - (d)  $100 \text{ ml of } 0.2 M \text{ CH}_3 \text{COOH} + 100 \text{ ml of } 0.1 M \text{ NaOH}$
  - 🛵 -

- 4. Which of the following is not amphiprotic ?
  - (a)  $H_2PO_2^-$  (b)  $HPO_3^{2-}$
  - (c)  $H_3PO_4$  (d)  $H_2PO_4^-$
- 5. Which of the following represents hydrolysis ?
  - (a)  $NH_4^+ + H_2O \Longrightarrow NH_3 + H_3O^+$
  - (b)  $NH_4^+ + 2H_2O \implies NH_4OH + H_3O^+$
  - (c)  $HCO_3^- + H_2O \Longrightarrow H_2CO_3 + OH^-$
  - (d)  $HCO_3^- + H_2O \rightleftharpoons CO_3^{2-} + H_3O^+$
- 6. A buffer solution can be prepared from a mixture of
  - (a) CH<sub>3</sub>COONa and HCl in 1 : 1 mole ratio
  - (b)  $CH_3COONa$  and HCl in 2: 1 mole ratio
  - (c) CH<sub>3</sub>COONa and HCl in 1 : 2 mole ratio
  - (d)  $NH_4Cl$  and NaOH in 3 : 1 mole ratio

| Mark Your | 1. abcd | 2. abcd | 3. abcd | 4. abcd | 5. abcd |
|-----------|---------|---------|---------|---------|---------|
| Response  | 6. abcd |         |         |         |         |

- 7. Pb<sup>2+</sup> ion has been placed in both I and II groups of basic radicals because of :
  - (a)  $K_{sp}$  of PbCl<sub>2</sub> is not very small
  - (b) Pb<sup>2+</sup> ion is not completely precipitated as PbCl<sub>2</sub> from cold water
  - (c) The remainder of Pb<sup>2+</sup> ions get precipitated as PbS in II group
  - (d) PbCl<sub>2</sub> is sparingly soluble in water.
- 8. Molarity of  $NH_4^+$  ion in 0.1 *M*  $NH_3$  solution can be increased significantly by
  - (a) passing NH<sub>3</sub> into the solution
  - (b) passing HCl gas into the solution
  - (c) adding an ammonium salt
  - (d) adding  $1 M \text{ NH}_3$  solution
- 9. Which of the following solutions will be neutral?
  - (a)  $50 \text{ ml of } 0.1 M \text{CH}_3 \text{COOH} + 50 \text{ ml of } 0.1 M \text{NaOH}$
  - (b)  $100 \text{ ml of } 0.1M \text{ CH}_3 \text{COOH} + 50 \text{ ml of } 0.2 M \text{ NH}_3$
  - (c) 100 ml of 0.1M HCl + 50 ml of 0.2 M KOH
  - (d)  $50 \text{ ml of } 0.1 M \text{ HCl} + 50 \text{ ml of } 0.1 M \text{ NH}_3$
- **10**. Pick out the correct statement(s) of the following :
  - (a) Liquid NH<sub>3</sub>, like water, is an amphiprotic solvent
  - (b)  $C_6H_5NH_2$  is a weak organic base in aqueous solution
  - (c)  $C_6H_5NH_2$  is a strong base in liquid acetic acid
  - (d) A solution containing  $NH_3$  and  $NH_4Cl$  is less basic than  $NH_3$ .
- **11.** Consider the following reaction :

$$\begin{bmatrix} AI(H_2O)_6 \end{bmatrix}^{3+} + \begin{bmatrix} Cu(H_2O)_3OH \end{bmatrix}^+ \longrightarrow I$$

$$[Al(H_2O)_5OH]^{2+} + [Cu(H_2O)_4]^{2+}$$
  
III IV

Find the correct statements of the following :

- (a) *I* is an acid and *II* the base
- (b) II is an acid and I the base

En

- (c) III is conjugate base of I and IV is conjugate acid of II
- (d) III is conjugate acid of I and IV is conjugate base of II

- **12.** Pick out the acid-base conjugate pairs of the following :
  - (a)  $H_3O^+$  and  $OH^-$  (b)  $N_2H_6^{2+}$  and  $N_2H_5^+$

(c)  $C_2H_5OH$  and  $C_2H_5O^-$  (d)  $C_5H_5NH^+$  and  $C_5H_5N$ 

- **13.** In which of the following solutions the use of equilibrium constant(s), mentioned in each case, permits the calculation of pH?
  - (a) 0.1 *M* each of NH<sub>3</sub> and NH<sub>4</sub>Cl in the mixture :  $K_b$  of NH<sub>3</sub>
  - (b)  $0.1 M \text{NH}_3$ :  $K_b \text{ of NH}_3$ ,  $K_w$
  - (c) A solution 0.1 *M* in CH<sub>3</sub>COOH and 0.2 *M* CH<sub>3</sub>COONa :  $K_a$  of CH<sub>3</sub>COOH
  - (d)  $0.1 M CH_3 COONa: K_a \text{ of } CH_3 COOH, K_w$
- 14. An acid-base indicator has  $K_b$  of  $1.0 \times 10^{-5}$ . The acid form of the indicator is red and the basic form is blue. Then :
  - (a) pH is 8.4 when indicator is 80% red
  - (b) pH is 9.6 when indicator is 80% blue
  - (c) pH is 9.6 when indicator is 80% red
  - (d) pH is 8.4 when indicator is 80% blue
- **15.** Which combinations of reactants will react less than 2% of the theoretically possible extent?
  - (a)  $CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$
  - (b)  $CH_3COO^- + H_2O \longrightarrow CH_3COOH + OH^-$
  - (c)  $\text{NH}_3 + \text{H}_2\text{O} \longrightarrow \text{NH}_4^+ + \text{OH}^-$
  - (d)  $NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$
- **16.** Which one of the following will react more than 98% of the limiting quantities?
  - (a)  $CH_3COO^- + H_3O^+ \longrightarrow CH_3COOH + H_2O$
  - (b)  $CH_3COOH + OH^- \longrightarrow CH_3COO^- + H_2O$
  - (c)  $NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$
  - (d)  $NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$
- 17. Which of the following will not react with NaOH to form water?
  - (a)  $NaH_2PO_3$  (b)  $Na_2HPO_3$ (c)  $NaH_2PO_2$  (d)  $Na_2HPO_4$

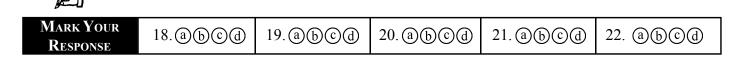
| MenyVour              | 7. abcd | 8. abcd | 9. abcd  | 10. abcd | 11. abcd |
|-----------------------|---------|---------|----------|----------|----------|
| Mark Your<br>Response | 12.abcd | 13.abcd | 14. abcd | 15. abcd | 16. abcd |
|                       | 17.abcd |         |          |          |          |

- **18.** The correct statements (s) is/are
  - (a) The pH of  $1 \times 10^{-8}$  M HCl solution is 8.
  - (b) The conjugate base of  $H_2 PO_4^-$  is  $H PO_4^{2-}$
  - (c) Autoprotolysis constant of water increases on increasing temperature.
  - (d) In the titration of a weak monoprotic acid and a strong base, the pH at half neutralisation point is equal to

 $\frac{1}{2} pK_a$ 

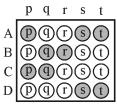
**19.** In an aqueous solution of Fe (III) and (SCN<sup>-</sup>), the equilibrium can be represented as follows :

 $\begin{array}{c} \operatorname{Fe}^{3+}(aq) + \operatorname{SCN}^{-}(aq) = & \left[\operatorname{Fe}(\operatorname{NCS})\right]^{2+}(aq) \\ \operatorname{Pale yellow} & \operatorname{Colourless} & \operatorname{red} \end{array}$ 

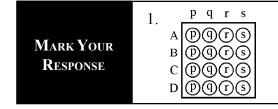

For this choose correct statements

- (a) When  $FeCl_3$  is added to it there is no change is colour
- (b) When KSCN is added to it there is no change in colour.
- (c) When oxalic acid is added, there is a decrease in red colour
- (d) When  $HgCl_2$  (aq) is added the red colour disappears.

- 20. In which of the following solutions pH is less than 7?
  - (a)  $\operatorname{Fe}(\operatorname{ClO}_4)_3$  (b)  $\operatorname{Ba}I_2$
  - (c)  $Cr(NO_3)_3$  (d)  $[(CH_3)_3 NH]Cl.$
- 21. Buffer solution can be prepared from a mixture of
  - (a) sodium acetate and acetic acid in water
  - (b) sodium acetate and HCl in water
  - (c) ammonia and ammomium chloride in water
  - (d) ammonia and sodium hydroxide in water
- **22.** In a buffer solution consisting  $NaH_2PO_4$  and  $Na_2HPO_4$ 
  - (a) The  $NaH_2PO_4$  is acid and  $Na_2HPO_4$  is salt
  - (b) The pH of solution can be calculated using the


relation pH = pK<sub>2</sub> + log 
$$\frac{[HPO_4^{2-}]}{[H_2PO_4]^{-}}$$

- (c) The  $Na_2HPO_4$  is acid and  $NaH_2PO_4$  is salt
- (d) The pH cannot be calculated.






Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labeled A, B, C and D, while the statements in Column-II are labeled A, B, C and D, while the statements in Column-II are labeled P, q, r, s and t. Any given statement in Column -I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example: If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.



| 1. | Match the following :   |    |                                             |
|----|-------------------------|----|---------------------------------------------|
|    | Column I                |    | Column II                                   |
|    | (A) Bronsted-lowry acid | p. | ${\rm CH_3}^\oplus$                         |
|    | (B) Bronsted-lowry base | q. | $CH_3^{\Theta}$                             |
|    | (C) Lewis acid          | r. | H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> |
|    | (D) Lewis base          | s. | $\mathrm{NH_4}^+$                           |
|    |                         |    |                                             |



