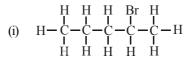
### FACT/DEFINITION TYPE QUESTIONS

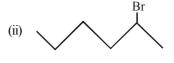
- 1. Which of the following scientist proposed that a 'vital force' was responsible for the formation of organic compounds ?
  - (a) Berzilius (b) Wohler
  - (c) Berthelot (d) Kolbe
- 2. First organic compound to be synthesised was
  - (a) methane (b) cane sugar
  - (c) acetic acid (d) urea
- **3.** Which of the following organic compound was synthesised by F. Wohler from an inorganic compound?
  - (a) Methane (b) Urea
  - (c) Acetic acid (d) Chloroform
- 4. The discovery that shook the belief in the vital force theory was
  - (a) Stereoisomerism
  - (b) Synthesis of indigo
  - (c) Wholer's synthesis of urea from ammonium cyanate
  - (d) Fermentation of sugars
- 5. In laboratory, first organic compound was synthesised by

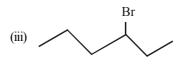
| (a) | Kekule | (b) | Hennel |
|-----|--------|-----|--------|
|     |        |     |        |

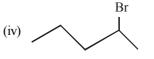
- (c) Wohler (d) Liebig
- 6. Who is known as the "Father of Chemistry"?

| ) Priestley |
|-------------|
|             |


- (c) Rutherford (d) Lavoisier
- 7. The hybridisation of carbon atom in C C single bond of  $H_2C = CH CH = CH_2$  is
  - (a)  $sp^3 sp$  (b)  $sp^2 sp$ (c)  $sp^2 - sp^2$  (b)  $sp^3 - sp^3$
- 8. In the hydrocarbon


$$CH_3 - CH = CH - CH_2 - C \equiv CH$$
  
6 5 4 3 2 1


The state of hybrization of carbons 1, 3 and 5 are in the following sequence


CHAPTER

- (a)  $sp^2, sp, sp^3$  (b)  $sp, sp^3, sp^2$
- (c)  $sp, sp^2, sp^3$  (d)  $sp^3, sp^2, sp$
- **9.** The percentage of s- character of the hybrid orbitals in ethane, ethene and ethyne are respectively.
  - (a) 50, 75, 100 (b) 10, 20, 40
  - (c) 25, 33, 50 (d) 25, 50, 75
- 10. Select the molecule which has only one  $\pi$ -bond
  - (a)  $CH \equiv CH$  (b)  $CH_2 = CHCHO$
  - (c)  $CH_3CH=CH_2$  (d)  $CH_3CH=CHCOOH$
- **11.** 2- Pentene contains
  - (a)  $15 \sigma$  and one  $\pi$  bond (b)  $14 \sigma$  and one  $\pi$  bond
  - (c) 15  $\sigma$  and two  $\pi$  bonds (d) 14  $\sigma$  and two  $\pi$  bonds
- **12.** Which of the following does not represent the 2 bromo pentane ?









- (v) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHBrCH<sub>3</sub>
- (a) (ii), (iii) and (v) (b) Only(ii)
- (c) (ii) and (iii) (d) (iii) and (v)

#### 182

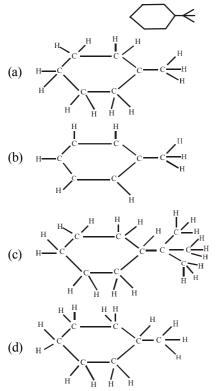
18.

19.

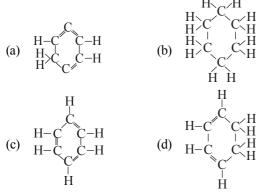
20.

21.

22.


23.

24.


25.

26.

**13.** Which of the following correctly represents the expanded form of following organic compound ?



14. Structural formula of benzene is



**15.** The successive members in a homologues series differ from each other by \_\_\_\_\_

(a) 
$$-CH_2CH_2^-$$
 unit (b)  $-CH_2$  unit

(c) 
$$- OCH_3$$
 unit (d)  $- CH_3$  unit

- 16. Which of the following have incorrect molecular formula? A. Icosane  $-C_{10}H_{22}$ 
  - A. Icosane
      $C_{10}H_{22}$  

     B. Triacontane
      $C_{30}H_{62}$  

     C. Nonane
      $C_9H_{20}$  

     D. Heptane
      $C_7H_{14}$  

     (a) (A) and (D)
     (b) Only (D)

     (c) (B) and (D)
     (d) Only (B)
- **17.** Which of the following are incorrect methods of selecting parent chain ?

(i) 
$$\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ CH_3 - CH - CH_2 - CH_3 \\ \\ CH_3 & 7CH_2 - CH_3 \\ \end{array}$$

