प्रश्न बैंक

कक्षा 12

सत्र 2021-22

विषय

भौतिकी

माध्यमिक शिक्षा मण्डल, मध्यप्रदेश, भोपाल हायर सेकेण्डरी परीक्षा सत्र 2021–22 BLUE PRINT OF QUESTION PAPER

	1414 - 11104 (110)		_					
क्र.	इकाई एवं विषय वस्तु	इकाई पर	वस्तुनिष्ठ	अव	व्यार प्रश्नों	की संख्य	П	कुल प्रश्न
		आवंटित	प्रश्न					
		अंक	1	2	3	4	5	
			अंक	अंक	अंक	अंक	अंक	
1	स्थिर विद्युत	09	02	01	-	-	01	02
2	धारा विद्युत	10	02	01	02	_	_	03
3	धारा के चुंबकीय प्रभाव	08	03	01	01	-	_	02
4	पिद्युत चुंबकीय प्रेरण एवं प्रत्यावर्ती धारा	12	05	01	-	-	01	02
5	विद्युत चुंबकीय तरंगे	04	04	ı	_	_	_	_
6	प्रकाशिकी (किरण एवं तरंग) एवं प्रकाशिक यंत्र	14	07	02	01	ı	-	03
7	द्रव्य एवं विकिरण की द्वैत प्रकृति	04	02	01	_	_	_	01
8	इलेक्ट्रानिक युक्तियां	09	03	01	-	01	_	02
	कुल योग	70	28(4×7)	16	12	04	10	15+4=19

प्रश्न पत्र निर्माण हेतु विशेष निर्देश -

1. प्रश्न क्रमांक 1 से 4 तक 28 वस्तुनिष्ठ प्रश्न होंगे। बहुविकल्पीय 07 अंक, रिक्त स्थान 07 अंक, सही जोड़ी 07 अंक, एक वाक्य में उत्तर 07 अंक, संबंधी प्रश्न होंगे। प्रत्येक प्रश्न पर 01 अंक निर्धारित है। वस्तुनिष्ठ प्रश्नों को छोड़कर सभी प्रश्नों में आंतरिक विकल्प का प्रावधान होगा। यह विकल्प समान ईकाई/उप ईकाई से तथा समान कठिनाई स्तर वाले होंगे। इन प्रश्नों की उत्तर सीमा निम्नानुसार होगी —

- 40 प्रतिशत वस्तुनिष्ठ प्रश्न, 40 प्रतिशत पाठ्यवस्तु पर आधारित प्रश्न, 20 प्रतिशत विश्लेषणात्मक प्रश्न होगें।
- 3. सत्र 2021-22 हेतु कम किये गये पाठ्यक्रम से प्रश्न पत्र में प्रश्न न दिये जाये।

कक्षाः— 12 वीं विषयः— भौतिक शास्त्र कम किए गए पाठ्यक्रम की विषयवस्तु

豖.	पुस्तक / विषय वस्तु का नाम	अध्याय	कम किये गये अध्याय/ विषय वस्तु का नाम
1	चुंबकत्व एवं द्रव्य	05	अध्याय से संबंधित संपूर्ण विषय वस्तु
2	किरण प्रकाशिकी एवं प्रकाशिक यंत्र	09	9.1 भूमिका
			9.2 गोलीय दर्पणों द्वारा प्रकाश का परावर्तन
3	परमाणु	12	अध्याय से संबंधित संपूर्ण विषय वस्तु
4	नाभिक	13	अध्याय से संबंधित संपूर्ण विषय वस्तु

नोट- कम किये गये पाठ्यक्रम से वार्षिक परीक्षा में प्रश्न नहीं पुछे जायेंगे।

सम्मिलित अध्याय - 1 विद्युत आवेश तथा क्षेत्र ,2 स्थिर विद्युत विभव तथा धारिता निर्धारित अंक 09 , वस्तुनिष्ठ प्रश्न -2, अतिलघु उत्तरीय प्रशन (2 अंक) -1, दीर्घ उत्तरीयप्रश्न(5 अंक)-1

अध्याय-1 विद्युत आवेश तथा क्षेत्र

	सही	विकल्प	का	चयन	कीजिये	_
--	-----	--------	----	-----	--------	---

1.	E तीव्रता	ं वाले विद्युत क्षेत्र में आवेश q रखने	पर उस	पर लगने वाला बल होगा -
	(a)	F = E / q	(b)	F = q / E
	(c)	F = qE	(d)	F = E - q
2.	किसी बि	वेन्दु आवेश से दूरी r पर विद्युत क्षे	त्र अनुक्रम	गनुपाती होता है -
	(a)	1/r	(b)	1 / r ²
	(c)	1 / r ³	(d)	1 / r ⁴
3.	एक खोर	खले गोले के अंदर एक विद्युत द्वि	वेधुव (द्	विधुव आघूर्ण p) रखा है। गोले से सम्बद्ध विद्युत फ्लक्स होगा -
	(a)	q / ε ₀	(b)	-q / $arepsilon_0$
	(c)	Zero	(d)	P / $arepsilon_0$
4.	1 क्लाॅ	म आवेश में इलेक्ट्राॅनों की संख्या	होती है -	
	(a)	5.46 X 10 ²⁹	(b)	6.25×10^{18}
	(c)	1.6 X 10 ¹⁹	(d)	90 X 10 ¹¹
5.	मुक्त अ	ाकाश के परावैद्युतांक(विद्युतशीलत	ा) का वि	मीय सूत्र है -
	(a)	$[M^{-1}L^{-3}T^2A]$	(b)	$[M^{-1}L^2T^{-1}A]$
	(c)	$[M^{-1}L^2T^{-1}A^{-2}]$	(d)	$[M^{-1}L^{-3}T^4A^2]$
6.	किसी वि	वेद्युत द्विधुव के केंद्र से दूरी r पर	विद्युत १	क्षेत्र अनुक्रमानुपाती होता है -
	(a)	1/r	(b)	1 / r ²
	(c)	1 / r ³	(d)	1 / r ⁴
7.		_	व (द्विधु	रव आघूर्ण p) को क्षेत्र की दिशा से 180º कोण घुमाने में किया गया
	कार्य हो	गा -		
	(a)	2pE	(b)	pE
	(c)	1 2pE	(d)	शून्य
8.	एक घन	जिसकी प्रत्येक भुजा X है, के केन्द्र	से ठीक	ऊपर X/2 दूरी एक बिन्दु आवेश q रखा है। घन से सम्बद्ध विद्युत
	फ्लक्स			
	(a)	q / ε_0	(b)	q / $2\varepsilon_0$
	(c)	q / $4\varepsilon_0$	(d)	q / $6\varepsilon_0$
9.	- '	क्षेत्र का मात्रक है-	<i>(</i> ,)	
	(a)	C/N	(b)	N /C
	(c)	J/C	(d)	C/J

रिक्त स्थानों की पूर्ति कीजिये -

- 1. एकल ऋणावेश के लिए स्थिर वैद्युत क्षेत्र रेखायें.....से प्रारम्भ होती है।
- 2. धात् का परावैद्य्तांक..... होता है।
- 3. दो विद्युत् द्विधुवों के बीच की दूरी दुगना कर देने पर उनके मध्य आकर्षण/प्रतिकर्षण बलगुना हो जायेगा।

एक वाक्य में उत्तर दीजिये -

- 1. किस प्रकार के आवेश समूह के लिए विद्युत क्षेत्र एकसमान रहता है?
- 2. किस प्रकार के आवेश समूह के लिए विद्युत क्षेत्र दूरी के व्युत्क्रमान्पाती होता है?
- 3. किस प्रकार के आवेश समूह के लिए विद्युत क्षेत्र दूरी के वर्ग के व्युत्क्रमानुपाती होता है?
- 4. किस प्रकार के आवेश समूह के लिए विद्युत क्षेत्र दूरी के घन के व्युत्क्रमानुपाती होता है?

