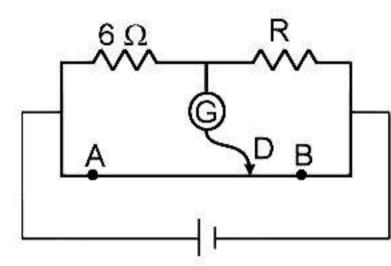
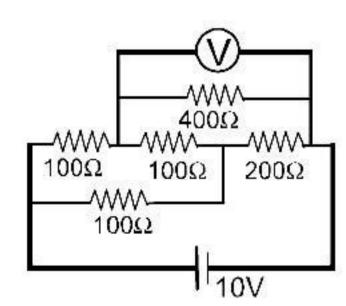
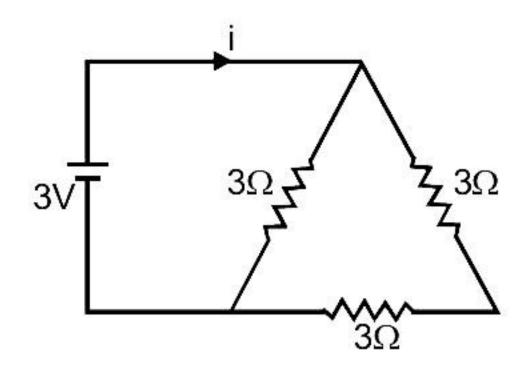

TARGET JEE-MAINS


Maximum Time 50 Min

SYLLABUS: CURRENT ELECTRICITY


1. The current through the ammeter shown in figure is 1 A. If each of the 4Ω resistor is replaced by 2Ω resistor, the current in circuit will become nearly:

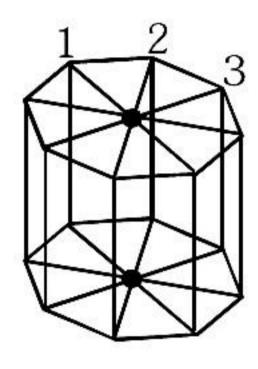
- (A) $\frac{10}{9}$ A
- (C) $\frac{9}{8}$ A
- (D) $\frac{5}{8}$ A
- 2. A galvanometer together with an unknown resistance in series is connected to two identical batteries each of 1.5 V. When the batteries are connected in series, the galvanometer records a current of 1A, and when the batteries are in parallel the current is 0.6 A. What is the internal resistance of the battery?
- (A) $r = \frac{2}{3}\Omega$ (B) $r = \frac{2}{5}\Omega$ (C) $r = \frac{1}{3}\Omega$ (D) $r = \frac{3}{2}\Omega$
- 3. The meter-bridge wire AB shown in figure is 50 cm long. When AD = 30 cm, no deflection occurs in the galvanometer. Find R.



- $(A) 1 \Omega$
- (B) 2Ω
- $(C) 3 \Omega$
- (D) 4 Ω
- 4. An electrical circuit is shown in the figure. Calculate the potential difference across the resistance of 400 ohm, as will be measured by the voltmeter V of resistance 400 ohm, either by applying Kirchhoff's rules or otherwise.

- (A) $\frac{10}{3}$ V
- (B) $\frac{15}{3}$ V
- (C) $\frac{20}{3}$ V
- (D) $\frac{30}{3}$ V

5. A 3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. Current i will be :

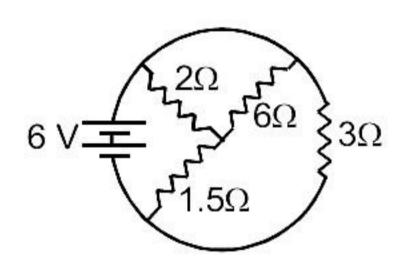

(A) 1/3 A

(B) 1 A

(C) 1.5 A

(D) 2 A

6. In the diagram shown, all the wires have resistance R. The equivalent resistance between the upper and lower dots shown in the diagram is