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) $\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ CH_3 - CH - CH_2 - CH_3 \\ \downarrow & & \downarrow \\ CH_3 & & 7CH_2 - CH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (iii) $\begin{array}{c} 1 \\ CH_3 - CH - CH_2 - CH_3 \\ \\ CH_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (iv) $\begin{array}{c} 8 & 7 & 6 & 5 & 4 & 3 \\ -CH_{3} - CH_{2} - CH_{3} \\ -CH_{3} & -CH_{3} - CH_{3} \\ -CH_{3} - CH_{3} \\$ |
| (a) (i) and (ii) (b) (iv) only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (c) (i), (ii) and (iv) (d) (ii) only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The correct decreasing order of priority of functional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| groups is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) $-SO_{3}H$ , $-OH$ , $-COCI$ , $> C = C <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (b) $-COOH, -SO_3H, -COOR, -OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (c) $-C \equiv C, -NH_2, -OH, > C = O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (d) $-CN, -CONH_2, > C = 0, -OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Which of the following is incorrectly matched –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) vinegar $\rightarrow$ carboxylic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (b) $C_2H_6 \rightarrow alkane$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (c) $ethanol \rightarrow alcohol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (d) methanol $\rightarrow$ ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The functional group present in organic, acid is –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) – OH (b) – CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) $-OH$ (b) $-CHO$<br>(c) $-COOH$ (d) $>C=O$<br>Which of these contains the carbonyl group?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $>C=O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>(a) -OH</li> <li>(b) -CHO</li> <li>(c) -COOH</li> <li>(d) &gt; C = O</li> <li>Which of these contains the carbonyl group?</li> <li>(a) ketones</li> <li>(b) aldehydes</li> <li>(c) esters</li> <li>(d) all of these</li> <li>Butanone is a four-carbon compound with the functional</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>(a) -OH</li> <li>(b) -CHO</li> <li>(c) -COOH</li> <li>(d) &gt; C = O</li> <li>Which of these contains the carbonyl group?</li> <li>(a) ketones</li> <li>(b) aldehydes</li> <li>(c) esters</li> <li>(d) all of these</li> <li>Butanone is a four-carbon compound with the functional group -</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $>C=O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functionalgroup -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functionalgroup -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentaneThe number of secondary hydrogens in 2, 2-dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentaneThe number of secondary hydrogens in 2, 2-dimethylbutane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentane(a) 8(b) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentane(a) 8(b) 6(c) 4(d) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) $-OH$ (b) $-CHO$ (c) $-COOH$ (d) $> C = O$ Which of these contains the carbonyl group?(a) ketones(b) aldehydes(c) esters(d) all of theseButanone is a four-carbon compound with the functional group -(a) carboxylic acid(b) aldehyde.(c) ketone(d) alcohol.The functional group present in $CH_3COOC_2H_5$ is -(a) ketonic(b) aldehydic(c) ester(d) carboxylicWhich of the following compounds contains 1°, 2°, 3° as well as 4° carbon atoms ?(a) Neopentane(b) 2-methyl pentane(c) 2,3-dimethyl butane(d) 2,2,3-trimethyl pentane(a) 8(b) 6(c) 4(d) 2The compound which has one isopropyl group is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (a) $-OH$ (b) $-CHO$<br>(c) $-COOH$ (d) $>C=O$<br>Which of these contains the carbonyl group?<br>(a) ketones (b) aldehydes<br>(c) esters (d) all of these<br>Butanone is a four-carbon compound with the functional<br>group –<br>(a) carboxylic acid (b) aldehyde.<br>(c) ketone (d) alcohol.<br>The functional group present in $CH_3COOC_2H_5$ is –<br>(a) ketonic (b) aldehydic<br>(c) ester (d) carboxylic<br>Which of the following compounds contains 1°, 2°, 3° as<br>well as 4° carbon atoms ?<br>(a) Neopentane (b) 2-methyl pentane<br>(c) 2,3-dimethyl butane (d) 2,2,3-trimethyl pentane<br>The number of secondary hydrogens in 2, 2-dimethylbutane<br>is<br>(a) 8 (b) 6<br>(c) 4 (d) 2<br>The compound which has one isopropyl group is<br>(a) 2, 2, 3, 3 - Tetramethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (a) $-OH$ (b) $-CHO$<br>(c) $-COOH$ (d) $>C=O$<br>Which of these contains the carbonyl group?<br>(a) ketones (b) aldehydes<br>(c) esters (d) all of these<br>Butanone is a four-carbon compound with the functional<br>group –<br>(a) carboxylic acid (b) aldehyde.<br>(c) ketone (d) alcohol.<br>The functional group present in $CH_3COOC_2H_5$ is –<br>(a) ketonic (b) aldehydic<br>(c) ester (d) carboxylic<br>Which of the following compounds contains 1°, 2°, 3° as<br>well as 4° carbon atoms ?<br>(a) Neopentane (b) 2-methyl pentane<br>(c) 2,3-dimethyl butane (d) 2,2,3-trimethyl pentane<br>The number of secondary hydrogens in 2, 2-dimethylbutane<br>is<br>(a) 8 (b) 6<br>(c) 4 (d) 2<br>The compound which has one isopropyl group is<br>(a) 2, 2, 3, 3 - Tetramethylpentane<br>(b) 2, 2 - Dimethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (a) $-OH$ (b) $-CHO$<br>(c) $-COOH$ (d) $>C=O$<br>Which of these contains the carbonyl group?<br>(a) ketones (b) aldehydes<br>(c) esters (d) all of these<br>Butanone is a four-carbon compound with the functional<br>group –<br>(a) carboxylic acid (b) aldehyde.<br>(c) ketone (d) alcohol.<br>The functional group present in $CH_3COOC_2H_5$ is –<br>(a) ketonic (b) aldehydic<br>(c) ester (d) carboxylic<br>Which of the following compounds contains 1°, 2°, 3° as<br>well as 4° carbon atoms ?<br>(a) Neopentane (b) 2-methyl pentane<br>(c) 2,3-dimethyl butane (d) 2,2,3-trimethyl pentane<br>The number of secondary hydrogens in 2, 2-dimethylbutane<br>is<br>(a) 8 (b) 6<br>(c) 4 (d) 2<br>The compound which has one isopropyl group is<br>(a) 2, 2, 3, 3 - Tetramethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

- 27. Which of the following statements is false for isopentane?
  - (a) It has three  $CH_3$  groups
  - (b) It has one CH<sub>2</sub> group
  - (c) It has one CH group
  - (d) It has a carbon which is not bonded to hydrogen

- **28.** The number of primary, secondary and tertiary carbons in 3, 4-dimethylheptane are respectively
  - (a) 4, 3 and 2 (b) 2, 3 and 4
  - (c) 4, 2 and 3 (d) 3, 4 and 2
- **29.** The number of primary, secondary, tertiary and quaternary carbons in neopentane are respectively
  - (a) 4, 3, 2 and 1 (b) 5, 0, 0 and 1
  - (c) 4, 0, 0 and 1 (d) 4, 0, 1 and 1
- **30.** What is the IUPAC name of t-butyl alcohol.
  - (a) Butanol–2 (b) 2–Methyl–propan–2-ol

(d) Propanol-2

- (c) Butanol-1
- **31.** The IUPAC name of  $CH_3COCH(CH_3)_2$  is -
  - (a) isopropyl methyl ketone
  - (b) 2-methyl-3-butanone
  - (c) 4-methylisopropyl ketone
  - (d) 3-methyl-2-butanone
- 32.  $CH_3CH_2-CH-CH-CH_2CH_3$  has the IUPAC name-| | CH<sub>3</sub> CHO
  - (a) 2-sec butylbutanal
  - (b) 2, 3-diethylbutanal
  - (c) 2-ethyl-3-methylpentanal
  - (d) 3-methyl-2-ethylpentanal
- **33.** Which of the following statements is false for isopentane–
  - (a) It has three  $CH_3$  groups
  - (b) It has one  $CH_2$  group
  - (c) It has one CH group
  - (d) It has a carbon which is not bonded to hydrogen
- **34.** The IUPAC name of the compound
  - CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub> is
  - (a) 3-ethoxy-1-methoxypropane
  - (b) 1-ethoxy-3-methoxypropane
  - (c) 2, 5-dioxyhexane
  - (d) ethoxypropane oxymethane
- **35.** Which of the following compounds has wrong IUPAC name?
  - (a)  $CH_3-CH_2-CH_2-COO-CH_2CH_3 \rightarrow ethyl butanoate$
  - (b)  $CH_3 CH CH_2 CHO \rightarrow 3$ -methyl-butanal |  $CH_3$