अतिलघु उत्तरीय प्रश्न(2 अंक)-

- 1. आवेश का क्वांटीकरण किसे कहते है?
- 2. आवेश की योज्यता किसे कहते है?
- 3. आवेश संरक्षण किसे कहते है?
- 4. विद्युत सम्बन्धी कुलाम का नियम लिखिए।
- 5. आवेशों के अध्यारोपण का सिद्धांत लिखिए।
- 6. दो विद्युत् क्षेत्र रेखाएं एक दुसरे को क्यों नहीं काटती है?
- 7. विद्युत् क्षेत्र रेखाओं के गुण लिखिए।
- 8. विद्युत् क्षेत्र की परिभाषा मात्रक एवं विमीय सूत्र लिखीये ।
- 9. विद्युत फ्लक्स किसे कहते है?
- 10. वायु में एक दूसरे से 30 सेमी दूरी पर रखे दो छोटे आवेशित गोलों पर क्रमशः2 X 10⁻⁷ कुलाम तथा 3 X 10⁻⁷ कुलाम आवेश है। उनके बीच कितना बल है?

दीर्घ उत्तरीयप्रश्न(5 अंक)-

- विद्युत द्विधुव किसे कहते है? इसके कारण अक्षीय एवं निरक्षीय स्तिथि में विद्युत क्षेत्र ज्ञात कीजिये।
- विद्युत फ्लक्स सम्बन्धी गाँस का नियम लिखिए एवं सिद्ध कीजिये।
- 3. गॉस के नियम से क्लाम का नियम ज्ञात कीजिये।
- 4. एक समान आवेशित खोखले गोले के अन्दर एवं बाहर स्थित किसी बिन्दु पर विद्युत क्षेत्र की तीव्रता के लिये सूत्र ज्ञात कीजिये।
- एक समान आवेशित अनंत समतल चादर के कारण विद्युत क्षेत्र ज्ञात कीजिये। यह दुरी के साथ किस प्रकार प्रभावित होता
 है ?स्पष्ट कीजिये

अध्याय-2 विद्युतधारिता तथा विभव

सही विकल्प का चयन कीजिये -

1		समविभ	मव पृष्ठ और विद्युत क्षेत्र	रेखाओं	के बीच कोण होता है-
		(a)	0_0	(b)	90^{0}
		(c)	180^{0}	(d)	45^{0}
2		दो बिन	न्दु आवेश q एक दूसरे से	[·] 2a दूर	ो पर रखे हैं। इनके ठीक मध्य बिन्दु पर विद्युत विभव होगा:
					_ q
		(a)	शून्य	(b)	$\frac{q}{2\pi\varepsilon_0 a}$
			$\frac{q}{8\pi\varepsilon_0 a}$		<u>q</u>
		(-)			
3	5.	10 कूल	गॉम आवेश देने से किसी	चालक	के विभव में 2 वोल्ट की वृद्धि होती है, तो चालक की धारिता होगी-
		(a)	5 F	(b)	20 F
		` /	12 F	(d)	
4	•		_		तने पर, प्रत्येक संधारित्र पर समान होगा-
		(a)	आवेश 	, ,	आवेश व विभव दोनों
_		(c)	विभव		्न विभव तथा न आवेश प्राप्तक कार में क्या किन केली कार में कोने कार्न हैं। कोनें क्यिकियों में
5				7	मान्तर क्रम में, तथा फिर श्रेणी क्रम में जोड़े जाते हैं। दोनों स्थितियों में
			मी धारिता का अनुपात		1.0
		(a) (c)		(b) (d)	
				, ,	
6).				बिन्दु पर विभव का मान होगा-
		, ,			$3.6 \times 10^3 \text{ V}$
			$1.5 \times 10^3 \text{ V}$	(d)	$3.6 \times 10^{-3} \text{ V}$
			पूर्ति कीजिये -		
			इ = स्थैत फैरड		
			कूलॉम X		
एक व			तर दीजिये -	>· > .	
1					ोच की दूरी बढ़ाने से उसकी धारिता पर क्या प्रभाव होगा?
2		_	र प्लेट संधारित्र की प्ले	टो के बे	ोच की वायु के स्थान पर कागज भरने से उसकी धारिता पर क्या प्रभाव
		होगा?		2	
3		इलेक्ट्रा	न-वोल्ट किसका मात्रक	है?	
अतिल	घु	उत्तरीय	प्रश्न(2 अंक)-		
1		समविभ	मव पृष्ठ किसे कहते है?		
2	2.	समविभ	मव पृष्ठ की विशेषताएं ।	लेखिए।	
3		2pF, 3	pF और 4pF धारिता व	ाले तीन	संधारित्र समान्तर क्रम) पार्श्वक्रम (में जोड़े गये हैं, संयोजन की कुल
		धारिता	ा क्या होगी ?		

4. किसी चालक की धारिता को कौन.कौन से कारक प्रभावित करते है?

दीर्घ उत्तरीयप्रश्न(5 अंक)-

- 1. दो आवेशित चालकों की धारिताएं क्रमशः C_1 व C_2 तथा विभव क्रमशः V_1 व V_2 हैं। इन चालकों को तार द्वारा जोड़ दिया जाता है। उन पर आवेश, उनका उभयनिष्ठ विभव तथा संयोजन में ऊर्जा हानि की गणना कीजिए।
- 2. किसी ऐसे समान्तर प्लेट संधारित्र की धारिता के लिए सूत्र ज्ञात कीजिए जिसकी प्लेटों के बीच आंशिक रूप से परावैद्युत माध्यम तथा आंशिक रूप से वायु हो।
- 3. सिद्ध कीजिए कि दो आवेशित चालकों को आपस में जोड़ने पर उनमें आवेशों का वितरण उनकी धारिताओं के अनुपात में होता है।
- 4. समान्तर क्रम/श्रेणीक्रम में जुड़े संधारित्रों की त्ल्य धारिता के लिए व्यंजक प्राप्त कीजिए। संयोजन का चित्र बनाइये।

यूनिट -2

सम्मिलित अध्याय - 3 विद्य्त धारा

निर्धारित अंक 10 , वस्तुनिष्ठ प्रश्न -2, अतिलघु उत्तरीय प्रशन (2 अंक) -1, लघु उत्तरीयप्रश्न(3 अंक)-2

सही विकल्प का चयन कीजिये -

1.	ताप बद	प्राने पर प्रतिरोध घटता है-		
	(a)	अर्द्धचालक का	(b)	धातु का
	(c)	विद्युत अपघट्य का	(d)	मिश्र धातु का
2.	अतिचा	त्रक पदार्थ की चालकता ह	ोती है-	
	(a)	अनंत	(b)	शून्य
	(c)	एक	(d)	एक से कम
3.	विद्युत	सेल स्रोत है -		
	(a)	इलेक्ट्रॉन का	(b)	विद्युत ऊर्जा
	(c)	विद्युत आवेश का		(d) विद्युत धारा का
4.	किसी त	गर की प्रतिरोधकता निर्भर	करती है	-
	(a)	द्रव्यमान पर	(b)	व्यास पर
	(c)	लम्बाई पर	(d)	पदार्थ पर
5.				

