25

Alcohols, Phenols and Ethers

Conceptual MCQs

- 1. Which one of the following alcohols is least soluble in water?
 - (a) CH₃OH
- (b) C_3H_7OH
- (c) C_4H_9OH
- (d) $C_{10}H_{21}OH$
- 2. How many isomers of $C_5H_{11}OH$ will be primary alcohols?
 - (a) 5
- (b) 4
- (c) 2
- (d) 3
- **3.** Ethyl alcohol can be prepared from Grignard reagent by the reaction of:
 - (a) HCHO (b) R₂CO
- (c) RCN
- (d) RCOCI

- **4.** Methylated spirit is:
 - (a) methanol
- (b) methanol + ethanol
- (c) methanoic acid
- (d) methanamide
- **5.** Glycerol is more viscous than ethanol due to :
 - (a) high molecular weight.
 - (b) high boiling point.
 - (c) many hydrogen bonds per molecule.
 - (d) Fajan's rule.
- **6.** Carbolic acid is:
 - (a) phenol
- (b) phenyl benzoate
- (c) phenyl acetate
- (d) salol
- 7. Which one of the following compounds will be most readily attacked by an electrophile?
 - (a) Chlorobenzene
- (b) Benzene
- (c) Phenol
- (d) Toluene
- 8. The IUPAC name of $CH_3 CH CH_2 C CH_3$ is:

 OH

 OH
 - (a) 1, 1-dimethyl-1, 3-butanediol
 - (b) 2-methyl-2, 4-pentanediol
 - (c) 4-methyl-2, 4-pentanediol
 - (d) 1, 3, 3-trimethyl-1, 3-propanediol

- **9.** Which of the following has lowest boiling point?
 - (a) p-Nitrophenol
- (b) m-Nitrophenol
- (c) o-Nitrophenol
- d) Phenol
- 10. HBr reacts fastest with:
 - (a) 2-Methylpropan-1-ol
- (b) 2-Methylpropan-2-ol
- (c) propan-2-ol
- (d) propan-1-ol.
- 11. Williamson's synthesis is used to prepare
 - (a) acetone
- (b) diethyl ether
- (c) P.V.C.
- (d) bakelite
- **12.** What is formed when a primary alcohol undergoes catalytic dehydrogenation ?
 - (a) Aldehyde
- (b) Ketone
- (c) Alkene
- (d) Acid
- **13.** The reaction of sodium ethoxide with ethyl iodide to form diethyl ether is termed:
 - (a) electrophilic substitution
 - (b) nucleophilic substitution
 - (c) electrophilic addition
 - (d) radical substitution
- **14.** Which one of the following is not formed when glycerol reacts with HI?
 - (a) CH₃—CHI—CH₃
 - (b) $CH_3 CH = CH_2$
 - (c) CH₂OH—CHI—CH₂OH
 - (d) $CH_2 = CH CH_2I$
- **15.** Which of the following product is formed, when ether is exposed to air?
 - (a) Oxide
- (b) Alkanes
- (c) Alkene
- (d) Peroxide of diethyl ether

Application Based MCQs

- **16.** Which is formed when benzylamine react with nitrous acid?
 - (a) C₆H₅OH
- (b) C_6H_5ON
- (c) $C_6H_5N_2OH$
- (d) C₆H₅CH₂OH
- **17.** *n*-Propyl alcohol and isopropyl alcohol can be chemically distinguished by which reagent?
 - (a) PCl₅
 - (b) Reduction
 - (c) Oxidation with potassium dichromate
 - (d) Ozonolysis
- **18.** The major product obtained on interaction of phenol with sodium hydroxide and carbon dioxide is:
 - (a) salicylaldehyde
- (b) salicylic acid
- (c) phthalic acid
- (d) benzoic acid
- 19. Ethylene oxide when treated with Grignard reagent yields:
 - (a) tertiary alcohol
- (b) cyclopropyl alcohol
- (c) primary alcohol
- (d) secondary alcohol
- **20.** From amongst the following alcohols the one that would react fastest with conc. HCl and anhydrous ZnCl₂, is:
 - (a) 2-Butanol
- (b) 2- Methylpropan-2-ol
- (c) 2-Methylpropanol
- (d) 1-Butanol
- 21. Among the following the one that gives positive iodoform test upon reaction with I_2 and NaOH is:

$$\begin{array}{c} \text{CH}_2 \\ | \\ \text{(a)} \quad \text{CH}_3 - \text{CHCH}_2\text{OH} \end{array}$$

- (b) PhCHOHCH₃
- (c) CH₃CH₂CH(OH)CH₂CH₃
- (d) C₆H₅CH₂CH₂OH
- 22. The main product of the following reaction is $C_6H_5CH_2CH(OH)CH(CH_3)_2 \xrightarrow{conc.H_2SO_4} ?$