(c) 
$$CH_3 - CH - CH - CH_3 \rightarrow 2$$
-methyl-3-butanol  
 $|$   $|$   $|$   $OH$   $CH_3$ 

(d) 
$$CH_3 - CH - C - CH_2 - CH_3 \rightarrow 2$$
-methyl-3-pentanone  
 $CH_3$ 

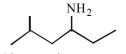
36. The IUPAC name of the compound shown below is



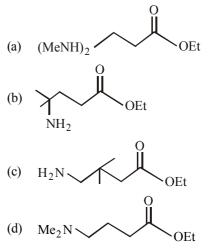
- (a) 3-bromo-1-chlorocyclohexene
- (b) 1-bromo-3-chlorocyclohexene
- (c) 2-bromo-6-chlorocyclohex-1-ene
- (d) 6-bromo-2-chlorocyclohexene
- **37.** Name of the following compound is

$$CH_3CH_2$$
 C  $CH_3$  C  $CH_3$ 

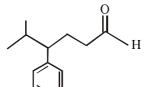
- (a) 2-ethylbutan-2-ol
- (b) 1-ethyl-1-methylpropan-1-ol
- (c) 3-methyl pentan-3-ol
- (d) diethylethanol


**38.** The IUPAC name for

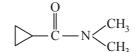
$$C1 = CH_3 - C - CH_2 - CH = CH - CH_3$$
<sup>is</sup>


- (a) 5--chlorohex-2--ene
- (b) 2-chlorohex-5-ene
- (c) 1-chloro-1-methylpent-3-ene
- (d) 5-chloro-5-methylpent-2-ene
- **39.** IUPAC name of following compound is :

$$CH_3 - \begin{array}{c} H \\ CH_2 - CH_2 - CH_3 \end{array}$$


- (a) 2 cyclohexylbutane (b) 2 phenylbutane
- (c) 3 cyclohexylbutane (d) 3 phenylbutane
- 40. What is the IUPAC name of the following compound ?




- (a) 2-methyl-4-hexanamine
- (b) 5-methyl-3-hexanamine
- (c) 2-methyl-4-amino hexane
- (d) 5-methyl-3-amino hexane
- **41.** Which one of the following is ethyl-4-(dimethyl amino) butanoate ?



**42.** Identify the correct IUPAC name of the compound given below



- (a) 4 benzyl 5 methyl hexanal
- (b) 2 methyl 3 phenyl hexanal
- (c) 5 isopropyl 5 phenyl butanal
- (d) 5 methyl 4 phenyl hexanal
- **43.** IUPAC name of  $(CH_3)_3$  CCl is
  - (a) 1-butyl chloride
  - (b) 3-chloro butane
  - (c) 2-chloro-2-methylpropane
  - (d) 2-butyl chloride
- 44. IUPAC name of the following compound

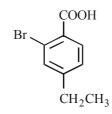


- (a) N, N-dimethylcyclopropane carboxamide
- (b) N-methylcyclopropanamide'
- (c) cyclopropionamide
- (d) None of these
- 45. Which of the following is a 3-methylbutyl group?(a) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-
  - (b)  $(CH_3CH_2)_2CH_2$
  - $(0) \quad (CII_3CII_2)_2CI$
  - (c)  $(CH_3)_3CCH_2$ -
  - (d)  $(CH_3)_2CHCH_2CH_2-$
- **46.** The IUPAC name of the following compound

$$\begin{array}{c} H_3C \longrightarrow CH_2 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_2 \longrightarrow CH$$

- is
- (a) 3-ethyl-5-methylheptane
- (b) 5-ethyl-3-methylheptane
- (c) 3,5-diethylhexane
- (d) 1,1-diethyl-3-methylpentane
- 47. The IUPAC name of the following compound is

$$(CH_3)_2CH - CH_2CH = CH - CH = CH - CHCH_3$$


 $C_2H_5$ 

- (a) 1,1,7,7-tetramethyl-2,5-octadiene
- (b) 2,8-dimethyl-3,6-decadiene
- (c) 1,5-di-iso-propyl-1,4-hexadiene
- (d) 2,8-dimethyl-4,6-decadiene
- 48. The IUPAC name of the compound
  - $CH_3 CH(CH_3) CO CH_3$ , is
  - (a) 3-methyl 2-butanone
  - (b) 2-methyl 3-butanone
  - (c) isopropyl methyl ketone
  - (d) methyl isopropyl ketone

- **49.** The IUPAC name of neopentane is
  - (a) 2, 2-dimethylpropane (b) 2-methylpropane
  - (c) 2, 2-dimethylbutane (d) 2-methylbutane
- **50.** The IUPAC name for



- (a) 1-Chloro-2-nitro-4-methyl benzene
- (b) 1-Chloro-4-methyl-2-nitrobenzene
- (c) 2-Chloro-1-nitro-5-methyl benzene
- (d) *m*-Nitro-*p*-chlorotoluene
- 51. What is the IUPAC name of the following compound ?