| 2. | Consider a buffer of CH <sub>3</sub> COOH and CH <sub>3</sub> COONa of maximum buffe                                                                        | r-cap    |                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|
|    | Column I (A) For maximum buffer capacity                                                                                                                    | n        | Column II<br>No change in pH                           |
|    | <ul><li>(B) Adding equal number of moles of CH<sub>3</sub>COOH and CH<sub>3</sub>COONa</li></ul>                                                            | p.       | pH > pKa                                               |
|    | (C) Diluting buffer 10 times                                                                                                                                | q.<br>r. | pH = pKa                                               |
|    | (D) Adding some NaOH to buffer                                                                                                                              | ı.<br>S. | $pOH = pK_{b}$                                         |
| 3. | $K_w$ under conditions of high temperature and pressure is $1.0 \times 10^{-10}$ .                                                                          |          |                                                        |
|    | Column I                                                                                                                                                    |          | Column II                                              |
|    | (A) Solution of pH 5.5                                                                                                                                      | p.       | Neutral                                                |
|    | (B) Solution of pH 5                                                                                                                                        | q.       | Acidic                                                 |
|    | (C) Solution of pH 4                                                                                                                                        | r.       | $[OH^{-}] = 10^{-3} M$                                 |
|    | (D) Solution of pH 7                                                                                                                                        | s.       | Basic                                                  |
| 4. | $K_{\rm a}$ and $K_{\rm b}$ are the dissociation constants of weak acid and weak base as stated in column II with the solutions listed in column I at 25°C. | nd K     | $_{\rm w}$ is the ionic product of water. Match the pH |
|    | Column I - (Solution)                                                                                                                                       |          | Column II - (pH)                                       |
|    | (A) 0.1 <i>M</i> KCN                                                                                                                                        | p.       | 7                                                      |
|    |                                                                                                                                                             |          | $65 \pm 1$ pV                                          |
|    | (B) $0.1 M C_6 H_5 N H_3 Cl$                                                                                                                                | q.       | $6.5 + \frac{1}{2} p K_a$                              |
|    | (C) 0.1 <i>M</i> KCl                                                                                                                                        | r.       | $7.5 - \frac{1}{2} p K_{b}$                            |
|    |                                                                                                                                                             |          | -                                                      |
|    | (D) $0.1 M \text{ CH}_3 \text{COONH}_4$                                                                                                                     | s.       | $7 + \frac{1}{2}pK_a - \frac{1}{2}pK_b$                |
| 5. | Match the following<br>Column I                                                                                                                             |          | Column II                                              |
|    | (A) NaHCO <sub>3(aq)</sub>                                                                                                                                  | p.       | Cationic hydrolysis                                    |
|    | (B) $CuSO_{4(aq)}$                                                                                                                                          | q.       | Anionic hydrolysis                                     |
|    | (C) $K_2SO_4Al_2(SO_4)_3.24H_2O_{(aq)}$                                                                                                                     | r.       | Acidic                                                 |
|    | (D) $NaCN_{(aq)}$                                                                                                                                           | s.       | Basic                                                  |
| 6. | Column I - (Solution)                                                                                                                                       |          | Column II - (Nature of solution)                       |
|    | (A) Salt of a weak acid and weak base $(pK_a = pK_b)$                                                                                                       | p.       | Acidic                                                 |
|    | <ul> <li>(B) Salt of weak acid and strong base</li> <li>(C) Salt of strong acid and strong base</li> </ul>                                                  | q.       | Basic<br>Neutral                                       |
|    | <ul><li>(C) Salt of strong acid and strong base</li><li>(D) Salt of strong acid and weak base</li></ul>                                                     | r.<br>S. | pH can be predicted only in case $K_a/K_b$ is given    |
| 7. | Column I                                                                                                                                                    |          | Column II                                              |
|    | (A) HCl                                                                                                                                                     | p.       | Bronsted base                                          |
|    | (B) $\operatorname{NH}_3$                                                                                                                                   | q.       | Bronsted acid<br>Arrhenius acid                        |
|    | (C) $H_2O$<br>(D) $CN^-$                                                                                                                                    | r.<br>S. | Lewis base in adduct displacement reaction             |
|    | - <u></u>                                                                                                                                                   |          |                                                        |
|    | ·                                                                                                                                                           | c        |                                                        |
|    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                        |          | 4. $p q r s$<br>APQ(r)                                 |
|    |                                                                                                                                                             |          | A (P(Q(T(S)))<br>B (D)Q(T(S))                          |
|    | c DOT C                                                                                                                                                     |          | cĎÕČŠ                                                  |
|    | Mark Your DPQCS DPQC                                                                                                                                        | ક        | DDOCS                                                  |
|    | <b>Response</b> 5. $pqrs$ 6. $pqr$                                                                                                                          | s        | 7. pqrs                                                |
|    |                                                                                                                                                             | -        |                                                        |
|    | в ФФТб в ФФТб                                                                                                                                               | হ        | вФФСб                                                  |
|    |                                                                                                                                                             | -        |                                                        |
|    |                                                                                                                                                             | ୬        | D (D)(d)(1)(2)                                         |

The answer to each of the questions is either numeric (eg. 304, 40, 3010, 3 etc.) or a fraction (2/3, 23/7) or a decimal (2.35, 0.546).

The appropriate bubbles below the respective question numbers in the response grid have to be darkened.

For example, if the correct answers to question X, Y & Z are 6092, 5/4 & 6.36 respectively then the correct darkening of bubbles will look like the following.

For single digit integer answer darken the extreme right bubble only.

1. To a solution that has  $[CrO_4^{2-}]^- = 0.010 M$  and [Br] = 0.010 M

F

is gradually added 0.01 M AgNO<sub>3</sub>. What is [Br<sup>-</sup>] remaining in solution (in terms of  $10^{-8} M$ ) at the point where Ag<sub>2</sub>CrO<sub>4</sub> starts precipitating?

NUMERIC/INTEGER ANSWER TYPE ==

$$K_{sp}$$
 (Ag<sub>2</sub>CrO<sub>4</sub>) = 2.25×10<sup>-12</sup>,  $K_{sp}$  (AgBr)=5.0×10<sup>-13</sup>

2. What minimum concentration of ammonia would be required to prevent the precipitation of AgCl from 1.00 L of a solution containing 0.10 mole of AgNO<sub>3</sub> and 0.010 mole of KCl.

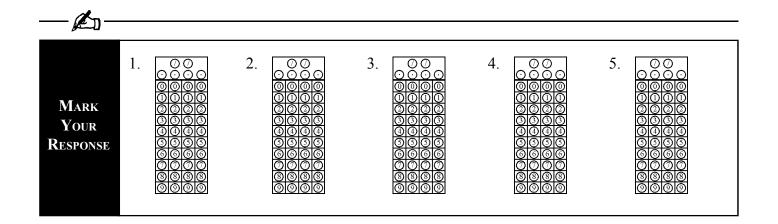
 $K_{sp}(AgCl) = 1.8 \times 10^{-10}$ ; Formation constant of  $[Ag(NH_3)_2]^+ = 1.5 \times 10^7$ 

3. The solubility product for  $Ag_2C_2O_4$  at 25°C is  $1.29 \times 10^{-11}$ . A solution of  $K_2C_2O_4$  containing 0.154 ml in 500ml water is shaken at 25°C with excess of  $Ag_2CO_3$  till the following equilibrium is reached :

$$Ag_2CO_{3(s)} + K_2C_2O_{4(aq)} \longrightarrow Ag_2C_2O_{4(s)} + K_2CO_{3(aq)}$$

At equilibrium, the solution contains 0.0358 mole of  $K_2CO_3$ . Assuming the degree of dissociation of  $K_2C_2O_4$  and  $K_2CO_3$  to be equal, calculate the solubility product (in multiple of  $10^{-12}$ ) of  $Ag_2CO_3$ .

4. Calculate equilibrium constant (in multiple of 10<sup>4</sup>) of the following reaction


$$CN^- + CH_3COOH \implies HCN + CH_3COO^-$$

$$(K_b(\text{CN}^-) = 2.04 \times 10^{-5}, K_b(\text{CH}_3\text{COO}^-) = 5.55 \times 10^{-10}$$

AgBr is sparingly soluble in water,  $K_{sp}(AgBr) = 12 \times 10^{-14}$ . If  $10^{-7}$  mol of AgNO<sub>3</sub> are added to 1 L saturated solution of AgBr, calculate conductivity of the resulting solution in terms of  $10^{-7}$  S m<sup>-1</sup> units.

Given, 
$$\lambda_{Ag^+}^{\circ} = 6 \times 10^{-3} \text{ S m}^2 \text{mol}^{-1}$$
,

$$\lambda_{Br^{-}}^{\circ} = 8 \times 10^{-3} \text{ S m}^2 \text{mol}^{-1}, \ \lambda_{NO_3}^{\circ} = 7 \times 10^{-3} \text{ S m}^2 \text{mol}^{-1}$$



5.

# - Anemarkay -----

### SINGLE CORRECT CHOICE TYPE

| 1.  | d | 2.  | а | 3.  | b | 4.  | b | 5.  | d | 6.  | а | 7.  | d | 8.  | а | 9.  | d | 10. | с |
|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|-----|---|
| 11. | c | 12. | с | 13. | d | 14. | b | 15. | b | 16. | c | 17. | d | 18. | с | 19. | b | 20. | а |
| 21. | b | 22. | b | 23. | с | 24. | b | 25. | с | 26. | с | 27. | d | 28. | с | 29. | с | 30. | d |
| 31. | c | 32. | d | 33. | d | 34. | b | 35. | с | 36. | d | 37. | b | 38. | b | 39. | с | 40. | b |
| 41. | c | 42. | b | 43. | d | 44. | d | 45. | b | 46. | с | 47. | b | 48. | d | 49. | с | 50. | b |
| 51. | c | 52. | b | 53. | d | 54. | d | 55. | b | 56. | d | 57. | а | 58. | b | 59. | d | 60. | с |
| 61. | с | 62. | а | 63  | с | 64  | с | 65  | b | 66  | c | 67  | c | 68  | с | 69  | с | 70  | с |
| 71  | b | 72  | b | 73  | с | 74  | а | 75  | b | 76  | b | 77  | c | 78  | d | 79  | с | 80  | d |
| 81  | d | 82  | с | 83  | с | 84  | d | 85  | b | 86  | а | 87  | d | 88  | с | 89  | а | 90  | с |
| 91  | с | 92  | а | 93  | с | 94  | а | 95  | b |     |   |     |   |     |   |     |   |     |   |

B

### COMPREHENSION TYPE

| 1 | с | 5 | а | 9  | с | 13 | а | 17 | с |
|---|---|---|---|----|---|----|---|----|---|
| 2 | b | 6 | b | 10 | а | 14 | с | 18 | b |
| 3 | а | 7 | с | 11 | b | 15 | с | 19 | с |
| 4 | d | 8 | b | 12 | d | 16 | d | 20 | b |

REASONING TYPE

| 1 | с | 3 | d | 5 | а | 7 | b | 9  | а | 11 | b |
|---|---|---|---|---|---|---|---|----|---|----|---|
| 2 | а | 4 | а | 6 | b | 8 | b | 10 | b |    |   |

MULTIPLE CORRECT CHOICE TYPE

| 1.  | b,c,d | 2.  | a,d   | 3.  | b,d   | 4.  | a,b,c | 5.  | b,c | 6.  | b,d     | 7.  | a,b,c | 8.  | b,c | 9.  | b,c | 10. | a,b,c,d |
|-----|-------|-----|-------|-----|-------|-----|-------|-----|-----|-----|---------|-----|-------|-----|-----|-----|-----|-----|---------|
| 11. | a,c   | 12. | b,c,d | 13. | b,c,d | 14. | a,d   | 15. | a,c | 16. | a,b,c,d | 17. | b,c   | 18. | b,c | 19. | c,d | 20. | a,c,d   |
| 21. | a,c   | 22. | a,b   |     |       |     |       |     |     |     |         |     |       |     |     |     |     |     |         |

E

D

**Маткіх-Матсн Туре** 

- 1. A-r, s; B-q, R; C-p; D-q, r
- 3. A-s; B-p; C-q; D-r, s
- 5. A-q, s; B-p, r; C-p, r; D-q, s
- 7. A-q, r; B-p, s; C-p, q, s; D-p, s
- 2. A-r, s; B-p, r; C-p, r; D-q
- 4. A-q; B-r; C-p; D-p, s
- 6. A r; B q, s; C r; D p, s

**F** NUMERIC/INTEGER ANSWER TYPE

 1
 3.33
 2
 0.808
 3
 3.974
 4
 3.68
 5
 55

# 

9.

12.