रिक्त स्थानों की पूर्ति कीजिये -

- किरचॉफ का प्रथम नियम के सिद्धांत पर आधारित है।
- 2. किरचॉफ का द्वितीय नियम के सिद्धांत पर आधारित है।
- 3. विद्द्त धाराराशिहै । (सदिश / अदिश)
- 4. विद्दुत धारा घनत्व राशिहै | (सदिश / अदिश)
- 5. मीटरसेत्के सिद्धांत पर काम करता है ।

एक वाक्य में उत्तर दीजिये -

- 1. विभवमापी की सन्तुलित स्थिति में इसका कितना प्रतिरोध होता है?
- अनुगमन वेग और विद्युत क्षेत्र की तीव्रता में सम्बंध लिखिए ।
- 3. एक तार को खींचकर उसकी लंबाई तीन गुना कर दी जाती है। ज्ञात कीजिए कि उसका प्रतिरोध कितने गुना हो जायेगा?
- 4. विभव प्रवणता का SI मात्रक लिखिये।

अतिलघ् उत्तरीय प्रशन (2 अंक)-

- 1. मोटर गाड़ी को स्टार्ट करने पर उसकी हेडलाइट कुछ मंद हो क्यों जाती है?
- 2. किसी सेल का विद्युत वाहक बल नापने के लिए वोल्टमीटर की अपेक्षा विभवमापी अधिक श्रेष्ठ है।क्यों?
- 3. किसी कार की संचायक बैटरी का विद्युत वाहक बल 12 वोल्ट है। यदि बैटरी का आंतरिक प्रतिरोध 0.4 ओहम हो, तो बैटरी से ली जाने वाली अधिकतम धारा का मान कितना होगा?
- 4. ओहम का नियम लिखिये।
- 5. यदि n सेल जिनके वि लब.वा.E तथा आन्तरिक प्रतिरोध r है। समांतर क्रम में जोड़ा जाये तो तुल्य emf और आन्तरिक प्रतिरोध लिखिए ।
- 6. यदि n सेल जिनके वि बल.वा.E तथा आन्तरिक प्रतिरोध r है। श्रेणी क्रम में जोड़ा जाये तो तुल्य emf और आन्तरिक प्रतिरोध लिखिए ।

लघु उत्तरीय प्रश्न (3 अंक)-

- 1. किरचॉफ के नियम लिखिये तथा उनकी व्याख्या कीजिए।
- 2. व्हीटस्टोन सेतु का विद्युत आरेख खींचिए। इसका सिद्धांत समझाइये तथा इसके संतुलन के लिए आवश्यक प्रतिबंध $\frac{P}{O} = \frac{R}{S}$ निगमित कीजिए।
- 3. विभवमापी के तार की लम्बाई 280 सेमी पर एक लेकलांशी सेल संतुलित होता है। जब इस सेल को श्रेणीक्रम में एक डेनियल सेल जोड़ दिया जाता है, तो संतुलन बिन्दु 480 सेमी की दूरी पर आता है। दोनों सेलों के विद्युत वाहक बल की त्लना कीजिए।
- 4. किसी सेल के आन्तरिक प्रतिरोध, टर्मिनल वोल्टता, एवं विद्युत धारा में संबंध स्थापित कीजिये।
- 5. ताप बढ़ने पर किसी पदार्थ की प्रतिरोधकता क्यों बढ़ जाती है?
- 6. 8V वि.वा.बल की एक संचायक बैटरी जिसका आन्तरिक प्रतिरोध 0.5 Ω है। को श्रेणीक्रम में 15.5 Ω के प्रतिरोधक का उपयोग करके 120 V के DC स्त्रोत द्वारा चार्ज किया जाता है। चार्ज होते समय बैटरी की टर्मिनल वोल्टता ज्ञात कीजिये।
- 10ν वि.वा.बल एवं 3Ω आंतरिक प्रतिरोध वाली बैटरी को किसी प्रतिरोधक से संयोजित करने पर परिपथ में 0.5Α धारा प्रवाहित हाती है। प्रतिरोधक का मान एवं बैटरी की टर्मिनल वोल्टता ज्ञात कीजिये।
 - नोट- सेल के आन्तरिक प्रतिरोध,टर्मिनल वोल्टता, एवं विद्युत धारा से सम्बन्धित अन्य संख्यात्मक प्रश्नों का अभ्यास करें। सेलों के समान्तर क्रम / श्रेणीक्रम संयोजन के तुल्य प्रतिरोध के लिए सूत्र स्थापित कीजिये।
- 9. धारा और इलेक्ट्रानों के अपवाह वेग में सम्बन्ध ज्ञात कीजिये ।
- 10. विभावमापी का सिद्धांत समझाइए ।इसकी स्ग्रहिता किस प्रकार बढाई जा सकती है
- 11. तीन प्रतिरोधक 2 ओहम, 3 ओहम तथा 6 ओहम को समान्तर क्रम में जोड़ने पर तुल्य प्रतिरोध ज्ञात किजिये । नोट- प्रतिरोधों के संयोजन से सम्बन्धित अन्य संख्यात्मक प्रश्नों का अभ्यास करें।

सम्मिलित अध्याय -4 गतिमान आवेश एवं चुम्बकत्व

(नोट- सत्र 2021 -22 के लिए अध्याय 5 चुम्बकत्व एवं द्रव को हटा दिया गया है)

निर्धारित अंक 8 , वस्तुनिष्ठ प्रश्न -3, अतिलघु उत्तरीय प्रशन (2 अंक) -1, लघु उत्तरीयप्रश्न(3 अंक)-1 सही विकल्प का चयन कीजिये -

1. एक गतिमान आवेश उत्पन्न करता है -

		(a) केवल विद्युत क्षेत्र	(b) केवत	त्र चुम्बकीय क्षेत्र
		(c) विद्युत एवं चुम्बकीय क्षेत्र दोनों	(d) कोई	नहीं
	2.	धारावाही वृत्तीय कुण्डली के केन्द्र पर उ	उत्पन्न चु	म्बकीय क्षेत्र होता है -
		(a) कुण्डली के तल में	(b)	कुण्डली के तल के लम्बवत्
		(c) कुण्डली के तल से 45° पर	(d)	कुण्डली के तल से 60° पर
	3.	एक समान चुम्बकीय क्षेत्र में गतिमान	आवेश पर	र लगने वाला बल है -
		(a) $\vec{qv} \times \vec{B}$	(b)	$\frac{1}{4\pi\varepsilon_0}\cdot\frac{q}{r^2}$
		(c) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$	(d)	शून्य
	4.	धारा मापी की कुंडली के साथ श्रेणीक्रम	में उच्च	प्रतिरोध जोड़ने पर बनता है -
		(a) वोल्टमीटर	(b)	अमीटर
		(c) वोल्टामीटर	(d)	इनमें से कोई नही
	5.	किसी धारावाही परिनालिका के अन्दर च्	गुम्बकीय <i>ः</i>	क्षेत्र होता है -
		(a) एक समान	(b)	असमान
		(c) शून्य	(d)	इनमें से केाई नहीं
	6.	एक आवेशित कण, समचुम्बकीय क्षेत्र म	में इसके र	ममांतर प्रवेश करता है तो कण का पथ कैसा होगा -
		(a) सरल रेखा	(b)	वृत्तीय
		(c) परवलय	(d)	इनमें से कोई नहीं
रिक्त स्थ	गर्नो र	की पूर्ति कीजिये -		
		•	ो लूप पर	लगने वाला बल आघूर्ण अधिकतम होता है, जबकि लूप का तल
	चुम्ब	वकीय क्षेत्र केहोता है।		
2.	एक	आदर्श अमीटर का प्रतिरोध होत	है।	
3.	एक	आदर्श वोल्टमीटर का प्रतिरोध हं	ोता है।	
4.	शण्ट	ट को हमेशाकम में जोड़ा जाता है।	I	
5.	चुम्ब	वकीय क्षेत्र में गतिमान आवेश पर लगने	वाले बल	को कहते है।