- (a) 6 bromo 4 ethylbenzene carboxylic acid
- (b) 2 bromo 4 ethylbenzene carboxylic acid
- (c) Ortho-bromo-paraethyl benzoic acid
- (d) 4 bromo 3 ethyl benzoic acid
- **52.** Total number of structural isomers possible for  $C_3H_6$  are :
  - (a) 2 (b) 1
  - (c) 4 (d) 3
- **53.** An aromatic compound of formula C<sub>7</sub>H<sub>7</sub>Cl has in all ..... isomers :
  - (a) 5 (d) 2
  - (c) 4 (d) 3
- 54. CH<sub>3</sub>CH<sub>2</sub>OH and CH<sub>3</sub>OCH<sub>3</sub> are the examples of
  (a) chain isomerism
  (b) functional isomerism
  - (c) position isomerism (d) metamerism
- **55.** Which organic structure among the following is not an isomer of the compound
  - CH<sub>3</sub>-CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>?
  - (a)  $CH_3CH_3OCH = CHCH_3CH_3$
  - (b)  $CH_3CH = CHCH_3CH_3CHO$
  - (c)  $(CH_3)_2CH-CO-CH_2CH_3$
  - (d) CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- **56.** The least number of carbon atoms in alkane showing isomerism is
  - (a) 3 (b) 1 (c) 2 (d) 4
- 57. The number of possible alkynes with molecular formula  $C_5H_8$  is
  - (a) 2 (b) 3
  - (c) 4 (d) 5
- **58.** The total number of isomers for  $C_4H_8$  is
  - (a) 5 (b) 6
  - (c) 7 (d) 8

184

| ORG | SANIC CHEMISTRY - SOME BASIC PRINCIPLES & TECHNIQU                                                                           | JE2 | 185                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------|
| 59. | Which of the following compounds is isomeric with 2, 2, 4,                                                                   | 71. | Which of the following ions is most stable?                |
|     | 4-tetramethylhexane?                                                                                                         |     | + +                                                        |
|     | (a) 3-ethyl-2, 2- dimethylpentane                                                                                            |     | (a) $CH_3 - C - CH_3$ (b) $CH_3 CH_2 CH_2$                 |
|     | (b) 4-isopropylheptane                                                                                                       |     |                                                            |
|     | (c) 4-ethyl-3-methyl-4-n propyloctane                                                                                        |     | ĊH <sub>3</sub>                                            |
|     | (d) 4, 4-diethyl-3-methylheptane                                                                                             |     | +                                                          |
| 60. | Which are isomers?                                                                                                           |     | (c) $CH_3CHCH_2CH_3$ (d) None of these                     |
|     | (a) ethyl alcohol and dimethyl ether                                                                                         | 72. | The order of stability of the following carbocations :     |
|     | (b) acetone and acetaldehyde                                                                                                 |     | с<br>Ф                                                     |
|     | (c) propionic acid and propanone                                                                                             |     | ČH <sub>2</sub>                                            |
|     | (d) methyl alcohol and dimethyl ether                                                                                        |     |                                                            |
| 61. | Methoxyethane and propanol are the examples of isomerism                                                                     |     | $CH_2 = CH - CH_2$ ; $CH_3 - CH_2 - CH_2$ ; $is$ :         |
| 01. | of the type                                                                                                                  |     |                                                            |
|     | (a) structural (b) position                                                                                                  |     | I II III                                                   |
|     | (c) functional (d) tautomerism                                                                                               |     | (a) $III > II > I$ (b) $II > III > I$                      |
| 62. | Isomers of propionic acid are                                                                                                |     | (c) $I > II > III$ (d) $III > I > II$                      |
| 02. | (a) $HCOOC_2H_5$ and $CH_3COOCH_3$                                                                                           | 73. | Select the most stable carbocation amongst the following   |
|     | (b) $HCOOC_2H_5$ and $C_3H_7COOH$                                                                                            |     | (a) $\searrow$ $\stackrel{+}{\longrightarrow}$ $\bigwedge$ |
|     | (c) $CH_3COOCH_3$ and $C_3H_7COOH$                                                                                           |     |                                                            |
|     | (d) $C_3H_7OH$ and $CH_3COCH_3$                                                                                              |     | $(b) \rightarrow_+ \land \land \land \land$                |
| (2) | 5, 5, 5, 5,                                                                                                                  |     | $\gamma \sim \sim \sim$                                    |
| 63. | $C_6H_5C \equiv N$ and $C_6H_5N \equiv C$ are which type of isomers?                                                         |     |                                                            |
|     | (a) Position (b) Functional                                                                                                  |     |                                                            |
| ~   | (c) Tautomerism (d) Linkage                                                                                                  |     | $\vee \vee \vee \vee \vee \vee$                            |
| 64. | A functional isomer of 1-butyne is                                                                                           |     |                                                            |
|     | (a) 2-butyne (b) 1-butene                                                                                                    |     | (d) $\searrow$ $\land$ $\land$ $\land$ $\land$ $\land$     |
| (5  | (c) 2-butene (d) 1, 3-butadiene                                                                                              |     |                                                            |
| 65. | In which of the following, functional group isomerism is not                                                                 | 74. | What is the correct order of decreasing stability of the   |
|     | possible?                                                                                                                    |     | following cations.                                         |
|     | (a) Alcohols (b) Aldehydes                                                                                                   |     | ÷ cu cu                                                    |
| "   | (c) Alkyl halides (d) Cyanides                                                                                               |     | I. $CH_3 - CH - CH_3$                                      |
| 66. | The compounds $CH_3CH = CHCH_3$ and $CH = CH$                                                                                |     | $\oplus$                                                   |
|     | $CH_3CH_2CH = CH_2$<br>(a) are tautomers                                                                                     |     | II. $CH_3 - CH - OCH_3$                                    |
|     | <ul><li>(a) are tautomers</li><li>(b) are position isomers</li></ul>                                                         |     | $\oplus$                                                   |
|     | (c) contain same number of $sp^3 - sp^3$ , $sp^3 - sp^2$ and $sp^2 - sp^2$                                                   |     | III. $CH_3 \stackrel{\oplus}{-} CH_2 - OCH_3$              |
|     | carbon-carbon bonds                                                                                                          |     | (a) $II > I > III$ (b) $II > III > I$                      |
|     | (d) exist together in dynamic equilibrium                                                                                    |     | (c) $III > I > II$ (d) $I > II > III$                      |
| 67. | Heterolytic fission of a covalent bond in organic molecules                                                                  | 75. | The most stable carbonium ion among the following is       |
| 07. | gives                                                                                                                        |     | + +                                                        |
|     | (a) free radicals (b) cations and anions                                                                                     |     | (a) $C_6H_5CHC_6H_5$ (b) $C_6H_5CH_2$                      |
|     | (c) only cations (d) only anions                                                                                             |     | + +                                                        |
| 68. | Which of the following statements is not correct ?                                                                           |     | (c) $CH_3CH_2$ (d) $C_6H_5CH_2CH_2$                        |
|     | (a) Carbocation posses sextet of electrons.                                                                                  | 76. | The organic reaction which proceed through heterolytic     |
|     | (b) The order of carbocation stability is :                                                                                  |     | bond cleavage are called                                   |
|     | •                                                                                                                            |     | (a) ionic (b) polar                                        |
|     | $^{+}_{CH_3} > (CH_3)_2 CH > (CH_3)_3 C$                                                                                     |     | (c) nonpolar (d) Both (a) and (b)                          |
|     |                                                                                                                              | 77. | Among the following, the true property about               |
|     | <ul> <li>(c) Carbocations have trigonal planar shape</li> <li>(d) Carbocations are formed by betarelytic classing</li> </ul> |     | CH <sub>3</sub>                                            |
|     | (d) Carbocations are formed by heterolytic cleavage                                                                          |     |                                                            |