## SINGLE CORRECT CHOICE TYPE

1. (d) 
$$HA + BOH \longrightarrow BA + H_2O, K = \frac{K_a K_b}{K_w}$$
  
 $= \frac{2 \times 10^{-5} \times 5 \times 10^{-6}}{1.0 \times 10^{-14}} = 1.0 \times 10^4$   
2. (a)  $[H^+] = [OH^-] = \sqrt{40 \times 10^{-14}} = 2.0 \times 10^{-7}$   
 $pH = pOH = -\log 2 \times 10^{-7} = 6.699$   
3. (b) K (for neutralization of weak base with strong acid)  
 $= \frac{K_b}{K_w} = \frac{2.5 \times 10^{-6}}{1.0 \times 10^{-14}} = 2.5 \times 10^8$   
4. (b)  $\alpha_1 = 0.005 = \sqrt{K_a/C}$  ( $C_1 = 1 \mod L^{-1}$ ); Molarity of  
diluted solution,  $C_2 = \frac{2}{32} = \frac{1}{16} \mod L^{-1}$   
 $\alpha_2 = \sqrt{\frac{K_a}{C_2}} = 0.005\sqrt{16} = 0.02$   
 $[H_3O^+] = C_2\alpha_2 = \frac{1 \times 0.02}{16} = 1.25 \times 10^{-3}M$   
5. (d)  $K_H = \frac{K_w}{K_a K_b} = \frac{1.0 \times 10^{-14}}{(3 \times 10^{-7})^2} = \frac{1}{9}$   
 $\frac{h}{1-h} = \sqrt{K_H} = \sqrt{\frac{1}{9}} \Rightarrow h = 0.25$   
6. (a)  $\operatorname{NaCN}_{(aq)} + \operatorname{HCl}_{(aq)} \longrightarrow \operatorname{HCN}_{(aq)} + \operatorname{NaCl}_{(aq)}$   
Excess mill mol of HCl = 50 × 0.2 - 50 × 0.1=5  
 $[\operatorname{HCl}]_{excess} = 5/100 = 0.05 M$   
 $[H_3O^+] = 0.05, pH = -\log 0.05 = 1.30$   
(HCN remains practically unionised)  
7. (d) All the salts undergo hydrolysis in aqueous solution.  
The acids formed have their strength in the order:

### HCl>HCOOH>CH<sub>3</sub>COOH

The strength of the bases formed follow the order : NaOH > NH<sub>4</sub>OH.

8. (a) 
$$pH = 14 - pOH = 14 - \left(pK_b + \log\frac{[salt]}{[base]}\right)$$
  
=  $14 + \log K_b - \log\frac{80}{20} \Rightarrow K_b = 1.0 \times 10^{-6}$ 

(d) 
$$K_{a} \text{ of } HA = \frac{K_{w}}{K_{b}} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} = 1.0 \times 10^{-9} \text{ ;}$$
  
(Given pH = 7.40)

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$
$$= -\log 10^{-9} + \log \frac{0.1}{0.3} = 9 - \log 3$$

**10.** (c) At the equivalence point, the volume of resulting solution is doubled.

Hence, 
$$[NH_4Cl] = \frac{0.2}{2} = 0.1M[NH_4^+]$$

The salt hydrolyses,

$$pH = \frac{1}{2} \left( pK_{w} - pK_{b} - \log[NH_{4}^{+}] \right)$$
$$= \frac{1}{2} (14 - 4.74 - \log 0.1) = 5.13$$

**11.** (c)  $pH = 14 - pK_b - \log \frac{[B^+]}{[BOH]}$ 

V = volume of acid required for the equivalance point.

(i) 
$$(pH)_1 = 9 = 14 - pK_b - \log \frac{10}{V - 10}$$
  
(ii)  $(pH)_2 = 8 = 14 - pK_b - \log \frac{25}{V - 25}$   
(i) - (ii),  $1 = \log \frac{25}{V - 25} - \log \frac{10}{V - 10} = \log \frac{25(V - 10)}{10(V - 25)}$   
 $\Rightarrow V = 30ml$   
(c)  $[CN^-] = 2 \times 0.5 = 1.0 M$   
 $pH = \frac{1}{2}(pK_w + pK_a + \log[CN^-])$   
 $= \frac{1}{2}[14 + (14 - pK_b) + \log 1] = \frac{1}{2}[28 - 9.30] = 9.35$ 

% of Br<sup>-</sup> remaining unprecipitated

$$=\frac{1.0\times10^{-4}}{0.1}\times100=0.1$$

% of Br<sup>-</sup> precipitated = 
$$100 - 0.1 = 99.9$$
  
4. (b) pOH =  $14 - pH = 14 - 8.699 = 5.301$ ,  
[OH<sup>-</sup>] =  $5 \times 10^{-6}M$ ; [Mg<sup>2+</sup>] =  $2.5 \times 10^{-6}M$   
 $K_{sp}$ [Mg(OH)<sub>2</sub>] = [Mg<sup>2+</sup>] [OH<sup>-</sup>]<sup>2</sup>  
=  $2.5 \times 10^{-6} \times (5 \times 10^{-6})^2 = 6.25 \times 10^{-17} M^3$ 

(c) 
$$H In \Longrightarrow H^+ + In^-; pH = pK_{in} + \log \frac{[In^-]}{[HI_n]}$$

$$pH_{1} = pK_{in} + \log \frac{20}{80} = pK_{in} - 2\log 2$$

$$pH)_2 = pK_{in} + \log \frac{80}{20} = pK_{in} + 2\log 2$$

Hence 
$$(pH)_2 - (pH)_1 = pK_{in} + 2\log 2 - (pK_{in} - 2\log 2)$$

$$= 4 \log 2 = 1.20$$

$$V = 1.0 \times 10^{-14} = 1.0 \times 10^{-14}$$

$$K_a = \frac{1.0 \times 10^{-14}}{K_b} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-9}} = 1.0 \times 10^{-5}$$

$$H In \longrightarrow H^+ + In^-,$$

$$K_a = 1.0 \times 10^{-5} = \frac{[\text{H}^+][\text{In}^-]}{[\text{HIn}]} \Rightarrow [\text{H}^+] = 10^{-5}$$

AgCl = 
$$\sqrt{K_{sp}} = \sqrt{1.0 \times 10^{-10}} = 1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$$

in  $10L = 10 \times 1.0 \times 10^{-5} \times 143.5$ 

29. (c) 
$$\operatorname{SrF}_{2(s)} \xrightarrow{} \operatorname{Sr}^{2+} + 2F^{-}; K_{sp} = 4S^3 = 3.2 \times 10^{-11}$$
  
 $\Rightarrow S = 2 \times 10^{-4} M$   
 $[F^{-}] = 2S = 2 \times 2 \times 10^{-4} = 4 \times 10^{-4} \operatorname{mol} \mathrm{L}^{-1}$ 

- f dilute HCl, ionization of  $H_2S$  is not to common ion effect. As a result, to such an extent that fourth group ving higher  $K_{sp}$  values also get
- n effect is not observed as NaOH is a te.

(d) In presence of HCl, I.P. = 
$$[Ba^{2+}][Cl^{-2}]$$
 exceeds  $K_{sp}$ .  
Hence BaCl<sub>2</sub> gets precipitated.

(d) (c): 
$$[Cl^{-}]_{common} = 0.2M$$
,  
(b):  $[Cl^{-}]_{common} = 0.1 M$ ; (a):  $[Cl^{-}]_{common} = 0$   
(d): Ag<sup>+</sup> ion forms complex ion with NH<sub>3</sub> as :

$$\operatorname{Ag}_{(\operatorname{aq})}^{2+} + 2\operatorname{NH}_{3(\operatorname{aq})} \rightleftharpoons [\operatorname{Ag}(\operatorname{NH}_{3})_{2}]^{+}$$

- 35. (c) Milli moles of HCl =  $75 \times 0.2 = 15$ ; 47. Milli moles of NaOH =  $25 \times 0.2 = 5$ Milli moles of HCl left un-neutralized = 15 - 5 = 10; 48.  $[H_3O^+] = \frac{10}{75 + 25} = 0.1M$ ; pH =1 36. (d) pH = 8; pOH = 6; [OH<sup>-</sup>] =  $10^{-6}M$ ; I.P. of Fe(OH)<sub>2</sub> =  $0.2 \times (1.0 \times 10^{-6})^2 = 2 \times 10^{-13} > K_{cp}$  49.
- I.P. of Fe(OH)<sub>2</sub> =  $0.2 \times (1.0 \times 10^{-6})^2 = 2 \times 10^{-13} > K_{sp}$ (=  $8.1 \times 10^{-16}$ )

**37.** (b) 
$$pH = pK_a + \log \frac{[CH_3COO]}{[CH_3COOH]} = pK_a$$
;

$$\Rightarrow \text{ at } 50^{\circ}\text{C } \text{pK}_{a} < 4.74$$
**38.** (b)  $\text{pOH} = 14 - 13 = 1; [\text{OH}^{-}] = 1.0 \times 10^{-1};$ 

$$S \text{ of } \text{BaCl}_2 = \frac{1.0 \times 10^{-1}}{2} = 0.05 \text{mol } \text{L}^{-1}$$

39. (c) (a) H<sub>3</sub>O<sup>+</sup> can not take up proton, other species can give up and take up proton.
(b) H<sub>2</sub>O and HPO<sub>4</sub><sup>-</sup> give up and take up proton but H<sub>2</sub>PO<sub>2</sub><sup>-</sup> can not give up proton (H<sub>3</sub>PO<sub>2</sub> is monobasic acid)

(d)  $C_2O_4^{2-}$  can not give up proton,  $H_2PO_4^{-}$  and  $HSO_4^{-}$  can give up and take up proton.

**40.** (b) pH of buffer

$$= pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]} = 4.74 + \log \frac{500 \times 0.2}{500 \times 0.1} = 5.04$$

pH of a buffer does not change with dilution.

**41.** (c) 
$$pOH = 14 - pH = 14 - 8.26 = 5.74$$

$$= pK_b + \log \frac{[NH_4^+]}{[NH_3]} = 4.74 + \log \frac{[NH_4^+]}{0.1}$$

$$\Rightarrow [NH_4^+] = 1 \text{mol } L^{-1}; [(NH_4)_2 \text{SO}_4] = \frac{1}{2} = 0.5 \text{mol } L^{-1}$$

- 43. (d) In case of (a), (b) and (c) pH < 7 due to cationic (NH<sub>4</sub><sup>+</sup>) hydrolysis. In case of (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>, both the cation and anion undergo hydrolysis. pH ≈ 7
  45. (b) K<sub>sp</sub>[Ca(OH)<sub>2</sub>]=4.0×10<sup>-6</sup>=[Ca<sup>2+</sup>] [OH<sup>-</sup>]<sup>2</sup>
- **45.** (b)  $K_{sp}[Ca(OH)_2] = 4.0 \times 10^{\circ} = [Ca^{-1}] [OH]^2$ =  $0.01 \times [OH^{-1}]^2 \Rightarrow [OH^{-1}] = 2 \times 10^{-2};$ pOH =  $-\log 2 \times 10^{-2} = 2 - \log 2;$  pH =  $14 - (2 - \log 2)$ =  $12 + 2\log 2$
- 46. (c) Cathodic reaction :  $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ ; Anodic reaction :  $2CI^- \rightarrow CI_2 + 2e^-$

Mol. of OH<sup>-</sup> formed 
$$= \frac{1 \times 9650}{96500} = 0.1$$
  
[OH<sup>-</sup>] = 0.1 L<sup>-1</sup>; pOH = 1

47. (b)  $H_3PO_3$  is a dibasic acid. It ionizes as :

(d) 
$$H_3PO_3 \longrightarrow H^+ + H_2PO_3^-; H_2PO_3^- \rightarrow H^+ + HPO_3^{2-}$$
  
(d)  $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O; milli mole of CH_3COOH = 100 × 0.1 = 10;$   
milli mole of NaOH = 50 × 0.3 = 15; CH\_3COOH is completely consumed and NaOH is left in excess.  
(c)  $NH_3 + HC1 \rightarrow NH_4C1;$  milli mole of HCl added =  $10 \times 1 = 10$   
(c) milli mole of  $NH_3 = 100 \times 0.05 = 5$   
There is excess of HCl.