एक वाक्य में उत्तर दीजिये -

- च्म्बकीय क्षेत्र की तीव्रता का S.I. मात्रक लिखिये ।
- 2. दो समांतर चालकों में एक ही दिशा में धारा प्रवाहित हो रही है, तब उनके मध्य लगने वाले बल की प्रकृति क्या होगी?
- 3. धारावाही क्ण्डली के केन्द्र पर च्म्बकीय क्षेत्रका मान लिखिए।
- 99Ω प्रतिरोध की कुण्डली वाले धारामापी में से मुख्य धारा का 10 प्रतिशत प्रवाहित करना हो तो शण्ट का प्रतिरोध क्या होगा?
- 5. धारावाही विद्युत पाश के चुम्बकीय आघूर्ण का सूत्र लिखिये।
- 6. द्रव्यमान स्पेक्ट्रोमीटर क्या है?
- 7. धारामापी की कुण्डली के बीच में नर्म लोहे का क्रोड क्यों रखा जाता है।

अतिलघु उत्तरीय प्रशन (2 अंक)-

- 1. ऐम्पियर का परिपथीय नियम लिखिये।
- 2. चुम्बक संबंधी गास नियम लिखिये।
- 3. साइक्लोट्रान क्या है? यह किस तथ्य पर आधारित है?
- 4. लारेंज बल के आधार पर च्म्बकीय क्षेत्र (B) के मात्रक को परिभाषित कीजिये।
- चुम्बकीय क्षेत्र रेखाओं के कोई दो गुण लिखिये।
- अमीटर और वोल्टमीटर में कोई दो अंतर लिखिए।
- चल क्ण्डली धारामापी की क्ण्डली ऐल्यूमीनियम के फ्रेम पर क्यों लपेटी जाती है?

लघु उत्तरीयप्रश्न(3 अंक)-

- 1. साइक्लोट्रॉन आवृत्ति के लिए व्यंजक निगमित कीजिए।
- 2. धारावाही वृत्ताकार क्ण्डली के केन्द्र पर उत्पन्न च्ंबकीय क्षेत्र के लिए व्यंजक प्राप्त कीजिए।
- एक वृत्ताकार कुण्डली का व्यास 0.0 फेरे लपेटे गये हैं तथा इसमें धारा 1000 तार के मीटर है। इसमें 2.ऐम्पियर प्रवाहित 1 होती है। कुण्डली के केन्द्र पर चुंबकीय क्षेत्र की तीव्रता ज्ञात कीजिए।
- 4. चल कुण्डली धारामापी की सुग्रहिता कैसे बढ़ायी जा सकती है?
- 5. किसी धारावाही परिनलिका के अन्दर चुम्बकीय क्षेत्र के लिये सूत्र स्थापित कीजिये।
- 6. बायो सेवर्ट का नियम लिखिये एवं इसके आधार पर विद्युत धारा के मात्रक को परिभाषित कीजिये।
- 7. एक तार जिसमें 8A विद्युत धारा प्रवाहित हो रही है 0.15T के एक समान चुंबकीय क्षेत्र मेंए क्षेत्र से 30° का कोण बनाते हुए रखा है। इसकी एकांक लंबाई पर लगने वाले बल का परिमाण और इसकी दिशा ज्ञात कीजिये।

यूनिट -4

सम्मिलित अध्याय - 6- विद्युत चुम्बकीय प्रेरण तथा 7- प्रत्यावर्ती धारा
निर्धारित अंक 12 , वस्तुनिष्ठ प्रश्न -5, अतिलघु उत्तरीय प्रशन (2 अंक) -1, दीर्घ उत्तरीयप्रश्न (5 अंक)-1
अध्याय - 6- विद्युत चुम्बकीय प्रेरण

सही विकल्प का चयन कीजिये -

- 1. विद्युत चुम्बकीय प्रेरण में प्रेरित विद्युत वाहक बल निम्न से स्वतंत्र होता है -
 - (a) फ्लक्स में परिवर्तन
- (b) समय

(c) फेरो की संख्या

(d) कुण्डली का प्रतिरोध

:	2.	लेंज का	नियम संबंधित है -							
		(a)	आवेश संरक्षण के नियम से	(b)	ऊर्जा संरक्षण के नियम से					
		(c)	द्रव्यमान संरक्षण के नियम से	(d)	संवेग संरक्षण के नियम से					
;	3.	भंवर ध	ाराओं का उपयोग किया जाता है -							
		(a)	धारामापी को रूद्धदोल बनाने में	(b)	चालमापी में					
		(c)	विद्युत ब्रेक में	(d)	उपर्युक्त सभी					
	4.	प्रेरित ध	गरा की दिशा ज्ञात की जाती है -							
		(a)	लेंज के नियम से	(b)	फ्लेमिंग के दाये हाथ के नियम से					
		(c)	(a) एवं (b) दोनों	(d)	फ्लेमिंग के बाएं हाथ के नियम से					
!	5.	यदि स	मतल क्ण्डली में N फेरे हो, तो उस	का स्वप्रेर	कटव अनक्रमानपाती होता है -					
		(a)	N^2	(b)	N					
			\sqrt{N}							
		(c)	VIV	(d)	N^3					
रिक्त	₹	थानों की	पूर्ति कीजिये -							
	1.	प्रेरित वि	वेद्युत वाहक बलमं	परिवर्तन	न के कारण उत्पन्न होता है।					
:	2.	. भंवर धाराओं को कम करने के लिए ट्रांसफार्मर के क्रोड बनाये जाते हैं।								
;	3.	3. किसी कुण्डली में धारा परिवर्तन की दर इकाई होने पर उस कुण्डली में उत्पन्न प्रेरित विद्युत वाहक बल का आंकिक मान								
		क	े बराबर होता है।							
	4.	भंवर ध	ाराओं के कारण विद्युत ऊर्जा का		के रूप में अपव्यय होता है।					
!	5.	्उ एक क्ण्डली के अन्दर लोहे का क्रोड रखने पर उसका स्वप्रेरकत्व जाता है।								
(6.	. चुम्बकीय फ्लक्स में परिवर्तन की दरके अनुक्रमानुपाती होती है।								
एक	वाव	त्य में उत्त	तर दीजिये -							
	1.	स्वप्रेरक	त्व का SI मात्रक लिखिये I							
:	2.	. च्म्बकीय फ्लक्स का SI मात्रक लिखिये ।								
;	3.	एक क्प	ग्डली की कुल लंबाई को अपरिवर्तित	रखते ह्	ए कुण्डली में फेरों की संख्या दुगुनी कर दी जाती है। उसका स्वप्रेरकत्व					
			गुना हो जायेगा?	J						
	4.	विद्युत	का जड़त्व किसे कहते है?							
		•		है, इन्हें	श्रेणीक्रम में जोड़ने पर तुल्य प्रेरकत्व कितना होगा?					
					जो उत्पन्न प्रेरित धारा की दिशा क्या होगी?					
अति	लघ्	उत्तरीय	प्रश्न (2 अंक)-							
	ى 1.		ह विद्युत चुम्बकीय प्रेरण सम्बंधी र्व	नेयम लि	खिये					
;	2.		5 5		।ये तथा समझाइये कि लेंज का नियम, ऊर्जा संरक्षण नियम के अनक					

है।

3. भंवर धाराएं क्या है ? हानि हैइनसे क्या ?