- CH<sub>3</sub>
  - (a) it is non-planar
  - (b) its  $C^+$  is  $sp^2$ -hybridized
  - (c) an electrophile can attack on its  $C^+$
  - (d) it does not undergo hydrolysis

- (d) Carbocations are formed by heterolytic cleavage
- 69. Heterolytic fission of C Br bond results in the formation of
  - (a) free radical (b) carbanion
  - (d) Both (b) and (c) (c) carbocation
- 70. Which of the following carbocations is least stable?
  - (a) *tert*-Alkyl (b) sec-Alkyl
  - (c) pri-Alkyl (d) Methyl

| 100        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONGAN                                 | C CHEWISTKT = 30W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 78.        | The shape of methyl carbanion is similar to the $(a) BF_3$ $(b) NH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at of – <b>90.</b>                    | Which of the follow<br>(a) Br <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | (c) methyl free radical (d) methyl carbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ocation                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 79.        | Arrange the carbanions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (c) $: CN^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | $(CH_3)_3\overline{C},\overline{C}CI_3,(CH_3)_2\overline{C}H,C_6H_5\overline{C}H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.                                   | Which of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (a) $BF_3, H_2O, NH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | in order of their decreasing stability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                                    | (c) $CN^{-}, RCH_2^{-}, R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | (a) $(CH_3)_2\overline{C}H > \overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.                                   | Which of the fol nucleophile?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | (b) $\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | (a) ROH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | (c) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > C_6H_5\overline{C}H_2 > \overline{C}Cl_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02                                    | (c) $PCl_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | (d) $C_6H_5\overline{C}H_2 > \overline{C}Cl_3 > (CH_3)_3\overline{C} > (CH_3)_2\overline{C}H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.                                   | Which of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | <ul><li>(a) Lewis acid</li><li>(b) Lewis base</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80.        | The homolytic fission of a covalent bond liber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ates                                  | (c) Negatively cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (a) Carbonium ions (b) Carbonions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | (d) None of the al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 01         | (c) Free radicals (d) Carbenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e gives an 94.                        | Which of the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 81.        | Homolytic fission of C–C bond in ethan intermediate in which carbon is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e gives all 94.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (a) $sp^3$ -hybridised (b) $sp^2$ -hybridised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed                                    | (a) $AlCl_3, H_2O$<br>(c) $BF_3, H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | (a) $sp$ -hybridised (b) $sp$ -hybridised (c) $sp$ -hybridised (d) $sp^2d$ -hybridi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Which out of A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 82.        | Geometry of methyl free-radical is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | seu 75.                               | categorised.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 02.        | (a) pyramidal (b) planar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | (c) tetrahedral (d) linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Nucleophile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 83.        | In which of the following homolytic bond fission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | takes place?                          | A. HS <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00.        | (a) Alkaline hydrolysis of ethyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | unces pruce :                         | B. BF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (b) Addition of HBr to double bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | C. $H_2N^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | (c) Photochlorination of methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | D. $R_3C-X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | (d) Nitration of benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | (X = Halogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 84.        | On exciting, $Cl_2$ molecules by UV light, we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | (a) B, C and D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | (a) $Cl^{\bullet}$ (b) $Cl^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                   | (c) C only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| o <b>-</b> | (c) $C^{\perp}$ (d) all of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.                                   | Arrangement of (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 85.        | The increasing order of stability of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | free radicals                         | when attached to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | increasing order of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | (a) $(C_6H_5)_2\dot{C}H < (C_6H_5)_3\dot{C} < (CH_3)_3\dot{C} < (CH_5)_2\dot{C}H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>3</sub> ) <sub>2</sub> ČH      | (a) $(CH_3)_3 - C - <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | (b) $(CH_3)_2 \dot{C}H < (CH_3)_3 \dot{C} < (C_6H_5)_2 \dot{C}H < (C_6H_5)_2 \dot$                                                                                     | H-) C                                 | (b) $CH_3 - CH_2 - < (CH_3) - CH_2 - < (CH_3) - CH_3 - CH$ |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (c) $(CH_3)_2 - CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | (c) $(CH_3)_2CH < (CH_3)_3C < (C_6H_5)_2CH < (C_6H$                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | (d) $(CH_3)_3 - C - <$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | (d) $(C_6H_5)_3\dot{C} < (C_6H_5)_2\dot{C}H < (CH_3)_3\dot{C} < (CH_5)_2\dot{C}H < (CH_3)_3\dot{C} < (CH_3)_3\dot$ |                                       | Polarization of elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 86.        | Which of the following orders regarding relativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e stability of                        | $\delta^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | free radicals is correct?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | (a) $CH_2 = CH - CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | (a) $3^{\circ} < 2^{\circ} < 1^{\circ}$ (b) $3^{\circ} > 2^{\circ} > 1^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | δ- δ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | (c) $1^{\circ} < 2^{\circ} > 3^{\circ}$ (d) $3^{\circ} > 2^{\circ} < 1^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (c) $CH_2 = CH - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 87.        | The most stable free radical among the followi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng is <b>98.</b>                      | Point out the incom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | (a) $C_6H_5CH_2CH_2$ (b) $C_6H_5CHCH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                     | (a) Resonance str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | (a) $C_6 n_5 C n_2 C n_2$ (b) $C_6 n_5 C n C n_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                    | (b) In resonating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | (c) $CH_3CH_2$ (d) $CH_3CHCH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | be in the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | (c) In resonating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 88.        | For the reaction of phenol with CHCl <sub>3</sub> in presen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ace of KOH,                           | number of elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | the electrophile is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | (d) Resonating str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (a) $+$ CHCl <sub>2</sub> (b) $:$ CCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | of electrons ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | (c) $\dot{C}HCl_2$ (d) $CCl_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.                                   | $-: CH_2 - CH_3 - CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**89.** The least stable free radical is

| (a) | CH <sub>3</sub> ĊH <sub>2</sub> | (b) $CH_3CH_2\dot{C}H_2$ |
|-----|---------------------------------|--------------------------|
|     | •                               |                          |