(A) R/8

(B) R

(C) 2R/5

(D) 3R/8

7. The total current supplied to the circuit by the battery is:

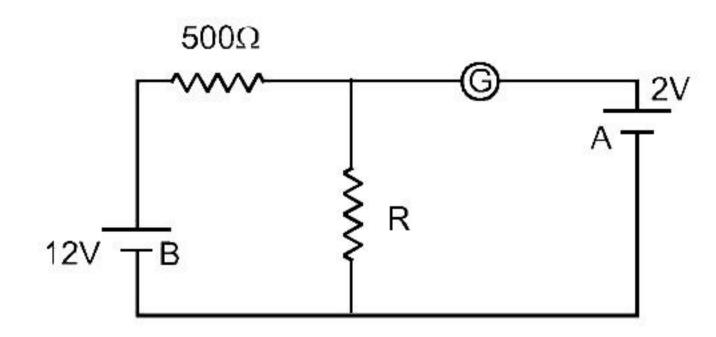
(A) 1 A

(B) 2 A

(C) 4 A

(D) 6 A

8. The resistance of the series combination of two resistances is S. When they are joined in parallel, the total resistance is P. If S = nP, then the minimum possible value of n is:


(A) 4

(B)3

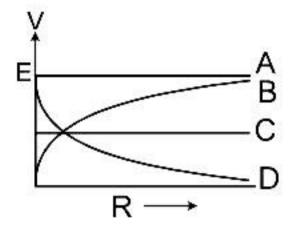
(C) 2

(D) 1

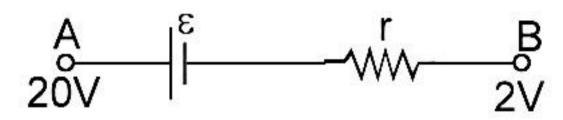
9. In the circuit, the galvanometer G shows zero deflection. If the batteries A and B have negligible internal resistance, the value of the resistor R will be:

(A) 200 Ω

(B) 100Ω


(C) 500 Ω

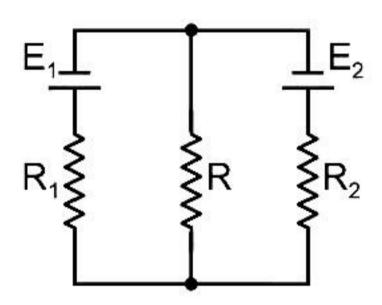
(D) 1000Ω


10. In a Wheat stone's bridge, three resistances P, Q and R are connected in the three arms and the fourth arm is formed by two resistances S₁ and S₂ connected in parallel. The condition for the bridge to be balanced will be

(A)
$$\frac{P}{Q} = \frac{R(S_1 + S_2)}{2S_1S_2}$$
 (B) $\frac{P}{Q} = \frac{R}{S_1 + S_2}$ (C) $\frac{P}{Q} = \frac{2R}{S_1 + S_2}$ (D) $\frac{P}{Q} = \frac{R(S_1 + S_2)}{S_1S_2}$

11. A cell of emf E having an internal resistance r is connected to an external resistance R. The potential difference V across the resistance R varies with R as shown in figure by the curve:

- (A) A (B) B (C) C (D) D
- 12. In the figure a part of circuit is shown:



(A) current will flow from A to B

(B) current may flow from A to B

(C) current will flow from B to A

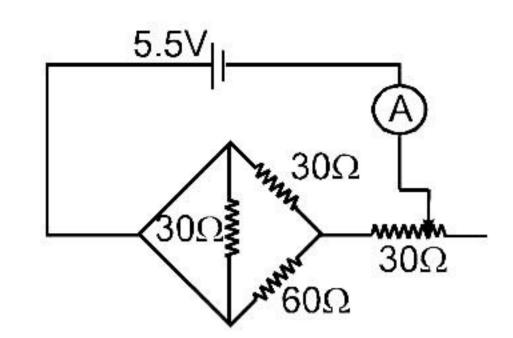
- (D) the direction of current will depend on r.
- 13. In a circuit shown in figure resistances R₁ and R₂ are known, as well as emf's E₁ and E₂. The internal resistances of the sources are negligible. At what value of the resistance R will the thermal power generated in it be the highest?

