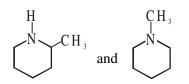

RACE # 60			ISOMERISM	CHEMISTRY
1.	A position isomer of butyne-1 is -			
	(A) Butene-1	(B) Butene-2	(C) Butyne-2	(D) Buta-1, 3-diene
2.	Which of the following is an isomer of propanal ?			
	(A) Ethanol	(B) Acetone	(C) Propanol	(D) Popanoic acid
3.	Compounds $CH_3NHC_3H_7$ and $C_2H_5NHC_2H_5$ exhibit –			
	(A) Geometrical isomerism		(B) Optical isomerism	n
	(C) Position isomerism		(D) Metamerism	(D) Metamerism
4.	Which type of isomerism is shown by diethyl ether and methyl propyl ether ?			
	(A) chain	(B) function	(C) metamerism	(D) position
5.	How many primary amines are possible for the formula $C_4H_{11}N$?			
	(A) 1	(B) 2	(C) 3	(D) 4
6.	$C_{7}H_{7}Cl$ shows how many isomers ?			
	(A) 4	(B) 5	(C) 3	(D) 2
7.	Which of the following are chain isomers :			
		ÇH ₃		CN
		-		
	(A) $CH_3CH_2CH_2$ -Cl	& $CH_3 - CH - Cl$	(B) $CH_3CH_2CH_2$ –CN	$\& CH_3 - CH - CH_3$
				Ft
		& CU CU CU		
	(c) $CH_3CH_2CH_2CH_3$	$H_3 \& CH_3 - CH - CH_3$	$(D) \sim \bigvee_{E^{\star}} \sim \sim$	æ
		ĊH ₃	Et	
8.	One of the following is not the pair of functional isomers.			
			0	О
	(A)O		(B) $\left\langle \bigcirc - \begin{matrix} I \\ C - O \end{matrix} \right\rangle$	-H and H-C-O- $\langle O \rangle$
	0		~	
			O L	

9. Write increasing order of heat of hydrogenation :

and

(C)


10. How many total number of structural isomer are possible for C_4H_7Cl having parent chain of four carbon.

(D) -

0

and

) O 11. Identify the relationship between the given compound :

12. Which of the following is correct matchings?

Column –I

- (A) $CH_3-C-OH & H-C-OCH_3$ metamers (B) $CH_3-CH_2-C\equiv CH$ position & $CH_3-C\equiv C-CH_3$ isomers
- (C) CH₃CH₂CH₂NH₂ & CH₃-CH-CH₃

- (D) CH₃CH₂OH & (CH₃)₂O
- 13. Match the column : Column-I (Compound)

 \cap

Column-II (Isomerism)

Column -II

tautomers

tautomers

(A) $\underset{\text{H}}{\text{D}} \subset = C \overset{\text{H}}{\underset{\text{OCH}_3}} \text{ and } \underset{\text{H}}{\text{D}} \subset = C \overset{\text{CH}_2\text{OH}}{\underset{\text{H}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{\text{OH}}}{\overset{\text{OH}}}{\overset{\text{OH}}{\overset{OH}}}{\overset{\text{OH}}{\overset{OH}}}}}}}}}}}}}}}}}$

 \cap

(C)
$$\underset{Cl}{H} \subset = C \subset \underset{CH_2CN}{H} \text{ and } \underset{H}{H} \subset = C \subset \underset{CH_2N}{H}$$

(D) H and H

- (P) Functional isomers
- (Q) Geometrical isomers
- (R) Position isomers
- (S) Chain isomers
- (T) Metamer

RACE # 60 (C) 1. 2. (B) 3. (D) 4. (C) **5.** (D) **6.** (A) **7.** (BCD) 8. (D) $(A) \rightarrow P$; $(B) \rightarrow T$; $(C) \rightarrow P$; $(D) \rightarrow S$ 9. (ii) > (i) > (iii)10. (FGI) **12.** (B) 13. (7)11.