(c)  $(CH_3)_2 CH$ (d) CH<sub>3</sub> **ORGANIC CHEMISTRY - SOME BASIC PRINCIPLES & TECHNIQUES** 

| 90. | Which of the follo  | wing is strongest nucleophile |
|-----|---------------------|-------------------------------|
|     | (a) Br <sup>-</sup> | (b) : OH <sup>-</sup>         |

- (d)  $C_2H_5\overline{O}$ :
- owing represents a set of nucleophiles? (b)  $AlCl_3, BF_3, NH_3$  $I_2^{-}$ 
  - ŔОН (d) All of these
- ollowing species does not acts as a
  - (b) ROR
  - (d)  $BF_3$
- wing is an electrophile?
  - harged species
  - above
- wing pairs represent electrophiles?
  - (b)  $SO_3$ ,  $NO_2^+$
  - (d)  $NH_3$ ,  $SO_3$
- , B, C and D is/are not correctly

| ,          | Cl <sup>+</sup>                                |
|------------|------------------------------------------------|
| 3          | (CH <sub>3</sub> ) <sub>3</sub> N              |
| $N^{-}$    | $-\mathbf{C} = \mathbf{O}$                     |
|            | $C_2H_5O^-$                                    |
| = Halogen) |                                                |
|            | $\frac{1}{3}$<br>$\frac{1}{C-X}$<br>= Halogen) |

- CH<sub>3</sub>)<sub>3</sub> C -, (CH<sub>3</sub>)<sub>2</sub> CH -, CH<sub>3</sub> CH<sub>2</sub> o benzyl or an unsaturated group in f inductive effect is
  - $(CH_3)_2 CH < CH_3 CH_2^{-1}$
  - CH<sub>3</sub>)<sub>2</sub>-CH-<(CH<sub>3</sub>)<sub>3</sub>-C-
  - <(CH<sub>3</sub>)<sub>3</sub>-C-<CH<sub>3</sub>--CH<sub>2</sub>-
  - CH<sub>3</sub>-CH<sub>2</sub>-<(CH<sub>3</sub>)<sub>2</sub>-CH-

ctrons in acrolein may be written as

(a) 
$$\overset{\delta-}{CH_2} = CH - \overset{\delta+}{CH} = O$$
 (b)  $\overset{\delta-}{CH_2} = CH - CH = O$ 

(c) 
$$\overset{\delta-}{CH_2} \overset{\delta-}{=} \overset{\delta-}{CH-CH} = O$$
 (d)  $\overset{\delta+}{CH_2} = CH-CH = O$ 

rrect statement about resonance?

- ructures should have equal energy
- structures, the constituent atoms must e position
- g structures, there should not be same ectron pairs
- ructures should differ only in the location round the constituent atoms

9. 
$$-: CH_2 - C - CH_3$$
 and  $CH_2 = C - CH_3$  are  
 $||$   
 $O:$   
 $: O:$ 

- (a) resonating structures (b) tautomers
- (c) geometrical isomers (d) optical isomers

186

- 100. In which of the following, resonance will be possible?
  - (a)  $CH_3 CH_2 CH_2 CHO$
  - (b)  $CH_2 = CH CH = O$
  - (c)  $CH_3COCH_3$
  - (d)  $CH_2 = CH CH_2 CH = CH_2$
- 101. Which of the following statements regarding the resonance energy of benzene is *correct*?
  - (a) Resonance energy is the energy required to break the C–H bond in benzene
  - (b) Resonance energy is the energy required to break the C–C bond in benzene
  - (c) Resonance energy is a measure of stability of benzene
  - (d) Resonance energy is the energy required to convert



- **102.** Which of the following is not correctly matched ? Group showing + R effect Group showing - R effect (a) - NHCOR -COOH
  - (b) C = O– OH

  - (c) -OR- CHO (d) -OCOR  $-NO_{2}$
- **103.** The polarity is produced in the molecule by the interaction of two  $\pi$  – bonds or between a  $\pi$  – bond and lone pair of electrons present on an adjacent atom.
  - The above statement is true for which of the following?
  - (a) Inductive effect (b) Electromeric effect
  - (c) Resonance effect (d) Hyperconjugation
- 104. Electromeric effect is a
  - (a) permanent effect (b) temporary effect
  - (c) resonance effect (d) inductive effect
- **105.** The kind of delocalization involving sigma bond orbitals is called
  - (a) inductive effect (b) hyperconjugation effect
  - (d) mesomeric effect (c) electromeric effect
- 106. Hyperconjugation involves overlap of the following orbitals (a)(h)

(a) 
$$\sigma - \sigma$$
 (b)  $\sigma - \pi$   
(c) p-p (d)  $\pi - \pi$ 

**107.** Choose the correct order of stability of carbocation using concept of hyperconjugation.

OU

$$\begin{array}{cccc} CH_3 & CH_3 \\ |_{\oplus} & |_{\oplus} \\ CH_3 - C \\ | \\ CH_3 & CH_3 \\ | \\ CH_3 & CH_3 \end{array} \xrightarrow{CH_3} CH_3 CH_2 CH_3 \\ H_1 \\ H_1 \\ H_2 \\ H_3 \\ H_1 \\ H_2 \\ H_3 \\ H_3 \\ H_3 \\ H_1 \\ H_2 \\ H_3 \\ H_3 \\ H_1 \\ H_2 \\ H_3 \\ H_$$

(a) I < II < III < IV(b) IV < III < II < I

(c) 
$$III < IV < II < I$$
 (d) None of these

- **108.** Hyperconjugation is most useful for stabilizing which of the following carbocations?
  - (a) neo-Pentyl (b) tert-Butyl
  - (c) iso-Propyl (d) Ethyl