**50.** (b) 
$$K_a(H_2S) = 4 \times 10^{-21} = \frac{[H^+]^2[S^{2-}]}{[H_2S]} = \frac{0.1^2 \times [S^{2-}]}{0.1}$$

$$\Rightarrow [S^{2-}] = 4 \times 10^{-20} M$$
  

$$K_{sp}(\text{CoS}) = 2 \times 10^{-21} = [\text{Co}^{2+}] [\text{S}^{2-}]$$
  

$$= [\text{Co}^{2+}] \times 4 \times 10^{-20} \Rightarrow [\text{Co}^{2+}] = 0.05 M$$

**52.** (b) At the half neutralization of weak base B,  $[BH^+] = [B]$ 

$$pOH = pK_b + log \frac{[BH^+]}{[B]} = pK_b$$

$$pH=14-pOH=14-pK_b$$

53. (d) 
$$pH = pK_{a(1)}$$
 when  $[HA^-] = [H_2A]$   
 $pH = pK_{a(2)}$  when  $[A^{2-}] = [HA^-]$   
The points A and C represent half stages of the reactions :  
(i)  $H_2A + OH^- \rightarrow HA^- + H_2O$   
(ii)  $HA^- + OH^- \rightarrow A^{2-} + H_2O$ 

. (d) 
$$\operatorname{Hg}_{2}\operatorname{Cl}_{2(s)} \Longrightarrow \operatorname{Hg}_{2(aq)}^{2+} + 2\operatorname{Cl}_{(aq)}^{-}$$
  
 $K_{sp} = [\operatorname{Hg}_{2(aq)}^{2+}][\operatorname{Cl}^{-}]^{2} = S \times (2S)^{2} = 4S^{3}$ 

54

55.

57.

- (b)  $CO_2 + H_2O \implies H_2CO_3 \implies H^+ + HCO_3^$ with the decrease in  $[CO_2]$ , the equilibrium shifts in reverse direction causing  $[H^+]$  to decrease.
- **56.** (d) The point of inflexion, D, represents the equivalence point of titration.

(a) 
$$pH = (5.7) = pK_a + log \frac{[A^-]}{[HA]} = pK_a + log \frac{10}{15 - 10}$$
  
=  $pK_a + log 2 \Rightarrow pK_a = 5.40$ 

**58.** (b) KOH, being strong electrolyte, ionizes completely.  
Hence 
$$[OH^-] = 0.01 M$$
  
which remains constant, even at 50°C (volume of solution is supposed to be constant). Hence,  $pOH(= -\log 0.01 = 2)$  remains constant. At 50°C  $pK_w < 14$ . Hence pH at 50°C  $= (pK_w - 2) < 12$ .

- **59.** (d) In 2:1 molar ratio of  $NH_3$  and HCl, the solution contains  $NH_3$  and  $NH_4Cl$  in 1 : 1 molar ratio. In case of (a) and (b), the solution contains  $NH_4Cl$  and HCl (excess). In case of (c), the solution contains  $NH_4Cl$  only.
- 60. (c) Volume of HCl required = V ml Volume of NH<sub>3</sub> required = 300 - V ml For a buffer of a weak base and its salt with strong acid:

$$pH = pK_a - log \frac{[salt]}{[base]}$$
;

$$9.26 = 9.26 - \log \frac{V}{(300 - V) - V} \Rightarrow V = 100 \text{ ml}$$

61. (c) Since  $K_a = K_b$ , [H<sub>3</sub>O<sup>+</sup>] in 0.01 *M*CH<sub>3</sub>COOH=[OH<sup>-</sup>] in 0.01 *M*NH<sub>4</sub>OH. Hence, pOH of NH<sub>4</sub>OH<sub>(aq)</sub> = pH of CH<sub>3</sub>COOH<sub>(aq)</sub> = 4 ; pH of NH<sub>4</sub>OH = 14 - 4 = 10

62. (a) The strength of the conjugate acids of the given bases follow the order :  $CH_3 - CH_3 < NH_3 < CH \equiv CH < H_2O$ .

64. (c)  $[H^+]$  in HCl solution  $(pH=2) = 10^{-2} M$ ;  $[OH^-]$  in KOH solution  $(pOH = 14 - 12 = 2) = 10^{-2} M$ Excess m Mol of  $OH^-$  in 5 ml mixture  $= 3 \times 10^{-2} - 2 \times 10^{-2} = 1.0 \times 10^{-2}$ ;

$$[OH^{-}]$$
 in mixture =  $\frac{1.0 \times 10^{-2}}{5} = 2 \times 10^{-3} M;$ 

 $pOH = -\log 2 \times 10^{-3} = 3 - \log 2;$  $pH = 14 - (3 - \log 2) = 11.30$ 

**65.** (b) Volume of NaOH required for equivalence point

$$=\frac{50\times0.1}{0.2}=25$$
 ml

$$pH = pK_a + \log \frac{[Salt]}{[Acid]} = 4.39 + \log \frac{20}{25 - 20}$$
$$= 4.39 + \log 4 = 4.39 + 2\log 2 = 4.99$$

66. (c) 
$$\operatorname{CO}_2 + \operatorname{H}_2 O \rightleftharpoons \operatorname{HCO}_3^- + \operatorname{H}^+;$$
  
 $K_1 = \frac{[\operatorname{HCO}_3^-][\operatorname{H}^+]}{[\operatorname{CO}_2]} = 4.5 \times 10^{-7}$   
or,  $\frac{[\operatorname{HCO}_3^-]}{[\operatorname{CO}_2]} = \frac{4.5 \times 10^{-7}}{[\operatorname{H}^+]} = \frac{4.5 \times 10^{-7}}{4 \times 10^{-8}} = 11.25$ 

67. (c) (I) [HCl] in the mixture  $=\frac{50 \times 0.2}{100} = 0.1 M$ 

In presence of strong acid HCl, the waek acid HA remains practically unionized. Hence

$$[H^+] = [H^+]_{HC1} = 0.1 M, pH = 1$$

(II)  $NaA + HCl \longrightarrow NaCl + HA;$ 

$$[\text{HA}] = \frac{50 \times 0.2}{100} = 0.1 \ M$$

No HCl is left. Hence [H<sup>+</sup>]

$$=\sqrt{K_aC} = \sqrt{1.0 \times 10^{-5} \times 0.1} = 1.0 \times 10^{-3}; \text{ pH} = 3$$

69. (c) In case of (a), (b) and (d) water is present in large excess and [H<sub>2</sub>O] is constant practically. In (c), concentration of ester and water are comparable.

70. (c) 
$$CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$$
  
Moles of  $CH_3COOH$  neutralized = 0.05; Moles of  $CH_3COOH$  left = 0.1 - 0.05 = 0.05

Total moles of  $CH_3COONa = 0.2 + 0.05 = 0.25$ Hence,

pH = pK<sub>a</sub> + log
$$\frac{[Salt]}{[Acid]}$$
 = 4.74 + log $\frac{0.25}{0.05}$  = 4.74 + log 5  
= 5.44

71. (b) 
$$NH_4Cl + NaOH \longrightarrow NaCl + NH_3 + H_2O$$

Moles of  $NH_4^+$  left = 0.1 - 0.05 = 0.05

Total moles of  $NH_3 = 0.1 + 0.05 = 0.15$ 

$$(\text{pOH})_1 = pK_b + \log \frac{[\text{Salt}]}{[\text{Base}]} = pK_b + \log \frac{0.1}{0.1} = pK_b$$

$$(\text{pOH})_2 = \text{pK}_b + \log \frac{0.05}{0.15} = \text{pK}_b - \log 3$$

Change in  $pOH = (pOH)_2 - (pOH)_1 = -\log 3$ 

Change in pH =  $\log 3 = 0.48$ 

72. (b) Let x ml of the acid be used. Volume of base mixed = 150 - x ml Volume of base left = 150 - x - x = 150 - 2xpOH = 14 - pH = 14 - 7 = 7

$$= pK_{b} + log \frac{[Salt]}{[Base]} = -log 1.0 \times 10^{-7} + log \frac{x}{150 - 2x} ;$$

$$log \frac{x}{150 - 2x} = 0 = log 1$$
or,  $\frac{x}{150 - 2x} = 1 \implies x = 50 \text{ml}$ 
73. (c) (a)  $[H^{+}] = \frac{100 \times 0.1}{200} = 0.05$ , pH < 7
(b) Meq of H<sub>2</sub>SO<sub>4</sub> = 2 × 0.1 × 100 = 20 ;  
Meq of NaOH = 0.1 × 100 = 10,  
Meq of excess H<sub>2</sub>SO<sub>4</sub> = 20 - 10 = 10; pH < 7
(c) CH<sub>3</sub>COOH + KOH  $\longrightarrow$  CH<sub>3</sub>COOK + H<sub>2</sub>O ;  
 $[Salt] = \frac{0.1 \times 100}{200} = 0.05 M; \text{ pH} > 7 \text{ due to}$   
hydrolysis of salt of weak acid with a strong base.  
(anionic hydrolysis)  
(d) CH<sub>3</sub>COOH = HCl  $\longrightarrow$  CH<sub>3</sub>COOH + NaCl ;  
 $[CH_{3}COOH] = \frac{0.1 \times 50}{100} = 0.05 \text{ M}, \text{ pH} < 7$ 
74. (a) C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup> + H<sub>2</sub>O  $\implies$  C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub> + H<sub>3</sub>O<sup>+</sup>  
 $K_{H} = \frac{K_{w}}{K_{b}} = \frac{10^{-14}}{4 \times 10^{-10}}$   
 $= \frac{[C_{6}H_{5}NH_{2}][H_{3}O^{+}]^{2}}{[C_{6}H_{5}NH_{2}^{+}]} = \frac{[H_{3}O^{+}]^{2}}{0.01}$ 

$$\Rightarrow [H_3O^+] = 5.0 \times 10^{-4} M$$
$$[OH^-] = \frac{K_w}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{5 \times 10^{-4}} = 2.0 \times 10^{-11} M$$

- **75.** (b) On addition of 10 ml of HCl solution, neutralization is complete i.e., equivalence point reaches when only salt (of weak base with strong acid) is present. It hydrolyses to give the pH on the acid side (pH = 5.62). Before the equivalence point (excess of base) and after the equivalence point (excess of acid), no hydrolysis takes place.
- 76. (b) At the equivalence points only salt would be present.
  (I) Salt of strong acid with strong base No hydrolysis (pH = 7)
  (II) Salt of weak base with strong acid Acidic hydrolysis (pH < 7)</li>

(III) Salt of weak acid with strong base – Basic hydrolysis (pH > 7)