- (A) $R_1 + R_2$ (B) $R_1 R_2$ (C) $\sqrt{R_1 R_2}$ (D) $\frac{R_1 R_2}{R_1 + R_2}$
- 14. Read the following statements carefully:

Y: The resistivity of semiconductor decreases with increase of temperature.

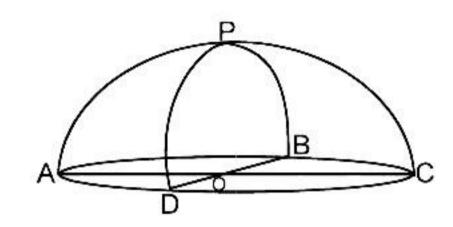
Z : In a conducting solid, the rate of collisions between free electrons and ions increases with increase of temperature.

Select the correct statement (s) from the following:

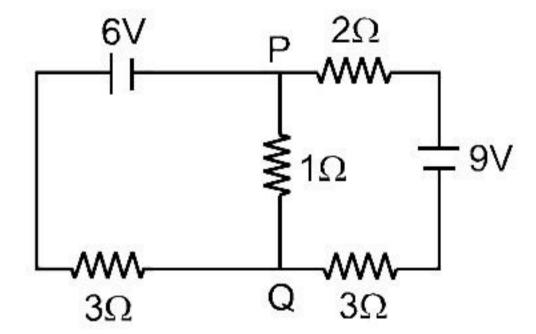

(A) Y is true but Z is false

(B) Y is false but Z is true

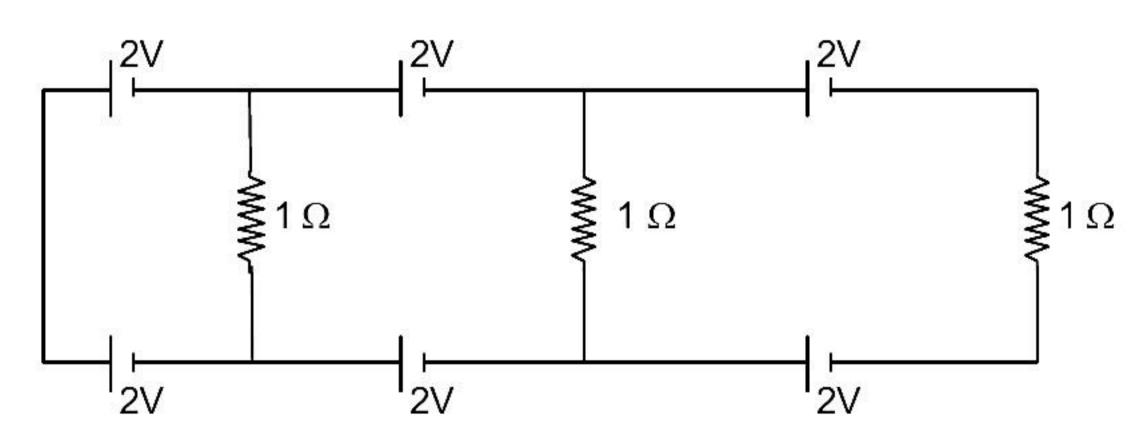
(C) Both Y and Z are true


(D) Y is true and Z is the correct reason for Y

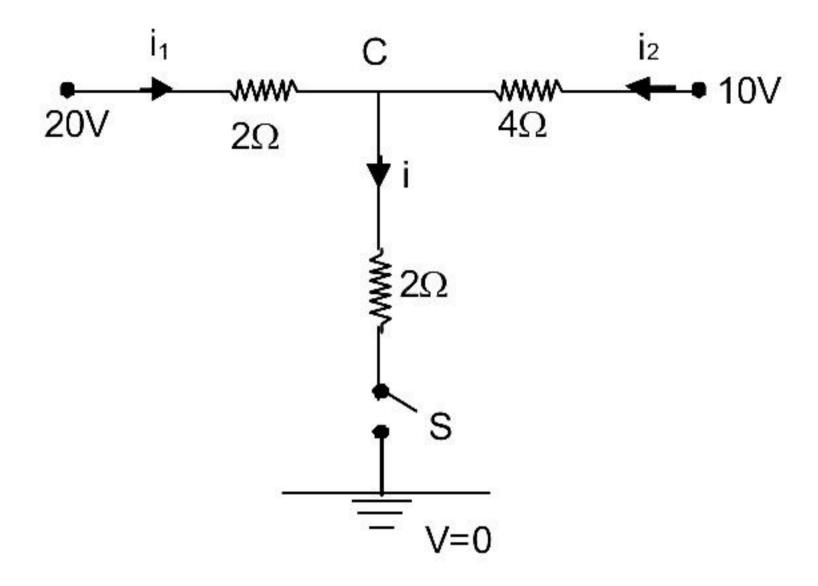
15. The resistance of the rheostat shown in figure is 30 Ω . Neglecting the ammeter resistance, the ratio of minimum and maximum currents through the ammeter, as the rheostat is varied, will be