- **109.** Which of the following is an example of elimination reaction?
  - (a) Chlorination of methane
  - (b) Dehydration of ethanol
  - (c) Nitration of benzene
  - (d) Hydroxylation of ethylene
- 110.  $CH_3 Br + NH_3 \rightarrow CH_3 NH_2 + HBr$ 
  - The above reaction is classified as
  - (a) substitution (b) addition
  - (c) elimination (d) rearrangement
- 111. Which of the following method is not used for determining purity of a compound ?
  - (a) Chromatographic techniques
  - (b) Spectroscopic techniques
  - (c) Melting point
  - (d) All of the above parameters are used for determining the purity of a compound.
- 112. Which of the following is not the criteria of purity of a substance?
  - (a) solubility (b) melting point
  - (c) boiling point (d) density
- 113. In crystallisation process impurities which impart colour to the solution are removed by which of the following ?
  - (a) Repeated crystallisation
  - (b) Activated charcoal
  - (c) Bleaching agent
  - (d) Both (a) and (b)
- **114.** Aniline is purified by
  - (a) steam distillation (b) simple distillation
  - (d) extraction with a solvent (c) vacuum distillation
- **115.** Which is purified by steam distillation
  - (a) Aniline (b) Benzoic acid
  - (c) Petroleum (d) Naphthalene
- **116.** The best method for the separation of naphthalene and benzoic acid from their mixture is:
  - (a) distillation (b) sublimation
  - (d) crystallisation (c) chromatography
- 117. In steam distillation the vapour pressure of volatile organic compound is
  - (a) equal to atmospheric pressure
  - double the atmospheric pressure (b)
  - (c) less than atmospheric pressure
  - (d) more than atmospheric pressure
- 118. Fractional distillation is used when
  - (a) there is a large difference in the boiling point of liquids
  - (b) there is a small difference in the boiling points of liq-
  - uids (c) boiling points of liquids are same
  - (d) liquids form a constant boiling mixture
- **119.** Purification of petroleum is carried out by
  - (a) fractional distillation (b) steam distillation
  - (d) simple distillation (c) vacuum distillation
- 120. A liquid decomposes at its boiling point. It can be purified
  - by
  - (a) steam distillation
- (b) fractional distillation
- (c) vacuum distillation (d) sublimation

#### 188

#### **ORGANIC CHEMISTRY – SOME BASIC PRINCIPLES & TECHNIQUES**

- 121. Distillation under reduced pressure is employed for
  - (a)  $C_6H_6$
  - (b) petrol
  - (c) CH<sub>2</sub>OHCHOHCH<sub>2</sub>OH
  - (d) organic compounds used in medicine
- **122.** Impure glycerine is purified by
  - (a) steam distillation (b) simple distillation
  - (c) vacuum distillation (d) None of these
- **123.** Glycerol can be separated from spent lye in soap industry by which of the following method ?
  - (a) Steam distillation
  - (b) Fractional distillation
  - (c) Distillation under reduced pressure
  - (d) Differential extraction
- **124.** The latest technique for the purification of organic compounds is
  - (a) chromatography (b) fractional distillation
  - (c) crystallization (d) vacuum distillation
- **125.** Which of the following is used as an adsorbent in adsorption chromatography ?
  - (a) Silica gel (b) Alumina
  - (c) Zeolite (d) Both (a) and (b)
- **126.** Which of the following acts as the stationary phase in paper chromatography ?
  - (a) Water (b) Alumina
  - (c) Silica gel (d) None of these
- 127. The most satisfactory method to separate mixture of sugars is
  - (a) fractional crystallisation (b) sublimation
  - (c) chromatography (d) benedict reagent
- **128.** Chromatography is a valuable method for the separation, isolation, purification and identification of the constituents of a mixture and it is based on general principle of
  - (a) phase rule (b) phase distribution
  - (c) interphase separation (d) phase operation
- **129.** In paper chromatography
  - (a) moving phase is liquid and stationary phase in solid
  - (b) moving phase is liquid and stationary phase is liquid
  - (c) moving phase is solid and stationary phase is solid
  - (d) moving phase is solid and stationary phase is liquid
- **130.** Which of the following is used for detection of carbon and hydrogen ?

| (a) | $Ca(OH)_2$ | (b) | CuO |
|-----|------------|-----|-----|
| (c) | CaCl,      | (d) | KOH |

- **131.** In sodium fusion test of organic compounds, the nitrogen
  - of the organic compound is converted into
  - (a) sodamide (b) sodium cyanide
  - (c) sodium nitrite (d) sodium nitrate
- **132.** Which of the following compounds does not show Lassaigne's test for nitrogen ?
  - (a) Urea (b) Hydrazine
  - (c) Phenylhydrazine (d) Azobenzene
- **133.** The compound formed in the positive test for nitrogen with the Lassaigne solution of an organic compound is
  - (a)  $\operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$  (b)  $\operatorname{Na}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]$
  - (c)  $Fe(CN)_3$  (d)  $Na_4[Fe(CN)_5NOS]$

- 134. In quantitative analysis of carbon and hydrogen, the mass of water produced is determined by passing the mixture through a weighed U – tube containing Х and carbon dioxide is absorbed in concentrated solution of Υ (a)  $X = CaCl_2$ , Y = NaOH(b)  $X = Ca(OH)_2$ ,  $Y = CuSO_4$ (c)  $X = CuSO_4$ ,  $Y = Ca(OH)_2$ (d)  $X = CaCl_2$ , Y = KOH135. Kjeldahl method is not applicable to which of the following? (a) Nitro compounds (b) Azo compounds (c) Pyridine (d) All of these. **136.** Nitrogen in an organic compound can be estimated by (a) Kjeldahl's method only(b) Duma's method only (c) Both (a) and (b) (d) Neither (a) nor (b) 137. Duma's method involves the determination of nitrogen content in the organic compound in form of (a)  $NH_3$ (b) N<sub>2</sub> (c) NaCN (d)  $(NH_4)_2SO_4$ **138.** In Kjeldahl's method nitrogen present is estimated as (a)  $N_2$ (b) NH<sub>3</sub> (c)  $NO_{2}$ (d) None of these **139.** In kjeldahl's method of estimation of nitrogen,  $K_2SO_4$  acts as (a) oxidising agent (b) catalytic agent (c) hydrolysing agent (d) boiling point elevator 140. 0.5g of an organic compound containing nitrogen on Kjeldahlising required 29 mL of N/5  $H_2SO_4$  for complete neutralization of ammonia. The percentage of nitrogen in the compound is (a) 34.3 (b) 16.2 (c) 21.6 (d) 14.8 141. The percentage of sulphur in an organic compound whose 0.32 g produces 0.233 g of BaSO<sub>4</sub> [At. wt. Ba = 137, S = 32]
  - is (a) 1.0 (b) 10.0
  - (c) 23.5 (d) 32.1
- 142. An organic compound contains C = 40%, H = 13.33% and N = 46.67%. Its empirical formula would be
  - (a) CHN (b)  $C_2H_2N$
  - (c)  $CH_4N$  (d)  $C_3H_7N$
- 143. 2.79 g of an organic compound when heated in Carius tube with conc. HNO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub> formed converted into MgNH<sub>4</sub>.PO<sub>4</sub> ppt. The ppt. on heating gave 1.332 g of