- 4. स्वप्रेरण और अन्योन्य प्रेरण में कोई चार अंतर लिखिये।
- प्रत्यावर्ती धारा जिनत्र का नामांकित चित्र बनाइये।

दीर्घ उत्तरीयप्रश्न (5 अंक)-

- 1. स्वप्रेरकत्व क्या है। जक निगमित कीजिए का व्यंप्रेरकत्वएक लंबी परिनालिका के स्व ?
- 2. दो कुंडिलयों P व S के स्वप्रेरकत्व क्रमश : L_1 व L_2 है। यदि इनके मध्य आदर्श फलक्स युग्मन है तो सिद्ध कीजिए कि इन कुण्डिलयों के मध्य अन्योन्य प्रेरकत्व $M=\sqrt{L_1L_2}$ होगा।
- 3. लंबाई फेरों वाली द्वितीयक 1000 मेंफेरे हैं। इसके मध्य 2000 सेमी वाली एक परिनालिका मे 4 समीटर तथा व्या 2 परिनालिका लिपटी हुई है। दोनों परिनालिकाओं के मध्य अन्योन्य प्रेरकत्व ज्ञात कीजिए।
- 4. एक समतल वृत्ताकार कुण्डली के स्वप्रेरकत्व के लिए, व्यंजक स्थापित कीजिए। इसका मान किनकिन कारकों पर निर्भर करता है तथा किस प्रकार।
- 5. गतिक विद्युत् वाहक बल किसे कहते है? इसके लिए व्यंजक स्थापित कीजिये।

अध्याय 7- प्रत्यावर्ती धारा

रिक्त स्थानों की पूर्ति कीजिये -

1.	LC परि	पथ में	धारा	और	विभवांतर	के	मध्य		का	कलांतर	होता	है	I
----	--------	--------	------	----	----------	----	------	--	----	--------	------	----	---

- 3. उच्चायी ट्रांसफार्मर की प्राथमिक कुंडली में फेरो की संख्या द्वितीयक की तुलना मेंहोती है ।
- 4. प्रत्यावर्ती धारा मापने के उपकरणप्रभाव पर आधारित होते हैं। धारा के ,
- 5. एक शुद्ध धारितीय परिपथ में धारा आगे बल से कला में .वा.वि ,होती है।

सही विकल्प का चयन कीजिये -

1.	एक संध	गरित्र अपने में से गुजर जाने देता है	ī -	
	(a)	केवल d.c. को	(b)	केवल a.c. को
	(c)	d.c. तथा a.c. दोनो को	(d)	न a.c. को और न d.c. को
2.	ट्रांसफार्म	रेर क्रोड को निम्न प्रभाव कम करने	के लिए	पटलित किया जाता है -
	(a)	ताम्र हानि	(b)	फ्लक्स क्षरण
	(c)	शैशिल्य हानि	(d)	भंवर धारा
3.	यांत्रिक	ऊर्जा को विदयत ऊर्जा में बदलने र्क	ो यक्ति	ਨੇ -

(b)

(d)

a.c. जनरेटर चोक क्ण्डली

भारत में घरों में दी जाने वाली विद्युत धारा की आवृत्ति होती है -

d.c. मोटर

ट्रांसफार्मर

(a) 40 हर्टज (b) 50 हर्टज (c) 60 हर्टज (d) 100 हर्टज

(a)

(c)

एक वाक्य में उत्तर दीजिये

- 1. किसी प्रत्यावर्ती धारा का शिखर मान i₀ है। एक पूर्ण चक्र में इसका औसत मान कितना होगा?
- 2. प्रतिघात का SI मात्रक लिखिये।
- 3. वाटहीन धारा का क्या अर्थ है?
- 4. किस दशा में धारा वाटहीन होती है?

सही जोड़ी मिलाओ -

स्तंभ अ स्तंभ ब स्तंभ ब $\sqrt{R^2 + (X_L - X_C)^2}$ 2 धारतीय प्रतिघात. (b) $\sqrt{R^2 + X_L^2}$ 3.R-L परिपथ की प्रतिबाधा (c) wL $\frac{1}{2\pi f c}$ 5.LCR परिपथ की प्रतिबाधा

अतिलघु उत्तरीय प्रश्न (2 अंक)-

- 1. प्रत्यावर्ती धारा और दिष्ट धारा में अंतर लिखिये।
- 2. प्रत्यावर्ती धारा से विद्युत अपघटन क्यों नहीं होता है?
- 3. प्रत्यावर्ती अमीटर के पैमाने पर अंकित खाने परस्पर बराबर दूरी पर नही होते, क्यों ?
- 4. नागरिक विद्युत वितरण में प्रत्यावर्ती धारा दी जाती है, दिष्ट धारा नहीं। क्यों?
- 5. ग्णता ग्णांक Q क्या है ? इसके लिए सूत्र लिखिए।

दीर्घ उत्तरीय प्रश्न (5 अंक)-

- 1. ए कीजिए।जक प्राप्तइसका व्यं ?र्य है तात्पपरिपथ में संधारित्र की प्रतिघात से क्या .सी.
- 2. ए कीजिए।जक प्राप्त व्यंपरिपथ के लिए निम्न .सी.

$$P_{av} = V_{r.m.s.} x I_{r.m.s.} x cos \emptyset$$

- 3. ट्रांसफार्मर की व्याख्या निम्न बिंदुओं पर कीजिये
 - i)नामांकित चित्र , ii)सिद्धांत , iii)परिणमन अनुपात का सूत्र , iv) ऊर्जा क्षय के कारण ,तथा इन्हे कम करने के उपाय
- 4. ए परिपथ के लिए जिसमें .सी.L-C-R तीनों हैंवाहक बल .वर्ती विपित कीजिए तथा प्रत्यास्था परिपथ की प्रतिबाधा का सूत्र ,
 - क स्थिति के लिए संबंध लिखियेएवं धारा में प्रत्ये।
- 5. सिद्ध कीजिए कि प्रत्यावर्ती धारा से जुड़े LCR श्रेणी परिपथ की अनुनादी आवृत्ति $f = 2\pi\sqrt{LC}$ होती है।

सम्मिलित अध्याय - 8- विद्युत चुम्बकीय तरंगे

निर्धारित अंक 4 , वस्तुनिष्ठ प्रश्न -4,

रिक्त स्थानों की पूर्ति कीजिये	रिक्त	स्थानों	की	पुर्ति	कीजिये	_
--------------------------------	-------	---------	----	--------	--------	---

1. अंधेरे में फोटोग्राफी के लिए तरंगों का उपयोग किया जाता है।

2	2.	पृथ्वी तल से ओजोन पर्त	की लगभग ऊंचाई होती है	·					
;	3.	विस्थापन धारा है। में परिवर्तन के कारण उत्पन्न होती							
4	4.	एक त्वरित आवेश च्म्बकीय क्षेत्र एवं दोनों उत्पन्न करता है।							
į	5.	निर्वात में विद्युत चुम्बकी	ाय तरंगों के वेग का सूत्र है	}					
(6.		तरंगों द्वारा होती है						
-	7.		की गंध निकलती						
		5 5	ı के बनाये जाते हैं।						
			 मेंतरंगो का उपयोग						
		* *		आवृति वाली तरंग	है ।				
		्उ उ फल्प का चयन कीजिये -	^	C	•				
-			सा विद्युत चुम्बकीय तरं	ग नही है।					
		(a) गामा किरणे .	(b) .x किरणे		. (d)रेडियों तरंगे .				
2	2.	निम्नलिखित में सबसे 3	निधिक आवृत्ति वाली तरंग है	<u>}</u> -	, <i>,</i>				
		(a) अवरक्त	(b)रेडियों तरंग .						
		(c) दृश्य प्रकाश	(d) पराबैंगनी त	रंग					
;	3.	दृश्य प्रकाश के तरंगदैध्य	की कोटी है।						
		(a) 10 ⁻¹⁰ m	(b) 10 ⁻⁶ m	(c) 10 ⁻⁴ m	(d) 10 ⁻⁸ m				
4	4.	विद्युत् चुम्बकीय तरंगो व							
		(a) $\frac{a^2}{\lambda}$	(b) 1	(c) 10 ⁻⁴ m	(d) B_0 E				
		λ	$\sqrt{\mu_0} \varepsilon_0$	(6) 16	(-) -0-				
į	5.	निम्न में से किसका तरंग	द्र्धेर्य सबसे कम है						
		(a)γ किरणे,	(b)दृश्य प्रकाश,	(c)अवरक्त विकिरण,	(d)पराबैंगनी विकिरण				
	_		~						
(6.	निम्न में से किसकी आवृ		0.0	W 0 00				
				(c)अवरक्त विकिरण,					
•	7.	•		E तथा चुम्बकीय क्षेत्र के प					
	_	(a) B=E/C	(b) E=B/C	(c) E=B	(d) C=B.E				
8	8.	यदि विद्युत रकीय तरग होगी ।	में विद्युत वेक्टचुम्ब- X- अ	क्षि में तथा चुम्बकीय वेक्त	टर Y- अक्ष में है तो उसकी संचरण दिशा				
		(a) X- अक्ष	(b) Y-	(c) Z - अक्ष	(d) कुछ भी हो सकती है				
(9.	ओजोन मण्डल अवशोषित	करता है -		3				
		(a) दृश्य प्रकाश	(b) माइक्रो तरंगे	(c) अवरक्त विकिरण	(d) पराबैगनी विकिरण				