(a)
$$H_5C_6$$
 $C = C$ $CH(CH_3)_2$

(b)
$$C_6H_5CH_2$$
 $C = C CH_3$ CH_3

(c)
$$H_5C_6CH_2CH_2$$
 $C = CH_2$

(d)
$$C_6H_5$$
 $C = C CH(CH_3)_2$

- **23.** The best method to prepare cyclohexene from cyclohexanol is by using :
 - (a) Conc. $HCl + ZnCl_2$
- (b) Conc. H₃PO₄
- (c) HBr
- (d) Conc. HCl
- **24.** The correct order of acid strength of the following compounds:
 - (A) Phenol
- (B) p-Cresol
- (C) *m*–Nitrophenol
- (D) p-Nitrophenol
- (a) D>C>A>B
- (b) B>D>A>C
- (c) A>B>D>C
- (d) C>B>A>D
- **25.** In order to get 2-hydroxybenzaldehyde from phenol, which of the following reagents is required?
 - (a) (CH₃CO)₂O, H₂SO₄
- (b) CHCl₃/NaOH
- (c) CO₂, NaOH
- (d) CCl₄/NaOH
- **26.** Consider the following reaction :

$$C_2H_5OH + H_2SO_4 \longrightarrow Product$$

Among the following, which one cannot be formed as a product under any conditions?

- (a) Ethylene
- (b) Acetylene
- (c) Diethyl ether
- (d) Ethyl-hydrogen sulphate
- 27. Dehydration of 2-butanol yields:
 - (a) 1-butene
- (b) 2-butene
- (c) 2-butyne
- (d) both (a) and (b)
- **28.** Phenol is heated with a solution of mixture of KBr and KBrO₃. The major product obtained in the above reaction is:
 - (a) 2-Bromophenol
- (b) 3-Bromophenol
- (c) 4-Bromophenol
- (d) 2,4,6-Tribromophenol
- **29.** The dehydration of 2-methylbutanol with conc. H_2SO_4 gives:
 - (a) 2-Methylbutene as major product
 - (b) Pentene
 - (c) 2-Methylbut-2-ene as major product
 - (d) 2-Methylpent-2-ene
- **30.** Which of the following reagents may be used to distinguish between phenol and benzoic acid?
 - (a) Aqueous NaOH
- (b) Tollen's reagent
- (c) Molisch reagent
- (d) Neutral FeCl₃

31. In the reaction:

 $CH_3OH \xrightarrow{\ oxidation \ } A \xrightarrow{\ NH_3 \ } B$; A and B respectively

are

- (a) HCHO, HCOONH₄
- (b) HCOOH, HCOONH₄
- (c) HCOOH, HCONH₂
- (d) HCHO, HCONH₂
- 32. The major organic product in the reaction,

$$CH_3 - O - CH(CH_3)_2 + HI \rightarrow Product$$
 is

- (a) $ICH_2OCH(CH_3)_2$
- (b) $CH_3OC(CH_3)_2$
- (c) $CH_3I + (CH_3)_2CHOH$
- (d) CH₃OH+(CH₃)₂CHI
- **33.** Arrange the following compounds in order of decreasing acidity:

$$\begin{array}{c|cccc} OH & OH & OH & OH \\ \hline & & OH & OH & OH \\ \hline & & & & OH \\ \hline & & & & OH & OH \\ \hline & & & & & OH \\ \hline & & & & & OH \\ \hline & & & & & OH \\ \hline$$

- (a) II > IV > I > III
- (b) I > II > III > IV
- (c) III > I > II > IV
- (d) IV > III > I > II
- 34. The most suitable reagent for the conversion of

$$R - CH_2 - OH \longrightarrow R - CHO$$
 is:

- (a) KMnO₄
- (b) $K_2Cr_2O_7$
- (c) CrO₂
- (d) PCC (Pyridinium chlorochromate)
- **35.** Which of the following reagent is best to change glycerol to acrolein?
 - (a) P_2O_5
- (b) Conc. H₂SO₄
- (c) Anhydrous CaCl₂
- (d) KHSO₄
- **36.** Sodium phenoxide when heated with CO₂ under pressure at 125°C yields a product which on acetylation produces C

$$ONa + CO_2 \xrightarrow{125^{\circ}C} B \xrightarrow{H^+} Ac_2O C$$

The major product C would be:

(a)
$$OCOCH_3$$
 (b) OH $COCH_3$ $COCH_3$

$$COOCH_3$$
 (d) $COOCH_3$

- 37. Heating of 2-chloro-1-phenylbutane with EtOK/EtOH gives X as the major product. Reaction of X with Hg $(OAc)_2/H_2O$ followed by NaBH₄ gives Y as the major product. Y is:
 - (a) Ph OH OH
 - (b) Ph
 - (c) Ph
 - (d) Ph
- **38.** The major product of the following reaction is:

39. The major product of the following reaction is:

$$\begin{array}{c}
\text{OCH}_{3} \\
\text{Conc. HBr (excess)} \\
\text{Heat}
\end{array}$$

Br-CHCH3

$$(d) \qquad \begin{array}{c} OH \\ CH_2CH_2Br \end{array}$$

40. *p*-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form, the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is

(a)
$$CH_3$$
 CH_2COOH

(d)
$$CH_3$$
 $CH(OH)COOH$ OH

Skill Based MCQs

41. Phenol reacts with methyl chloroformate in the presence of NaOH to form product A. A reacts with Br₂ to form product B. A and B are respectively:

(a)
$$OCH_3$$
 and OCH_3

(c)
$$O$$
 and O

(d)
$$OCH_3$$
 and OCH_3

42.
$$Y \text{ (mix)} \leftarrow \frac{\text{conc. HI}}{2} \text{ (CH}_3)_3 \text{ C} - \text{O} - \text{CH}_3$$

$$\xrightarrow{\text{Anhydrous HI}} X \text{ (mix)}$$

- (a) X and Y are identical mixture of CH_3I and $(CH_3)_3C OH$
- (b) X and Y are identical mixture of CH₃OH & (CH₃)₃C-I
- (c) X is mixture of CH_3I and $(CH_3)_3C OH$
- (d) Y is mixture of $CH_3OH \& (CH_3)_3C-I$
- **43.** The major product formed in the following reaction is:

44. The structure of the compound that gives a tribromo derivative on treatment with bromine water is

(c)
$$OH$$
 (d) OH

45. The major product (X) of the following reaction is:

$$\xrightarrow{\text{(i) Br}_2} X$$

(a)
$$OEt$$
 Br (b) OEt

46.
$$CH_3 - CH = CH_2 \xrightarrow{(i) \text{Hg(OAc)}_2/\text{H}_2\text{O}} X + \text{Na}$$

$$\longrightarrow$$
 Y + CH₃Cl \longrightarrow Z + HI $\xrightarrow{0^{\circ}$ C A + B

What are A and B?

- (a) $CH_3 CH_2 CH_2 OH \& CH_3I$
- (b) CH₃ CH OH & CH₃I | | CH₃
- (c) CH₃ CH I & CH₃OH | | CH₃
- (d) CH₃-CH₂CH₂I & CH₃OH

47.
$$CH_3CH - CH = CH_2 \xrightarrow{(i) B_2H_6} X \xrightarrow{H_2SO_4} Y$$
.
 CH_3

What is Y?

(a)
$$CH_3 - CH - CH_2 - CH_2 - O - CH_3 - CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3 - CH_3$$

(b)
$$CH_3 - CH - CH = CH_2$$

 CH_3

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ & & | & \\ & & | & \\ CH_3 - C - O - C - CH_3 \\ & & | & \\ & & C_2H_5 & C_2H_5 \\ \end{array}$$

48.
$$(X) \xrightarrow{H_3O^+} Y + Z$$

(Y and Z both give the Iodoform test). The compound X is-

(a)
$$CH_3 - CH = CH - O - CH_2 - CH_3$$

(b)
$$CH_3 - C - O - CH_2 - CH_3$$

 CH_3

(c)
$$CH_3 - C - O - CH_2 - CH_3$$
 \parallel
 CH_2

(d) Both (a) and (c)

49. Which of the following , upon treatment with tert-BuONa followed by addition of bromine water, fails to decolourize the colour of bromine?

(b) C_6H_5

50. What will be the major product when *m*-cresol is reacted with propargyl bromide (HC \equiv C \rightarrow CH₂Br) in presence of K₂CO₃ in acetone?

(a)
$$CH_3$$
 (b) CH_3

$$(c) \qquad \begin{matrix} OH & & OH \\ CH_3 & & & CH_3 \end{matrix}$$

ANSWER KEY																			
Conceptual MCQs																			
1	(d)	3	(a)	5	(c)	7	(c)	9	(c)	11	(b)	13	(b)	15	(d)				
2	(b)	4	(b)	6	(a)	8	(b)	10	(b)	12	(a)	14	(c)						
Application Based MCQs																			
16	(d)	19	(c)	22	(a)	25	(b)	28	(d)	31	(b)	34	(d)	37	(c)	40	(c)		
17	(c)	20	(b)	23	(b)	26	(b)	29	(c)	32	(c)	35	(d)	38	(c)				
18	(b)	21	(b)	24	(a)	27	(d)	30	(d)	33	(c)	36	(a)	39	(b)				
	7 3							Ski	ill Bas	ed MC	CQs								
41	(c)	42	(b)	43	(d)	44	(c)	45	(a)	46	(b)	47	(a)	48	(c)	49	(a)	50	(a)