77. (c) 
$$[Ag^+]_{maximum}$$
 to prevent AgCl precipitation

$$= \frac{K_{sp}[AgCl]}{[Cl^{-}]} = \frac{1.0 \times 10^{-10}}{0.001} = 1.0 \times 10^{-7} M$$

$$Ag^{+} + 2NH_{3} \iff Ag(NH_{3})_{2}^{+}$$

$$K_{f} = \frac{1}{K_{d}} = \frac{1}{1.0 \times 10^{-8}}$$

$$= \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}]^{2}} = \frac{0.004}{1.0 \times 10^{-7}[NH_{3}]^{2}}$$

$$\Rightarrow [NH_{3}] = 0.02 M$$

$$(K_{f} = 1.0 \times 10^{8}, Ag^{+} \text{ would largely form the complex ion. Hence } [Ag(NH_{3})_{2}^{+}] = 0.004)$$

$$Ag(NH_{3})_{2}^{+} \rightleftharpoons Ag^{+} + 2NH_{3},$$

$$K_{d} = 1.0 \times 10^{-8} = \frac{[Ag^{+}][NH_{3}]^{2}}{[Ag(NH_{3})_{2}^{+}]}$$
If S mol L<sup>-1</sup> = solubility of AgSCN,  $[Ag(NH_{3})_{2}^{+}]$ 

$$= S; [SCN^{-}] = S$$
Hence,  $\frac{[Ag^{+}][0.002]^{2}}{S} = 1.0 \times 10^{-8}$ 

$$\Rightarrow [Ag^{+}] = \frac{1.0 \times 10^{-8}S}{4 \times 10^{-6}} = 2.5 \times 10^{-3}S$$
Also,  $K_{sp}[AgSCN] = 1.0 \times 10^{-12} = [Ag^{+}][SCN^{-}]$ 

$$= 2.5 \times 10^{-3}S \times S \Rightarrow S = 2.0 \times 10^{-5} \text{ mol L}^{-1}$$

78. (d)

- 79. (c) (a) Sufficient  $[OH^-]$  is present to precipitate  $Fe(OH)_2$ .
  - (b) Due to common ion effect,  $[OH^-]$  is insufficient to precipitate Mg(OH)<sub>2</sub> which has large  $K_{sp}$ .
  - (c) Ag<sup>+</sup> ion forms the complex ion, Ag(NH<sub>3</sub>)<sup>+</sup><sub>2</sub> and so its concentration decreases causing I.P. of AgOH < K<sub>sp</sub> and hence no precipitation.

80. (d) 
$$M^{3+} + SCN^{-} \iff M(SCN)^{2+};$$
  
 $K_d = \frac{[M^{3+}][SCN^{-}]}{[M(SCN)^{2+}]}$   
 $[SCN]_{free} = 1.0 \times 10^{-5} M;$   
 $[SCN^{-}]_{combined}$   
 $= 1.51 \times 10^{-3} - 1.0 \times 10^{-5} = 1.5 \times 10^{-3} M$   
 $[M(SCN)^{2+}] = 1.50 \times 10^{-3} M;$   
 $[M^{3+}]_{free} = 2 \times 10^{-3} - 1.5 \times 10^{-3} = 5 \times 10^{-4} M$   
Hence,  $K_d = \frac{5 \times 10^{-4} \times 1.0 \times 10^{-5}}{1.5 \times 10^{-3}} = 3.3 \times 10^{-6}$ 

81. (d) On dissolution of 0.1 mol of AgCl in 1 L,  $[Cl^-]=0.1 M$ Then,

$$[Ag^+]_{\text{free}} = \frac{K_{sp}[AgCl]}{[Cl^-]} = \frac{1.0 \times 10^{-10}}{0.1} = 1.0 \times 10^{-9} M$$

$$[Ag^+]+2NH_3 \implies Ag(NH_3)_2^+$$

$$K_f = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2}$$

$$=1.0\times10^{8} = \frac{0.1}{1.0\times10^{-9}\times[\mathrm{NH}_{3}]^{2}}$$

 $[NH_3] = 1 M;$ 

Moles of NH<sub>3</sub> required = 1.0 (free) + 0.2 (combined) = 1.2

82. (c) 
$$\operatorname{Ag}^+ + 2\operatorname{NH}_3 \rightleftharpoons \operatorname{Ag}(\operatorname{NH}_3)_2^+$$

$$[Ag(NH_3)_2^+] = [Ag^+]_{added} = 0.02 M$$
$$[NH_3]_{free} = 0.14 - 2 \times 0.02 = 0.10 M$$

$$K_d = 1.0 \times 10^{-8} = \frac{[\text{Ag}^+][\text{NH}_3]^2}{[\text{Ag}(\text{NH}_3)_2^+]} = \frac{[\text{Ag}^+] \times 0.10^2}{0.02} \implies$$
$$[\text{Ag}^+] = 2.0 \times 10^{-8} M$$

~

.

(c) I. 
$$[Ag^{+}] = \sqrt{K_{sp}(AgCI)} = \sqrt{1.0 \times 10^{-10}} = 1.0 \times 10^{-5} M$$
  
II.  $[Ag^{+}] = \sqrt{K_{sp}(AgI)} = \sqrt{1.0 \times 10^{-16}} = 1.0 \times 10^{-8} M$   
III.  $Ag(NH_3)_2^{+} \Longrightarrow Ag^{+} + 2NH_3$ ;  
 $K_d = 1.0 \times 10^{-8} = \frac{[Ag^{+}][NH_3]^2}{[Ag(NH_3)_2^{+}]} = \frac{[Ag^{+}] \times 0.1^2}{1.0}$   
 $\Rightarrow [Ag^{+}] = 1.0 \times 10^{-6} M$   
IV.  $Ag(CN)_2^{-} \Longrightarrow Ag^{+} + 2CN^{-}$ ,  
 $KCN(0.1M) \longrightarrow K^{+} + CN^{-}(0.1M)$   
 $K_d = 1.0 \times 10^{-21} = \frac{[Ag^{+}][CN^{-}]^2}{[Ag(CN)_2^{-}]}$   
 $= \frac{[Ag^{+}] \times 0.1^2}{1.0}$   
 $\Rightarrow [Ag^{+}] = 1.0 \times 10^{-19} M$   
(d) NaCN+HCl  $\longrightarrow$  HCN+NaCl

ſ

83.

84.

$$[\text{HCN}] = \frac{0.2 \times 50}{100} = 0.1 M$$
$$\text{HCN} + \text{H}_2\text{O} \iff \text{H}_3\text{O}^+ + \text{CN}^-$$
For the acid and its conjugate base,  $K_a K_b = 10^{-14}$ 

Hence, 
$$K_a$$
 for HCN =  $\frac{1.0 \times 10^{-14}}{2 \times 10^{-5}} = 5 \times 10^{-10}$   
[H<sub>3</sub>O<sup>+</sup>] = [CN<sup>-</sup>] =  $\sqrt{K_a C}$   
=  $\sqrt{5 \times 10^{-10} \times 0.1} = 7 \times 10^{-6} M$ 

85. (b) 
$$pH = pK_{In} + \log \frac{[In^{-}]}{[H In]} = pK_{In} - 1 \text{ (given)}$$
  
 $\log \frac{[In^{-}]}{[HIn]} = -1 \implies \frac{[In^{-}]}{[HIn]} = 0.1$   
% ionized  $= \frac{0.1 \times 100}{0.1 + 1} = \frac{10}{1.1} = 9.1$ 

**86.** (a) In the titration of weak base with strong acid, the pH at the equivalence point lies on the acid side due to hydrolysis of the salt formed.

87. (d) The  $[A^-]$  of the salt CaA<sub>2</sub> formed by the reaction between Ca (OH)<sub>2</sub> and HA (monobasic acid).  $[A^-] = 0.5 \times 2$  at equilvalence point  $[CaA_2] = 0.5 M$ 

$$\therefore \quad \mathrm{pH} = \frac{1}{2} \left[ \mathrm{pK}_w + \mathrm{pK}_a + \log \mathrm{C} \right]$$

$$=\frac{1}{2}[14+5+0]=9.5 \text{ (C}=[A^{-}]=0.1 \text{ M})$$

- **88.** (c) Given pH =  $5.2 \therefore [H^+] = 10^{-5.2}$ 
  - or  $\log [H^+] = -5.2$  [Taking log]
  - or  $[H^+] = 6.3 \times 10^{-6}$  [Taking antilog] HCN is a weak said and in case of weak acids  $[H^+] = C \times \alpha$  [ $\alpha$  = degree of dissociation of acid]  $\therefore$  6.3 × 10<sup>-6</sup> = 0.1 ×  $\alpha$
  - or  $\alpha = 6.3 \times 10^{-5}$
  - :.  $K_a = C\alpha^2 = 0.1 \times (6.3 \times 10^{-5})^2$ = 3.97 × 10<sup>-10</sup>
- **89.** (a) Given the pH of solution = 13
  - $\therefore \quad [H^+] = 10^{-13} \text{ mol /litre}$  $= 10^{-13} \times 6.023 \times 10^{23} \text{ H}^+ \text{ ions/litre}$  $= 6.023 \times 10^{10} \text{ H}^+ \text{ ions/litre}$  $= 6.023 \times 10^{10} \times 10^{-3} \text{ H}^+ \text{ ions/mL}$  $= 6.023 \times 10^7 \text{ H}^+/\text{mL}$
- **90.** (c) Since the equilibrium shows the hydrolysis of cations that occurs at equivalence point.

### **B** Comprehension Type **\_\_\_\_**

1. (c) For the colour change of the indicator at the 5. equivalence point, pH must change by 2 units.

 $pH = -\log [H^+] = \pm 2 \implies [H^+] = 10^{\pm 2} \mod /L$ 

- (b) Answers (a) and (c) are characteristics of a neutral solution, which may not necessarily exist at the equivalence point of a titration.
- 3. (a) The  $pK_a$  of the indicator  $(-\log K_a)$  should be near the equivalence point of the titration (pH = 7). Only bromothymol blue indicator has a  $K_a$  with a factor of  $10^{-7}$ .
- 4. (d) Since the pH is less than  $pK_a$  of the indicator, the undissociated form predominates. pH=2;

 $pK_a = -\log K_a = -\log 4 \times 10^{-4} = 4 - 2\log 2 > 2$ At pH < pK<sub>a</sub>, the equilibrium of reaction -1 shifts to the left to give predominantly HMe, and hence the red colour. 91. (c) For the weak acid HA, we have

HA 
$$\longrightarrow$$
 H<sup>+</sup> + A<sup>-</sup>  $K_a = \frac{[H^+][A^-]}{[HA]}$   
= 1.0 × 10<sup>-4</sup> (given) ...(i)

The reaction of acid with base is

 $HA + BOH \longrightarrow BA + H_2O$ 

(acid) (strong base)

or 
$$HA+OH^- \implies A^-+H_2O$$
 [BOH is fully ionised]

$$\therefore \qquad K = \frac{[A^-]}{[HA][OH^-]} \qquad \dots (ii)$$

Also  $K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$ From equation (i), (ii) and (iii), we get

$$K = \frac{K_a}{K_w} = \frac{1.0 \times 10^{-4}}{1.0 \times 10^{-14}} = 1.0 \times 10^{10}$$

92. (a)  $(a) \operatorname{Na}^+$  ion is a weak acid and  $\operatorname{Cl}^-$  ion is a weak base.