एक वाक्य में उत्तर दीजिये-

- 1. दृश्य प्रकाश का तरंगदैर्ध्य परास बताइए।
- 2. द्रसंचार के लिए किन तरंगों का उपयोग किया जाता है।
- 3. सूक्ष्म तरंगो की तरंगद्धेर्य परास लिखिये।
- 4. विद्युत च्म्बकीय तरंग क्या है ?
- 5. यदि पृथ्वी पर वायुमण्डल न होता तो पृथ्वी तल का ताप, वर्तमान ताप की अपेक्षा कितना होता ?

उचित संबंध जोडिये-

1 रेडियों तरंगे . न्यूटन
 2 पराबंगनी तरंगे . रोटंजन
 3 .x किरणे बेकरल
 4 .□ किरणे रिटर

5 दृश्य प्रकाश . विलियम हर्षेल

6 अवरक्त किरणे . मारकोनी

यूनिट -6

सम्मिलित अध्याय - 9- किरण प्रकाशिकी ,एवं 10- तरंग प्रकाशिकी

निर्धारित अंक 14 , वस्तुनिष्ठ प्रश्न -7 ,अतिलघु उतीय प्रश्न(2 अंक)-2, लघु उतीय प्रश्न(3 अंक)-1

अध्याय - 9- किरण प्रकाशिकी

रिक्त स्थानों की पूर्ति कीजिये -

- 1. एक स्क्ष्मदर्शी की लंबाई बढाने पर उसकी आवर्धन क्षमता.......जाती है।
- 2. लेंस की क्षमता का मात्रक है।
- 3. आकाश का नीला दिखाई देना प्रकाश के के कारण है।
- 4. एक स्वस्थ नेत्र के लिए स्पष्ट दृष्टि की न्यूनतम दूरी होती है।
- 5. चंद्रमा से देखे जाने पर आकाश का रंग दिखाई देता है।

सही विकल्प का चयन कीजिये

- निम्नलिखित में से किस रंग के लिए कांच का अपवर्तनाक न्यूनतम होता है-अ बैगंनी . ब लाल . स पीला . दनीला
- एक लेंस की फोकस दूरी किस रंग के लिए न्यूनतम होती है।
 अबैंगनी . ब लाल . स पीला . दनीला .
- तीरे की चमक का कारण है।
 अप्रकाश का विश्लेषण . ब प्रकीर्णन .
 स पूर्ण आंतरिक परावर्तन . दव्यतिकरण .
- 4. 20 cm फोकस दूरी वाला अवतल लेंस और 25 cm फोकस वाला उत्तल लेंस संपर्क में रखे है , संयोजन की फोकस दूरी होगी-

अ .5 cm .ब-45 cm स .-100 cm द .100 cm

एक वाक्य में उत्तर दीजिये-

- 1. किसी द्रव का क्रांतिक कोण और अपवर्तनांक में सम्बन्ध लिखिए।
- 2. लेंस के लिए u तथा v एवं f में संबंध लिखिए।
- 3. लेंस द्वारा उत्पन्न रेखीय आवर्धन का सूत्र लिखिए।
- 4. उस माध्यम का अपवर्तनांक ज्ञात कीजिए जिसका क्रांतिक कोण 45° है।
- 5. 10 cm फोकस दूरी वाले उत्तल लेंस से बने सरल सूक्ष्मदर्शी की आवर्धन क्षमता कितनी होगी जबकि प्रतिबिम्ब अनंत पर बने ?
- 6. 10 cm गहराई वाले बर्तन में कोई द्रव भरा है , तले पर रखे सिक्के की गहराई 8 cm मापी जाती है। द्रव का अपवर्तनांक कितना होगा ?
- 7. उत्तल लेंस के द्वारा आभासी प्रतिबिम्ब किस स्थिति में बनता है?

अतिलघु उत्तीय प्रश्न(2 अंक)-

- 1. पूर्ण आंतरिक परावर्तन किसे कहते है? इसकेलिए आवश्यक शर्ते लिखिए।
- 2. सघन माध्यम में स्थिति वस्त् को विरल माध्यम से देखा जाता है तो वह कुछ उपर क्यों उठी दिखाई देती है?
- 3. प्रकाशीय तंत् क्या है? यह किस प्रकार कार्य करता है?
- 4. प्रिज्म का न्यूनतम विचलन कोण किसे कहते है?
- प्रिज्म से अपवर्तन को सचित्र समझाइए।
- 6. स्वच्छ आकाश के नील दिखाई देने का कारण स्पष्ट कीजिये।
- 7. 3 cm ऊँची कोई बिम्ब 21 cm फोकस दूरी वाले लेंस के सामने 14 cm की दूरी पर रखी है।लेंस द्वारा निर्मित प्रतिबिम्ब का वर्णन कीजिये।

लघु उत्तीय प्रश्न(3 अंक)-

- 1. संयुक्त सुक्ष्मदर्शी की आवर्धन क्षमता के लिए व्यंजक ज्ञात कीजिए।
- सरल स्क्ष्मदर्शी की आवर्धन क्षमता के लिए व्यंजक ज्ञात कीजिए।
- संपर्क में रखे दो पतले लेंस के संयोजन की फोकस द्री के लिए व्यंजक ज्ञात कीजिये।
- 4. प्राथमिक एवं द्वितीयक इन्द्रधनुष में अंतर लिखिए।
- 5. किसी संयुक्त सुक्ष्मदर्शी के अभिदृश्यक की फोकस दूरी 1 cm नेत्रिका की फोकस दूरी 2 cm तथा नली की लम्बाई 20 cm हो तो इस यंत्र का आवर्धन ज्ञात कीजिये जबकि अन्तिम प्रतिबिंब अनंत पर बनता है।

अध्याय 10- तरंग प्रकाशिकी

रिक्त स्थानों की पूर्ति कीजिये -

- 1. ज्यामिती छाया में प्रकाश के अतिक्रमण को कहते है।
- 2. श्वेत प्रकाश में पतली फिल्म के रंगीन दिखाई देने कारण की घटना है।------
- 3. तरंग संचरण के दौरान समान कला में दोलन करते बिंदुओं के बिंदु पथ कोकहते है ।
- 4. बिंदु स्त्रोत के कारण उत्पन्न तरंगाग्र..... होता है ।
- 5. तरंग स्त्रोत के प्रेक्षक से दूर जाने के कारण तरंगधैर्य में वृद्धि को कहते है ।
- 6. प्रकाश की तरंगद्धेर्य बढ़ने पर प्रकाशीय यन्त्र की विभेदन क्षमता......जाती है।

सही विकल्प का चयन कीजिये

1. तरंगे एक स्थान से दूसरे स्थान तक संचरण करती है।

अद्रव्य .

ब ऊर्जा .

स आयाम .

दतरंगदैध्र्य .

2. व्यतिकरण होता है।

अ अनुदैर्य तरंगों में .