- (A) $\frac{2}{5}$
- (B) $\frac{83}{15}$
- (C) $\frac{9}{43}$


- (D) $\frac{19}{43}$
- **16.** A hemispherical network of radius a is made by using a conducting wire of resistance per unit length 'r'. The equivalent resistance across OP is.

- (A) $\frac{8ar}{(2+\pi)}$
- (B) $\frac{8ar}{(2-\pi)}$
- (C) $\frac{(2 + \pi)ar}{8}$
- (D) $\frac{(2-\pi)ar}{8}$
- 17. In a large building, there are 15 bulbs of 40W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of the electric mains is 220 V. The minimum capacity of the main fuse of the building will be:
 - (A) 8 A
- (B) 10 A
- (C) 12 A
- (D) 14 A
- **18.** In the circuit shown, the current in the 1Ω resistor is :
 - (A) 1.3 A, from P to Q
 - (B) 0 A
 - (C) 0.13 A, from Q to P
 - (D) 0.13 A, from P to Q



- 19. A galvanometer having a coil resistance of 100 Ω gives a full scale deflection, when a current of 1 mA is passed through it. The value of the resistance, which can convert this galvanometer into ammeter giving a full scale deflection for a current of 10 A, is :
 - (A) 2Ω
- (B) 0.1Ω
- (C) 3Ω
- (D) 0.01Ω
- 20. In the above circuit the current in each resistance is:

- (A) 0 A
- (B) 1 A
- (C) 0.25 A
- (D) 0.5 A

- 21. Two batteries with e.m.f 12V and 13V are connected in parallel across a load resistor of 10Ω . The internal resistance of the two batteries are 1Ω and 2Ω respectively. The voltage across the load lies between:
 - (A) 11.4V and 11.5 V (B) 11.7V and 11.8V (C) 11.6V and 11.7V (D) 11.5V and 11.6V
- 22. A copper wire is stretched to make it 0.5% longer. The percentage change in its electrical resistance if its volume remains unchanged is :
 - (A) 2.5%
- (B) 0.5%
- (C) 2.0%
- (D) 1.0%
- When the switch S, in the circuit shown, is closed, then the value of current i will be: 23.

- (A) 3A
- (B) 5A
- (C) 4A
- (D) 2A
- 24. Two resistors 400Ω and 800Ω are connected in series across a 6 V battery. The potential difference measured by a voltmeter of $10k\Omega$ across 400Ω resistor is close to
 - (A) 2.05 V
- (B) 1.8 V (C) 2 V
- (D) 1.95 V
- A current through a wire depends on time as $i = \alpha_0 t + \beta t^2$ where $\alpha_0 = 20$ A/s and $\beta = 8$ As⁻². Find the 25. charge crossed through a section of the wire in 15s.
 - (A) 2250 C
- (B) 11250 C
- (C) 2100 C
- (D) 260 C

ANSWER KEY									
1.	(A)	2.	(C)	3.	(D)	4.	(C)	5 .	(C)
6.	(D)	7.	(C)	8.	(A)	9.	(B)	10.	(D)
11.	(B)	12.	(B)	13.	(D)	14.	(C)	15.	(A)
16.	(C)	17.	(C)	18.	(C)	19.	(D)	20.	(A)
21.	(D)	22.	(D)	23.	(B)	24.	(D)	25.	(B)