The reactions  $CH_3COO^- + Na^+ \longrightarrow CH_3COONa$ 

....(iii)

and  $H^+ + Cl^- \longrightarrow HCl$  do not occur.

(b) Ionization of  $CH_3COOH$  is suppressed due to common ion (H<sup>+</sup>) effect by strong acid HCl.

(c) & (d) In these cases degree of dissociation increases.

- (a) By only using a few drops of indicator, the number of H<sup>+</sup> ions that the indicator interacts with is kept to a minimum.
- (b) On addition of 50ml NaOH,

6.

$$[\mathrm{H}^+] = \frac{100 \times 0.1 - 50 \times 0.1}{150} = \frac{1}{30} \, \mathrm{mol} \, \mathrm{L}^{-1}$$

 $pH = -\log\frac{1}{30} = \log 30 = 1.48$ 

On addition of 100 ml NaOH, there is complete neutralization of the acid and base. pH = 7.0 (no salt hydrolysis)

On addition of 150ml NaOH,

$$[OH] = \frac{\text{meqvts of NaOH} - \text{meqvts of HCl}}{\text{Volume of mixture}}$$
$$= \frac{150 \times 0.1 - 100 \times 0.1}{150 + 100} = \frac{1}{50} \text{molL}^{-1}$$

Hence, 
$$[H^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = 1.0 \times 10^{-14} \times 50$$
  
= 5×10<sup>-13</sup>; pH = 12.3

7. (c) On addition of 50ml;  $pH = 14 - pK_a - log \frac{[Salt]}{[Base]}$ 

$$= 14 + \log 2 \times 10^{-5} - \log \frac{50 \times 0.1}{100 \times 0.1 - 50 \times 0.1} = 9.3$$

On addition of 100ml, the equivalence point is reached and the salt formed undergoes hydrolysis.

$$[Salt] = \frac{100 \times 0.1}{100 + 100} = 0.05 \text{ mol } \text{L}^{-1}$$
  
Hence, pH =  $\frac{1}{2}$  [pK<sub>w</sub> - pK<sub>b</sub> - log C]

$$= \frac{1}{2}(14 + \log 2 \times 10^{-5} - \log 0.05) = 5.3$$

8. (b) At the equivalence point of titration of a weak acid with a weak base,

$$pH = \frac{1}{2}(pK_w + pK_a - pK_b)$$
$$= \frac{1}{2}(14 - \log 1.8 \times 10^{-4} + \log 1.8 \times 10^{-5}) = 6.5$$

9. (c) At the equivalence point of titration of strong acid with a strong base, the solution will be neutral.

Hence, 
$$[H^+] = [OH] = \sqrt{4 \times 10^{-14}} = 2 \times 10^{-7}$$
  
pH = - log  $[H^+] = -\log 2 \times 10^{-7} = 6.7$ 

**10.** (a) Meq. of HA mixed =  $50 \times 0.2 = 10$ 

Meq. of KOH mixed = 
$$50 \times 0.2 = 10$$

Hence, the complete neutralization of the acid and base.

But the salt formed (KA) will be hydrolysed to give basic solution ( $\because$  stronger base than acid). Since at the equilibrium point, volume of solution is doubled,

salt concentration 
$$=\frac{1}{2} \times 0.2 = 0.1 M$$
  
 $pH = \frac{1}{2}(pK_w + pK_a + \log C)$   
 $=\frac{1}{2}(14 - \log 1.0 \times 10^{-5} + \log 0.1) = 9.0$ 

11. (b) At point-2, first neutralization point of B reaches.
 B + H<sup>+</sup> → BH<sup>+</sup>
 At point-4, second neutralization point of B reaches.

 $BH^+ + H^+ \longrightarrow BH^{2+}$ 

At the half neutralization of  $BH^+$  corresponding to point 3,  $[BH^+] = [BH^{2+}]$ 

12. (d) Point-2 corresponds to the reaction,  $B + H^+ \longrightarrow BH^+$ 

Then, 
$$M_1V_1 = M_2V_2$$
 or  $0.1 \times 20 = 0.1 \times V_2$ 

$$\Rightarrow V_2 = 20 \text{ ml}$$

- 13. (a) At point 4, the cation  $BH^{2+}$  of the salt formed will hydrolyse to give acidic solution. Hence pH < 7.
- 15. (c) Given solubility of calcium phosphate at  $25^{\circ}$ C

$$= w g/100 mL$$
  
= 10 w g/1000 mL

$$= 10 w g/L$$

$$=\frac{10w}{M} \text{ mol/L} \qquad (\text{molecular weight}=M)$$

 $Ca_3(PO_4)_2$  ionises in water as :

$$\operatorname{Ca}_3(\operatorname{PO}_4)_2 \xrightarrow{} 3\operatorname{Ca}^{2+} + 2 \operatorname{PO}_4^{3-}$$

If solubility is 'S' then at equilibrium, we have the following concentration values.

$$Ca_{3} (PO_{4})_{2} \xrightarrow{} 3Ca^{2+} + 2 PO_{4}^{3-}$$
(1-S) 3S 2S  
Thus  $K_{sp} = (3S)^{3} \times (2S)^{2}$   
 $= 27S^{3} \times 4S^{2}$   
 $= 108 S^{5}$ 

Since the solubility of calcium phosphate at 25°C

$$= \left(\frac{10w}{M}\right)$$
  
We get  $K_{sp} = 108 \times \left(\frac{10w}{M}\right)^5$ 
$$= 1.08 \times 10^7 \times \left(\frac{w}{M}\right)^5$$
$$\approx 1 \times 10^7 \times \left(\frac{w}{M}\right)^5$$

16. (d) 
$$MX = M^+ + X^-$$
  
 $(1-S) \qquad S \qquad S$   
 $K_{sp} = S^2$   
or  $S = \sqrt{K_{sp}}$   
 $= \sqrt{2.5 \times 10^{-9}}$   
 $= \sqrt{25 \times 10^{-10}} \text{ or } 5.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$ 

17. (c)  $CaCl_2 \longrightarrow Ca^{2+} + 2Cl^{-}$ 

 $CaCl_2$  is strong electrolyte and may be considered as completely ionised at 25°C

$$\therefore [Cl^{-}] \text{ in } 0.04 \text{ M } CaCl_2 = 2 \times 004 = 0.08 \text{ M}$$
$$K_{sp} = [Ag^{+}] [Cl^{-}] = 4.0 \times 10^{-10}$$
$$\therefore [Ag^{+}] = \frac{4.0 \times 10^{-10}}{0.08}$$

$$= 5.0 \times 10^{-9}$$

**18. (b)** 
$$pH = pK_a = \log \frac{[Salt]}{[acid]}$$

$$=4.73 + \log \frac{0.05}{0.1} = 4.43$$

### **REASONING TYPE**

- 1. (c)  $NH_4Cl$  suppresses the ionisation of  $NH_4OH$  due to common ion effect and concentration of  $OH^-$  ions is just sufficient to precipitate third group radicals as hydroxide. IV group hydroxides, having high  $K_{sp}$ , are not precipitated.
- 2. (a) According to Henderson-Hasselbalch equation

$$pH = pK_a + \log \frac{[proton acceptor]}{[proton donor]}$$

At midpoint of titration of weak acid

 $[HA] = [A^{-}]$  and hence  $pH = pK_a + \log 1.0 = pK_a$ 

- 3. (d) The pH of an aq. solution of acetic acid changes (increases) on addition of sodium acetate (due to suppression of dissociation of CH<sub>3</sub>COOH and hence decrease in H<sup>+</sup> ion concentration).
- 4. (a) Reason is the correct explanation of Assertion.
- 5. (a) Reason is the correct explanation of Assertion.
- (b) HgI<sub>2</sub> combines with KI to form the soluble complex K<sub>3</sub>HgI<sub>4</sub>. Also I<sup>−</sup> ion, being large in size, is highly

19. (c) 
$$pOH = pK_b + \log \frac{[Salt]}{[base]}$$
  
 $pK_b = -\log K_b = -\log 1.80 \times 10^{-5}$   
 $= 4.7447$   
∴  $pOH = 4.7447 + \log \frac{0.25}{0.20}$   
 $= 4.8417$   
Also  $pOH + pH = 14$   
∴  $pH = 14 - 4.8417 = 9.16$ 

**20.** (b) To find the ratio  $\frac{[salt]}{[acid]}$  in an acidic buffer (contain-

ing an acid and its salt, we use the equation,

$$pH = pK_a + \log \frac{[salt]}{[acid]}$$
.

Substituting the given values, we get

$$5 = 4 + \log \frac{[\text{salt}]}{[\text{acid}]}$$

÷.

7.

8.

10.

 $\log \frac{[\text{salt}]}{[\text{acid}]} = 5 - 4 = 1$  $= \log 10$ 

$$\frac{[\text{salt}]}{[\text{acid}]} = 10 (\text{Taking antilog})$$

or [salt] : [acid] = 10 : 1 i.e. option (b).

polarisable but reason is not the correct explanation of assertion.

- (b) In presence of NaCl, [Cl<sup>-</sup>] increases very much. Hence  $[Ag^+]$  decreases to keep  $K_{sp} = [Ag^+][Cl^-]$  constant.
- (b)  $H_2SO_4$ , HCl and HNO<sub>3</sub> dissociate to different extent in acetic acid because acetic acid is a poor proton acceptor and hence acts as a differentiating solvent.
- **9.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
  - (b) Both assertion and reason are correct, but reason is not the correct explanation of assertion.In aqueous solution various given acids have equal strengths because the same acid hydronium ion, is common to all such solutions.

The tendency of all strong acids to ionize completely in water is known as levelling effect.

11. (b) Both assertion and reasons are correct but reason is not the correct explanation of assertion.In HF there is inter-molecular hydrogen bonding which results in association.

### MULTIPLE CORRECT CHOICE TYPE

- (b, c, d) In case of (b), (c) and (d), the salts are of weak bases with strong acids and undergo hydrolysis to give acidic solutions. CH<sub>3</sub>COONa (salt of weak acid with a strong base) gives basic solution.
- 2. (a,d) Due to common ion effect of  $NH_4^+$  ionisation of  $NH_3$  is suppressed. As a result [OH<sup>-</sup>] decreases and so also pH.
- 3. (b,d) Solutions (a) and (c) are not buffers. (a) is  $CH_3COONa$  solution whereas (c) contains  $CH_3COONa$  and NaOH(excess).
- (a, b, c) Amphiprotic species can accept and give up a proton.

 $H_2SO_4^-$  & HSO\_3^{2-} can accept H<sup>+</sup> only whereas  $H_3PO_4$  can give up H<sup>+</sup> only.

- 5. (b, c)  $H_2SO_4^-$  can accept and give up  $H^+$ . (a) and (d) are ionisation reactions.
- 6. (b,d) (a)  $CH_3COONa + HCl \longrightarrow CH_3COOH + NaCl$ (CH<sub>3</sub>COONa and CH<sub>3</sub>COOH in 1:1 mole ratio)

(c)  $CH_3COONa + HCl \longrightarrow CH_3OOH + NaCl$ (HCl is in excess)

- 7. (a, b, c)
- 8. (b,c) In (a) and (d), [NH<sub>4</sub><sup>+</sup>] remains very small due to feeble ionization of the weak base, irrespective of its concentration.