अनुप्रस्थ तरंगों मे .ब

दोनों में .स

द कोई नही .

3. अच्छे विभेदन के लिए किसी दूरदर्शी में होना चाहिए -

अ .अधिक व्यास का अभिदृश्यक

ब. कम व्यास का अभिदृश्यक

स. कम फोकस दूरी का अभिदृश्यक .द कम फोकस दूरी की नेत्रिका

4. ध्र्वण होता है।

अ अन्दैर्य तरंगों में .

अन्प्रस्थ तरंगों मे .ब

दोनों में .स

द कोई नही .

5. फ्रेनल दूरी है -

 $\frac{\lambda^2}{a}$

ब. $\frac{a\lambda}{d}$

एक वाक्य में उत्तर दीजिये-

1. किसी प्रकाशीय यन्त्र की विभेदन क्षमता का सूत्र लिखिए

2. यंग के द्विस्लिट प्रयोग में व्यतिकरण चित्र पर क्या प्रभाव पड़ेगा,यदि-

1 यदि दोनो स्लिटों के बीच की दूरी बढ़ा दी जाये।

2 स्त्रोत को स्लिटों की ओर सरकाया जावे

3 पर्दे को स्लिटों से दूर हटाया जाये

4 दोनों स्लिटों की चौड़ाई बढ़ाई जाये

5 एकवर्णी स्त्रोत को दूसरे कम तरंगदैर्ध्य वाले एकवर्णी स्त्रोत से प्रतिस्थापित किया जावे

6 एक वर्णी स्त्रोत को श्वेत प्रकाश स्त्रोत से प्रतिस्थापित किया जावे।

अतिलघु उत्तीय प्रश्न(2 अंक)-

1. व्यतिकरण क्या होता है? इसका एक उदाहरण लिखिए।

2. व्यतिकरण की आवश्यक शर्तों को लिखिए।

3. हाइगेन के तरंग सिद्धांत के मुख्य अभिग्रहित लिखिए।

प्रकाश तरंगों के अध्यारोपण का सिध्दांत लिखिए।

कला सम्बध्द स्त्रोतों से क्या तात्पर्य है ?

6. कम ऊंचाई पर उड़ने वाला वाय्यान ऊपर से गुजरता है तो हम कभीकभी टेलीविजन के परदे पर चित्र को हिलता हुआ पाते -हैं।क्यों?

लघु उतीय प्रश्न(3 अंक)-

1. दो तरंगों की तीव्रताओं का अनुपात 1:9 है, यदि ये दोनों तरंगे व्यतिकरण करती हो तो महत्तम तथा न्यूनतम तीव्रताओं का अनुपात ज्ञात कीजिए

2. व्यतिकरण और विवर्तन में अंतर स्पष्ट कीजिए।

3. हाइगेन के दवितीयक तरंगिकाओं के सिदधांत को समझाइये |

4. यंग के प्रयोग में फ्रिंज चौडाई के लिए आवश्यक व्यंजक ज्ञात कीजिए।

अध्वित प्रकाश ओर समतल ध्वित प्रकाश में अंतर स्पष्ट कीजिए।

पालेरोइड क्या है? तथा इसके उपयोग लिखिए। .

सम्मिलित अध्याय - 11- विकिरण एवं द्रव्य की द्वैत प्रकृति

निर्धारित अंक 4 , वस्तुनिष्ठ प्रश्न -2, अतिलघु उत्तरीय प्रश्न(2 अंक)- 1

रिक्त स्थानों की पूर्ति कीजिये -

- 1. प्रकाश विद्युत प्रभाव में प्रकाश ऊर्जा का स्थानांतरण होता है। ऊर्जा में
- 2. विकिरण की प्रकृति होती है।
- 3. द्रव्य तरंगों का प्रदर्शन प्रयोग द्वारा कियागया है।
- 4. प्रकाश विद्युत प्रभाव की व्याख्या सर्वप्रथम ने की थी।
- 5. फोटॉन का विराम द्रव्यमान होता है।

सही विकल्प का चयन कीजिये

- एक प्रकाश स्त्रोत से प्रकाश निम्न रूप से निकलता है।
 अइलेक्ट्रान . ब परमाणु . स ड्यूटॉन . द् फोटान
- 2. एक फोटान की ऊर्जा निम्न रूप से दी जाती है।

अ. $h\nu$ ब $.h\lambda$ स $.h/\lambda$ द्hc

- 3. इलेक्ट्रान से सम्बंधित पदार्थ तरंग-
 - अ. सम्पूर्ण आकाश में एकल तरंगधेर्य के रूप में विस्तृत होती है।
 - ब .सम्पूर्ण आकाश में विभिन्न तरंगधेर्य के रूप में विस्तृत होती है।
 - स. आकाश में एक निश्चित क्षेत्र में एकल तरंगधेर्य के रूप में विस्तृत होती है।
 - द. आकाश में एक निश्चित क्षेत्र में विभन्न तरंगधेर्य के रूप में विस्तृत होती है।

एक वाक्य में उत्तर दीजिये-

- 1. धातु सतह से इलेक्ट्रान उत्सर्जन के लिए आवश्यक न्यूनतम ऊर्जा को क्या कहते हे ?
- 2. एक इलेक्ट्रान वोल्ट को जूल में व्यक्त कीजिए।
- 3. किसी फोटॉन से सम्बद्ध डी ब्रोग्ली तरंगधैर्य बताइये-।
- 4. आइन्स्टीन काप्रकाश विद्युत समीकरण लिखिए।
- 5. आपतित प्रकाश की तीव्रता बढ़ने पर प्रकाश विध्त धारा पर क्या प्रभाव पड़ता है ?
- आपितत प्रकाश की आवृति बढ़ने पर प्रकाश विध्त धारा पर क्या प्रभाव पड़ता है?
- 7. आपतित प्रकाश की आवृति बढ़ने पर उत्सर्जित इलेक्ट्रान की गतिज ऊर्जा पर क्या प्रभाव पड़ता है?
- 8. फोटॉन किसे कहते है ?
- 9. प्रकाश वैद्युत सेल किसे कहते है ?
- 10. प्लांक नियतांक का मात्रक तथा विमीय सूत्र लिखिए।

अतिलघु उत्तीय प्रश्न(2 अंक)-

- 1. कार्य फलन तथा देहली आवृत्ति को स्पष्ट कीजिए।
- 2. इलेक्ट्रान उत्सर्जन क्या है? तथा ये कितने प्रकार के होते है।
- 3. प्रकाश विद्युत प्रभाव की व्याख्या कीजिए।
- 4. विकिरण की द्वैती प्रकृति को स्पष्ट कीजिए।
- 5. तापायनिक उर्त्सजन से क्या अभिप्राय है ? तापायनिक उत्सर्जन में प्रयुक्त धातु में कौन-कौन से गुण होना चाहिए ?
- डी तरंग सिद्धांत दैनिक जीवन में दृष्टिगोचर नहीं होता है क्यों- का कणबोग्ली-?
- 7. फोटो सेल का नामांकित चित्र बनाकर इसकी कार्यविधि समझाइये। फोटो सेल के दो उपयोग लिखिये ।

सम्मिलित अध्याय -14 अर्द्धचालक इलेक्ट्रॉनिकी

निर्धारित अंक 9 , वस्तुनिष्ठ प्रश्न -3, अतिलघु उत्तरीय प्रश्न(2 अंक)- 1, लघु उत्तरीय प्रश्न(4 अंक)- 1 रिक्त स्थानों की पूर्ति कीजिये -

- 1. अश्द्धियां रहित चालक को अर्धचालक कहते है।
- 2. निज अर्धचालक मेंपरमाणु का अपमिश्रण करके N प्रकार के अर्धचालक प्रप्त किये जाते है।
- 3. जेनर डायोड क्षेत्र में चलित होता है।
- 4. NAND गेट में AND गेट के साथ गेट होता है।
- 5. सभी गेट ----- संख्याओं पर आधारित है।

सही विकल्प का चयन कीजिये

- 1. p-प्रकार के अर्धचालक में बह्संख्यक व अल्पसंख्यक क्रमशहोते है :-
 - अ प्रोटॉन व इलेक्ट्रान .

ब इलेक्ट्रान व प्रोटॉन .

स इलेक्ट्रान व होल .

दहोल और इलेक्ट्रान .

- 2. अर्धचालक की ताप बढाने पर इनकी चालकता -
 - अबढती है .

बघटती है .

स शुन्य हो जाता है .

द कोई परिवर्तन नही होता। .

- 3. p-n संधि डायोड में अवक्षय पर्त की मोटाई लगभग होती है-
 - **अ**. 10⁻³m
- .ৰ 10⁻⁴m
- स. 10⁻⁵m

द. 10⁻⁶m

- 4. वोल्टेज नियंत्रक के रूप में उपयोग किया जाता है -
 - अ .फोटो डायोड

ब .जेनर डायोड

स .ट्रांसिस्टर

द .pn डायोड

- 5. जब pn संधि पर अग्रदिशिक बायस अनुप्रयुक्त किया जाता है , तब यह -
 - अ .विभव रोधक बढाता है।

ब .विभव रोधक कम कर देता है।

स .बह्संख्यक वाहक धारा को शून्य कर देता है। द .उपरोक्त में से कोई नहीं

एक वाक्य में उत्तर दीजिये-

- 1. OK ताप पर निज अर्धचालक किस प्रकार से व्यवहार करता है?
- 2. n-प्रकार के अर्धचालक में बह्संख्यक व अल्पसंख्यकआवेश वाहक बताइये।
- 3. NAND गेट के लिए ब्लियन व्यंजक लिखिए।
- 4. LED क्या है?
- 5. दिष्टकारी का कार्य कौन सी अर्द्ध चालक युक्ति करती है?
- 6. किस प्रकार के गेट में केवल एक ही इनप्ट होता है?
- किस प्रकार की अभिनति में अर्धचालक डायोड का प्रतिरोध बह्त अधिक होता है।
- LED निर्माण के लिए प्रय्क्त अर्धचालकों में बैंड अन्तराल कम से कम कितना होना चाहिए?

अतिलघु उत्तीय प्रश्न(2 अंक)-

- 1. सार्वत्रिक गेट कौन कौन से है ? नाम लिखिए |
- n और p प्रकार के अर्धचालकों में अंतर स्पष्ट कीजिए।
- 3. ठोसो में ऊर्जा बैंड कितने प्रकार के होते है।
- 4. फोटो डायोड किसे कहते है?
- सौर सेल किसे कहते है?

- 6. NOT गेट का प्रतीक तथा सत्यमान सारणी लिखिए।
- 7. OR गेट का प्रतीक तथा सत्यमान सारणी लिखिए ।
- 8. AND गेट का प्रतीक तथा सत्यमान सारणी लिखिए।

लघ् उत्तरीय प्रश्न(4 अंक)-

- 1. ऊर्जा बैंड के आधार पर चालक , विद्युतरोधी और अर्धचालक की व्याख्या कीजिये।
- 2. P-N संधि डायोड में अग्र एवं पश्च अभिनति को समझाकर धारा प्रवाह हेत् अभिलक्षणिक वक्र खीचिए |
- 3. अर्द्धतरंग दिष्टकारी के रूप में P-N संधि डायोड का वर्णन निम्नलिखित शीर्षको के अंतर्गत कीजिए।
 - 1) परिपथ का नामांकित चित्र
 - 2) कार्यविधि
 - 3) निवेशी व निर्गत विभव का समय के साथ परिवर्तन आरेख
- 4. पूर्ण दिष्टकारी के रूप में P-N संधि डायोड का वर्णन निम्नलिखित शीर्षको के अंतर्गत कीजिए।
 - 1) परिपथ का नामांकित चित्र
 - 2) कार्यविधि
 - 3) निवेशी व निर्गत विभव का समय के साथ परिवर्तन आरेख
- 5. जेनर डायोड का वोल्टेज नियंत्रक के रूप में किसी उपयोग स्पष्ट कीजिये।
- 6. आप NOR गेट की सहायता से OR तथा AND गैट कैसे प्राप्त करेगे? चित्र की सहायता से स्पष्ट कीजिए ।
- 7. NAND गेट की सहायता से OR तथा AND गैट कैसे प्राप्त करेगे?चित्र की सहायता से स्पष्ट कीजिए ।

_____000____

उत्तरमाला

यूनिट 1		
अध्याय 1	सही विकल्प-	1-c, 2-b, 3-c, 4-b, 5-d, 6-c,7-b, 8-a, 9-b
	रिक्त स्थान-	1-अनंत, 2-अनंत, 3-16 गुना
अध्याय 2	सही विकल्प-	1-b, 2-a, 3-a, 4-c, 5-c, 6-b
	रिक्त स्थान-	1- 10 ¹² , 2- वोल्ट
यूनिट 2		
अध्याय 3	सही विकल्प-	1-a, 2-a, 3-b, 4-d
	रिक्त स्थान-	1-आवेश संरक्षण, 2-ऊर्जा संरक्षण, 3-अदिश, 4-सदिश, 5-व्हीटस्टोन सेतु
यूनिट 3		
अध्याय 4	सही विकल्प-	1-c, 2-b, 3-a, 4-a, 5-a, 6-a
	रिक्त स्थान-	1-लम्बवत, 2-शून्य, 3-अनंत, 4-समान्तर, 5-लारेन्ज बल,
यूनिट 4		
अध्याय 6	सही विकल्प-	1-d, 2-b, 3-d, 4-c, 5-a
	रिक्त स्थान-	1-चुम्बकीय फ्लक्स, 2-पटलित, 3-स्वप्रेरण, 4-उष्मीय ऊर्जा, 5-बढ़, 6-प्रेरित वि.वा.बल
अध्याय 7	रिक्त स्थान-	1-π/2, 2- I _{rms} = I₀/√2, 3-कम, 4-उष्मीय , 5-π/2
	सही विकल्प-	1-b, 2-d, 3-b, 4-b
यूनिट 5		
अध्याय 8	रिक्त स्थान-	1-अवरक्त, 2-50 km, 3-विद्युत् क्षेत्र, 4- विद्युत् क्षेत्र, 5-, 6-अवरक्त, 7-ओजोन, 8-क्वार्ट्ज,
		9-पराबेंगनी, 10-गामा किरण
	सही विकल्प-	1-c, 2-d, 3-b, 4-b, 5-a, 6-c, 7-a, 8-c, 9-d
यूनिट 6		
अध्याय 9	रिक्त स्थान-	1-बढ़, 2-डाईओप्टर, 3-प्रकीर्णन, 4-25 cm, 5-काला
	सही विकल्प-	1-b, 2-a, 3-c, 4-c
अध्याय 10		
	रिक्त स्थान-	1-विवर्तन, 2-व्यतिकरण, 3-तरंग्राग, 4-गोलीय, 5-अभिरक्त विस्थापन(रेड शिफ्ट), 6-कम
	सही विकल्प-	1-b, 2-c, 3-a, 4-b, 5-d
यूनिट 7		
अध्याय 11	रिक्त स्थान-	1-विद्युत्, 2-द्वैत, 3-डेविसन जर्मर, 4-आइंस्टीन, 5-शून्य
	सही विकल्प-	1-d, 2-a, 3-d
यूनिट 8		
अध्याय 14	रिक्त स्थान-	1-निज, 2-पंचसंयोजी, 3-भंजन, 4-NOT, 5-बाइनरी
	सही विकल्प-	1-d, 2-a, 3-d, 4-b, 5-b