In (b), ammonium salt  $[NH_4Cl]$  is formed whereas in (c) the salt is added. Salt ionizes completely and causes ammonium ion concentration to increase drastically.

9. (b,c) (a)  $50 \times 0.1 = 5 \text{ m molof CH}_3\text{COOH will neutralize}$ completely  $50 \times 0.1 = 5 \text{ m mol of NaOH to form}$ CH<sub>3</sub>COONa and water. But acetate ion (being strong conjugate base of the weak acid CH<sub>3</sub>COOH) of the salt hydrolyses to give basic solution.

 $CH_3COO^- + H_2O \Longrightarrow$ 

$$CH_3COOH + OH^-$$
 (pH > 7)

(b)  $100 \times 0.1 = 10 \text{ mmol of CH}_3\text{COOH and } 50 \times 0.2$ = 10 m mol of NH<sub>3</sub> will neutralize each other completely to give CH<sub>3</sub>COONH<sub>4</sub>. Both anion and cation of the salt hydrolyse equally (K<sub>a</sub> =  $1.8 \times 10^{-5}$ ; K<sub>b</sub> =  $1.8 \times 10^{-5}$ ) to give neutral solution.

 $CH_3COO^- + NH_4^+ + H_2O \longrightarrow$  $CH_3COOH + NH_4OH \qquad (p^H = 7)$ 

- (c)  $100 \times 0.1 = 10 \text{ m mol of HCl and } 5.0 \times 0.2 = 10 \text{ m mol of KOH neutralize each other completely to give KCl. Neither K<sup>+</sup> ion ( weak acid) nor Cl<sup>-</sup> ion ( weak base) hydrolyse (pH=7)$
- (d)  $50 \times 0.1 = 5 \text{ m mol of HCl and } 50 \times 0.1 = 5 \text{ m mol of NH}_3$  neutralize one another completely. However, the cation (NH<sub>4</sub><sup>+</sup> ion) of the salt hydrolyses to give acidic solution.

$$NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+ (pH < 7)$$

**10.** (a,b,c,d) (a)  $NH_3 + NH_3 \implies NH_4^+ + NH_2^-$ 

(Autoionization of NH<sub>3</sub>)

(b)  $H_2O$  has weaker acid properties than acetic acid

(c) Liquid  $CH_3COOH$  has stronger acidic properties than water.

(d) In water  $NH_4^+$  ion represses the ionization of  $NH_3$  in the buffer. Hence buffer is less basic than  $NH_3$ .

11. (a,c) (a)  $[Al(H_2O)_6]^{3+}$  gave up a proton while  $[Cu(H_2O)_3OH]^+$  accepted it.

(c) I and III differ by a proton and so also II and IV.

- 12. (b,c,d) Acid-base conjugate pair, the acid and base differ by a proton.
- **13.** (b,c,d) (a)  $K_b$  permitts the calculation of [OH<sup>-</sup>]. For [H<sup>+</sup>] and hence pH calculation  $K_w$  is also required.

(b) From  $K_b$  value, [OH<sup>-</sup>] can be calculated. Using  $K_w = 1.0 \times 10^{-14}$ , [H<sup>+</sup>] can be calculated. Hence the pH.

(c) pH (acid buffer)

$$= pK_a + log \frac{[A^-]}{[HA]}$$
 (K<sub>a</sub> suffices)

(d) The  $CH_3COO^-$  ion of the salt hydrolyses as

$$CH_{3}COO^{-} + H_{2}O \longrightarrow CH_{3}COOH + OH^{-}$$

$$pH = \frac{1}{2}pK_{w} + \frac{1}{2}pK_{a} + \frac{1}{2}\log[Anion]$$

Both  $K_a$  and  $K_w$  are needed.

**14.** (a,b) For acid-base conjugate pair, 
$$K_a K_b = 1.0 \times 10^{-14}$$
  
 $K_a = 1.0 \times 10^{-14} / K_b = 1.0 \times 10^{-14} / 1.0 \times 10^{-5}$   
 $= 1.0 \times 10^{-9}$ 

For ionization of acid-base indicator HIn :

$$HIn \rightleftharpoons H^+ + In^-$$

$$K_a = \frac{[\mathrm{H}^+][\mathrm{In}^-]}{[\mathrm{HIn}]} \qquad \mathrm{pH} = \mathrm{pK}_\mathrm{a} + \log \frac{[\mathrm{In}^-]}{[\mathrm{HIn}]}$$

(a) For 8% red form (HIn), pH = 
$$9 + \log \frac{20}{80} = 8.4$$

- (b) For 80% blue form (In<sup>-</sup>),  $pH=9 + \log \frac{80}{20} = 9.6$
- **15.** (a,c) (a), (c) CH<sub>3</sub>COOH and NH<sub>3</sub> are weak acid and base respectively and ionise in aqueous solution to a small extent.

(b) Hydrolysis of  $CH_3COO^-$  ion (conjugate base of weak acid  $CH_3COOH$ ) occurs to a small extent.

(d) The reaction is acid-base neutralization which goes almost to completion.

(a,b,c,d) (a) CH<sub>3</sub>COO<sup>-</sup> is a strong conjugate base of the weak acid CH<sub>3</sub>COOH and takes up proton from a strong acid almost completely.

(b,d) Both reactions are acid-base neutralization and occur to nearly full extent.

(c)  $\text{NH}_4^+$  ion (conjugate acid of weak base  $\text{NH}_3$ ) and  $\text{OH}^-$  ion (strong conjugate base of weak acid  $\text{H}_2\text{O}$ ) react almost completely. 17. (b,c) (a)  $NaH_2PO_3 + NaOH \rightarrow Na_2HPO_3 + H_2O$ (H<sub>3</sub>PO<sub>3</sub> is dibasic acid)

(b)  $Na_2HPO_3$  is normal salt and does not react any more with NaOH

(c)  $NaH_2PO_2$  is normal salt of the monobasic acid  $H_3PO_2$  and does not react with NaOH.

(d)  $Na_2HPO_4$  (acid salt) +  $NaOH \rightarrow Na_3PO_4$  + H<sub>2</sub>O (H<sub>3</sub>PO<sub>4</sub> is tribasic acid)

**18.** (**b**,**c**)  $\text{HPO}_4^{2-}$  is conjugate base of  $\text{H}_2\text{PO}_4^{-}$ 

There occurs an increase in the value of autoprotolysis constant of water when temperature is increased.

The pH of  $1 \times 10^{-8}$ M HCl is not 8. It is less than 7.

At half neutralization of weak acid with a strong base  $pH = pK_a$   $\therefore$  [Acid] = [Salt]

19. (c,d) On addition of oxalic acid  $(C_2H_2O_4)$  a stable complex of Fe<sup>3+</sup> [Fe  $(C_2O_4)_3$ ]<sup>3-</sup> is formed and it results in decrease of [Fe<sup>3+</sup>] in solution. Due to this the reaction shifts backwards and there is a decrease in red colour.

On addition of  $HgCl_2$  (aq),  $Hg^{2+}$  combines with  $SCN^-$  and forms [Hg  $(SCN)_4$ ]<sup>2-</sup> which shifts the equilibrium backwards.

**20.**  $(\mathbf{a}, \mathbf{c}, \mathbf{d})$  The pH of BaI<sub>2</sub> solution = 7.

In all other cases it will be less than 7 as it involves cationic hydrolysis.

- **21.** (a, c) A buffer solution consists of a weak base or weak acid and its salt, so (b) and (d) are wrong.
- (a,b) The more acidic is considered as acid. In this case NaH<sub>2</sub>PO<sub>4</sub> is more acidic so it is acid. The other species is salt.

The equilibrium constant to be used in Hendersons equation for calculating pH should be one relating to the acid specices to its salt i.e.,

 $H_2PO_4^- \Longrightarrow HPO_4^{2-} H$ 

So  $K_2$  is the relevant equilibrium constant and the given equation can be used to calculate pH.

### 📃 МАТRIX-МАТСН ТҮРЕ 📃

- 1. A-r, s; B-q, R; C-p; D-q, r
  - (A) Bronsted-Lowry acid : Proton donor;  $H_2PO_4^-$  and

 $\mathrm{NH_4}^+$  can donate proton.

(B) Bronsted-Lowry base : Proton acceptor;

 $\operatorname{CH}_{3}^{-} + \operatorname{H}^{+} \longrightarrow \operatorname{CH}_{4};$ 

$$H_2PO_4^- + H^+ \longrightarrow H_3PO_4$$

(C) Lewis acid : An electron pair acceptor;  $CH \stackrel{\oplus}{\to} : H^{-} \longrightarrow CH$ 

$$CH_3 + H \longrightarrow CH_4$$

(D) Lewis base : An electron pair donor;

$$\operatorname{CH}_3^-:+\operatorname{H}^+\longrightarrow\operatorname{CH}_4$$

$$\begin{array}{c} O & O \\ \uparrow & O \\ H - O - P - O^{\Theta} : + H^{+} \longrightarrow H - O - P - O \rightarrow H \\ | & | \\ O & O \\ | & | \\ H & H \end{array}$$

### 2. A-r, s; B-p, r; C-p, r; D-q

(A) For maximum buffer capacity, [acid] = [salt] or [base] = [salt]

For acid buffer with maximum capacity :

$$pH = pK_a + log \frac{[salt]}{[Acid]} = pK_a$$

For basic buffer with maximum buffer capacity :

$$pOH = pK_b + log \frac{[salt]}{[Acid]} = pK_b$$

(B) On adding equal number of moles of CH<sub>3</sub>COOH

and  $\rm CH_3COONa$  , the term  $\log \frac{[\rm CH_3COONa]}{[\rm CH_3COOH]}$ 

remains constant, i.e. zero. Hence  $pH = pK_a$ , a constant

(C) On dilution of the buffer, the term  $\frac{[CH_3COONa]}{[CH_3COOH]}$ 

remains constant. Hence  $pH = pK_a = constant$ 

(D) On adding of NaOH :

 $\mathrm{CH}_{3}\mathrm{COOH} + \mathrm{NaOH} \longrightarrow \mathrm{CH}_{3}\mathrm{COONa} + \mathrm{H}_{2}\mathrm{O}$ 

Hence,  $\frac{[CH_3COONa]}{[CH_3COOH]}$  increases and the log term

becomes greater than zero, i.e  $pH > pK_a$ 

### 3. A-s; B-p; C-q; D-r, s

At high temperature and pressure,

 $K_{\rm w} = [{\rm H}_3{\rm O}^+] [{\rm OH}^-] = 1.0 \times 10^{-10}$ 

 $[H_3O^+] = [OH^-]$  for pure water or neutral solution =

 $1.0 \times 10^{-5} \, \text{M}$ 

pH of neutral solution or pure water =  $-\log 1.0 \times 10^{-5} = 5$ 

- pH > 5 (basic); pH < 5 (acidic)
- (D) pH + pOH = 10pOH = 10 - pH = 10 - 7 = 3

 $[OH^{-}] = 10^{-3} M$ 

- 4. A-q; B-r; C-p; D-p; s
  - (A)  $KCN + H_2O \longrightarrow KOH + HCN$  (weak acid)

$$pH = \frac{1}{2} (pK_w + pK_a + \log[CN^-])$$
$$= \frac{1}{2} [14 + pK_a + \log 0.1] = 6.5 + \frac{1}{2} pK_a$$

(B)  $C_6H_5NH_3Cl + H_2O \longrightarrow C_6H_5NH_3OH + HCl$ (Cataionic hydrolysis)

$$pH = \frac{1}{2}(pK_a - pK_b - \log[C_6H_5NH_3^+])$$
$$= \frac{1}{2}(14 - pK_b - \log 0.1] = 7.5 - \frac{1}{2}pK_b$$

- (C) KCl Salt of strong acid (HCl) and strong base (KOH), hence no salt hydrolysis; pH = 7
- (D)  $CH_3COO^- + NH_4^+ + H_2O \longrightarrow CH_3COOH + NH_4OH$

$$pH = \frac{1}{2}(pK_{w} + pK_{b} - pK_{b}) = \frac{1}{2}[14 + pK_{a} - pK_{b}] = 7$$
  
(pK<sub>a</sub> = pK<sub>b</sub> in this case)

- 5. A-q, s; B-p, r; C-p, r; D-q, s
  - (A)  $HCO_3^- + H_2O \longrightarrow H_2CO_3 + OH^-$  (Anionic hydrolysis, basic)
  - (B)  $Cu^{2+} + 2H_2O \longrightarrow Cu(OH)_2 + 2H^+$  (Cationic hydrolysis, acidic)
  - (C)  $Al^{3+} + 3H_2O \longrightarrow Al(OH)_3 + 3H^+$  (cationic hydrolysis, acidic)
  - (D)  $CN^- + H_2O \longrightarrow HCN + OH^-$  (Anionic hydrolysis, basic)

6. A - r; B - q, s; C - r; D - p, s

A  $\rightarrow$  The salt of weak acid and weak base where  $pK_a = pK_b$ will be neutral because all H<sup>+</sup> and OH<sup>-</sup> ions will combine to form water. In solution there is neither excess of H<sup>+</sup> nor OH<sup>-</sup> ions

B → In solution [OH]<sup>-</sup>> [H<sup>+</sup>] so it is basic. Since  $K_a$  and  $K_b$  values are not given so pH of such a solution can not be predicted.

 $C \rightarrow$  Such a solution is neutral

 $D \rightarrow$  It will be acidic but its pH can't be predicted because  $K_a$  and  $K_b$  values are not given.

7. A-q, r; B-p, s; C-p, q, s; D-p, s

Bronsted bases are proton acceptors.

Bronsted acids are proton donors.

Arrhenius acids produce H<sup>+</sup> ions in aqueous solution.

Lewis bases are electron pair donors.

### F 📃 Numeric/Integer Answer Type 🚃

1. Calculate  $[Ag^+]$ , needed separately to precipitate  $CrO_4^{2-}$  and  $Br^-$ . Smaller the value of  $[Ag^+]$ , earlier the precipitation of that species. Using  $[Ag^+]$  required to precipitate the ion at later stage, concentration of the ion earlier precipitated can be calculated.

For precipitation of  $Ag_2CrO_4$ ,  $[Ag^+]^2[CrO_4^{2-}] > K_{sp}$ 

$$[Ag^{+}]_{\min} = \left(\frac{K_{sp}(Ag_{2}CrO_{4})}{[CrO_{4}^{2^{-}}]}\right)^{\frac{1}{2}}$$
$$= \frac{2.25 \times 10^{-12}}{0.010} = 1.50 \times 10^{-5} M$$

For precipitation of AgBr,  $[Ag^+][Br^-] > K_{sp}$  (AgBr)

$$[Ag^+]_{\min} = \frac{K_{sp}(AgBr)}{[Br^-]} = \frac{5.0 \times 10^{-13}}{0.010} = 5.0 \times 10^{-11} M$$

 $[Ag^+]$  required for precipitation of AgBr is less than that required for precipitation of Ag<sub>2</sub>CrO<sub>4</sub>. Hence, AgBr precipitates earlier than Ag<sub>2</sub>CrO<sub>4</sub>.

 $[Ag^+]$  when  $Ag_2CrO_4$  starts precipitating =

 $1.50 \times 10^{-5} M$ 

[Br<sup>-</sup>] remaining at this stage =

$$\frac{K_{sp}(\text{AgBr})}{[\text{Ag}^+]} = \frac{5.0 \times 10^{-13}}{1.5 \times 10^{-5}} = 3.33 \times 10^{-8} M$$

**2.** For no precipitation to occur,  $[Ag^+][Cl^-] \le K_{sp}$ 

$$[\mathrm{Ag}^+] \le \frac{K_{sp}[\mathrm{AgCl}]}{[\mathrm{Cl}^-]} = \frac{1.8 \times 10^{-10}}{0.010} = 1.8 \times 10^{-8} M$$

Since maximum concentration of uncomplexed (free) Ag<sup>+</sup> ion is  $1.8 \times 10^{-8} M$ , almost all Ag<sup>+</sup> = (0.10 M) must be complexed, i.e. [(AgNH<sub>3</sub>)<sup>+</sup><sub>2</sub>] = 0.1M

$$Ag^+_{(aq)} + 2NH_{3(aq)} \rightleftharpoons [Ag(NH_3)_2]^+_{(aq)}$$

Formation constant  $K_{(f)} = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2} = 1.5 \times 10^7$ 

$$\frac{0.1}{1.8 \times 10^{-8} [\text{NH}_3]^2} = 1.5 \times 10^7$$
$$[\text{NH}_3]^2 = 0.370 \qquad [\text{NH}_3]_{\text{free}} = 0.608 M$$

 $[NH_3]$  needed by 0.1 M Ag<sup>+</sup> for the formation of

complex,  $Ag(NH_3)_2^+ = 2 \times 0.1 = 0.2 M$ 

Hence, total concentration of

$$\mathrm{NH}_3 = 0.608 + 0.20 = 0.808 \, M$$

3. Mol of  $K_2CO_3$  at equilibrium = mol of  $K_2C_2O_4$  reacted = 0.0358

> Mol of  $K_2C_2O_4$  at equilibrium = initial mol – reacted mol = 0.1520 - 0.0358 = 0.1162

It *x* is the degree of dissociation of  $K_2C_2O_4$  and

$$K_2CO_3$$

then  $[C_2O_4]^{2-} = \frac{\text{mol of } K_2C_2O_4 \times x}{\text{volume of solution } (L)} = \frac{0.1162 \times x}{0.5}$  $= 2 \times 0.1162 \times x \text{ mol } L^{-1}$ 

$$[\mathrm{CO}_3^{2^-}] = \frac{\text{mol of } \mathrm{K}_2 \mathrm{CO}_3 \times x}{\text{volume of solution} (\mathrm{L})} = \frac{0.0358 \times x}{0.5}$$

$$= 2 \times 0.0358 \times x \, \operatorname{mol} L^{-1}$$

$$K_{sp}(Ag_2C_2O_4) = [Ag^+]^2[C_2O_4^{2-}]$$

$$K_{sp}(Ag_2CO_3) = [Ag^+]^2[CO_3^{2-}]$$

Hence, 
$$K_{sp}(Ag_2CO_3) = \frac{[CO_3^{2-}]}{[C_2O_4^{2-}]} \times K_{sp}(Ag_2C_2O_4)$$

 $\frac{0.0358 \times 2 \times x}{0.1162 \times 2 \times x} \times 1.29 \times 10^{-11} = \mathbf{3.974} \times 10^{-12}$ 

4. Ionisation of  $CN^{-}$ ,

$$CN^- + H_2O \implies HCN + OH^-$$

Ionisation of CH<sub>3</sub>COO<sup>-</sup>,

 $CH_3COO^- + H_2O \implies CH_3COOH+OH^-$ 

$$K_{b}^{'} = \frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]} = 5.55 \times 10^{-10}$$
 ....(2)

Equilibrium constant of the reaction

$$CN^- + CH_3COOH \implies HCN + CH_3COO^-$$
 is given

by 
$$K = \frac{[\text{HCN}][\text{CH}_3\text{COO}^-]}{[\text{CN}^-][\text{CH}_3\text{COOH}]}$$
 ....(3)

From eq. (1), (2) and (3), 
$$K = \frac{K_b}{K'_b} =$$

$$\frac{2.04 \times 10^{-5}}{5.55 \times 10^{-10}} = 3.68 \times 10^{4}$$

Let x mol L<sup>-1</sup> be the solubility of AgBr in  $1.0 \times 10^{-7} M$ 5. AgNO<sub>3</sub>. Then

$$[Ag^{+}] = x + 1.0 \times 10^{-7} \text{ molL}^{-1} ; [Br^{-}] = x \text{ mol } L^{-1}$$
  

$$K_{sp}(AgBr) = [Ag^{+}][Br^{-}] = (x + 1.0 \times 10^{-7}) \times x =$$
  

$$12 \times 10^{-14} \text{ (given)}$$
  

$$x = 3 \times 10^{-7} M$$
  
Hence, 
$$[Ag^{+}] = 3 \times 10^{-7} + 1.0 \times 10^{-7} = 4 \times 10^{-7} M ,$$
  

$$[Br^{-}] = 3 \times 10^{-7} M$$
  

$$[NO_{3}^{-}] = 1.0 \times 10^{-7} M] \text{ (S m}^{2} \text{mol}^{-1})$$
  
Conductivity (k) = molar conductance concentration  
(mol m<sup>-3</sup>)

$$k(Ag^{+}) = 6 \times 10^{-3} Sm^{2}mol^{-1} \times 4 \times 10^{-7} \frac{mol}{dm^{3}} =$$

$$6 \times 10^{-3} \,\mathrm{Sm}^{2} \mathrm{mol}^{-1} \times \frac{4 \times 10^{-7}}{10^{-3}} \frac{\mathrm{mol}}{\mathrm{m}^{3}} = 24 \times 10^{-7} \,\mathrm{Sm}^{-1}$$

$$k \,(\mathrm{Br}^{-}) = 8 \times 10^{-3} \,\mathrm{Sm}^{2} \mathrm{mol}^{-1} \times 3 \times 10^{-7} \frac{\mathrm{mol}}{\mathrm{dm}^{3}} =$$

$$8 \times 10^{-3} \,\mathrm{Sm}^{2} \mathrm{mol}^{-1} \times \frac{3 \times 10^{-7}}{10^{-3}} \frac{\mathrm{mol}}{\mathrm{m}^{3}} = 24 \,\mathrm{Sm}^{-1}$$

$$k \,(\mathrm{NO}_{3}^{-}) = 7 \times 10^{-3} \,\mathrm{Sm}^{2} \mathrm{mol}^{-1} \times 1.0 \times 10^{-7} \frac{\mathrm{mol}}{\mathrm{dm}^{3}} =$$

$$7 \times 10^{-3} \,\mathrm{Sm}^{2} \mathrm{mol}^{-1} \times \frac{1.0 \times 10^{-7}}{10^{-3}} \frac{\mathrm{mol}}{\mathrm{m}^{3}} = 7 \times 10^{-7} \,\mathrm{Sm}^{-1}$$
Conductivity of solution
$$(\mathrm{k}) = \mathrm{k} \,(\mathrm{Ag}^{+}) + \mathrm{k} \,(\mathrm{Br}^{-}) + \mathrm{k} \,(\mathrm{NO}_{3}^{-})$$

$$(24 \times 10^{-7} + 24 \times 10^{-7} + 7 \times 10^{-7}) \,\mathrm{Sm}^{-1} = 55 \times 10^{-7} \,\mathrm{Sm}^{-1}$$

$$\bigstar \diamondsuit$$