 $Mg_2P_2O_7$ . The percentage of P in the compound is

- (a) 23.33% (b) 13.33%
- (c) 33.33% (d) 26.66%
- **144.** A compound contains 38.8% C, 16% H and 45.2% N. The formula of compound would be :

| (a) | CH <sub>3</sub> NH <sub>2</sub> | (b) | CH <sub>3</sub> CN |
|-----|---------------------------------|-----|--------------------|
|-----|---------------------------------|-----|--------------------|

(c)  $C_2H_5CN$  (d)  $CH_2(NH_2)_2$ 

- 145. In estimation of percentage of oxygen. The mixture of gaseous products containing oxygen is passed over red hot coke. All oxygen is converted to A. This mixture is passed through <u>B</u> when <u>A</u> is converted to С.
  - What is A, B and C in above statement.
  - (a)  $A = CO_2$ , B = KOH,  $C = pure O_2$
  - (b)  $A = CO', B = I_2O_5, C = CO_2$

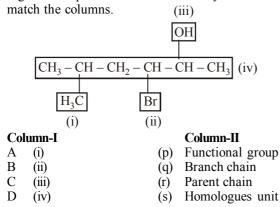
  - (c) A = CO,  $B = I_2$ ,  $C = CO_2$ (d)  $A = CO_2$ ,  $B = Ca(OH)_2$ ,  $C = CaCO_3$

#### STATEMENT TYPE QUESTIONS

- 146. Which of the following statement(s) is/are correct ?
  - A carbon atom having an sp hybrid orbital is less (i) electronegative than carbon atoms possessing  $sp^2$ or  $sp^3$  hybridised orbitals.
  - $\pi$ -bonds provide the most reactive centres in the (ii) molecules containing multiple bonds
  - (iii) The number of  $\sigma$  and  $\pi$  bonds in compound  $CH_2 = C = CHCH_2$  are 7 and 2 respectively.
  - (a) (i) and (iii) (b) (ii) and (iii)
  - (c) (ii) only (d) (i) only
- 147. Which of the following sequence of T and F is correct. Here T stands for true statement and F stands for false statement
  - In heterolytic cleavage the bond breaks in such a (i) fashion that the shared pair of electrons remain with one of the fragment.
  - In homolytic cleavage, one of the electrons of the (ii) shared pair in a covalent bond goes with each of the bonded atoms.
  - (iii)  $R X \xrightarrow{heat \text{ or }} \dot{R} + \dot{X}$

This equation represents heterolytic cleavage

- (a) TTF FFT (b)
- (c) FFF (d) TTT
- 148. Which of the following is/are correct for inductive effect ?
  - (i) In inductive effect polarisation of sigma bond is caused by the adjacent  $\sigma$  bond.
  - (ii) Halogens, -NO<sub>2</sub>, -CN, and -CH<sub>2</sub> are electron withdrawing groups.
  - (iii)  $-CH_2CH_3$  and  $-OC_6H_5$  are electron donating groups.
  - (a) (i) only (b) (ii) only
  - (c) (i) and (iii) (d) (i), (ii) and (iii)
- **149.** Which of the following sequence of T and F is correct for given statements. Here T stands for correct and F stands for false statement
  - The more the number of contributing structures, the (i) more is the resonance energy.
  - (ii) The resonance structures have different positions of nuclei but same number of unpaired electrons
  - (iii) The energy of actual structure of the molecule (the resonance hybrid) is lower than that of any of the canonical structures.
  - (a) TTT (b) TFT
  - (c) FFF (d) TFF


- 150. Which of the following statements are correct for fractional distillation?
  - Fractional distillation method is used if the two (i) liquids have sufficiently large difference in their boiling points.
  - (ii) A fractionating column provides many surfaces for heat exchange between the ascending vapours and the descending condensed liquid.
  - (iii) Each successive condensation and vaporisation unit in the fractionating column is called a theoretical plate.
  - (iv) Fractional distillation method is used to separate different fractions of crude oil in petroleum industry.
  - (a) (i), (ii) and (iv) (b) (ii), (iii) and (iv)
  - (c) (i), (ii) and (iii) (d) (i), (ii), (iii) and (iv)
- 151. Which of the following sequence of T and F is currect for given statements. Here 'T' stands for True and 'F' stands for False statement.
  - The relative adsorption of each component of mixture is expressed in terms of its retardation factor  $(R_{r})$
  - (ii) Retardation factor is given as :

 $R_{\rm F} = \frac{\text{Distance moved by the solvent from base line}}{\text{Distance moved by the substance from base line}}$ 

- (iii) In TLC the spots of colourless compounds can be detected by ultraviolet light.
- (iv) Spots of amino acids may be detected by iodine.
- (a) TTTF (b) TFFF
- (c) TTTT (d) TFTF
- **152.** In Kjeldahl's method for the estimation of  $N_2$ , potassium sulphate and copper sulphate are used. On the basis of their functions which of the following statement(s) is/are correct?
  - (i) Potassium sulphate raises the bpt. and ensures complete reaction.
  - Copper sulphate acts as catalyst. (ii)
  - (iii) Potassium sulphate acts as catalyst and copper sulphate raises the bpt.
  - (a) Only (iii) is correct (b) (i) and (ii) are correct
  - (c) Only(ii) is correct (d) None is correct
- **153.** In the estimation of carbon and hydrogen by combustion method which of the following is/are correct?
  - (i) A spiral of copper is introduced at the right extreme of combustion tube if the organic compound contains nitrogen.
  - (ii) A spiral of silver is introduced if the organic compound contains halogens.
  - (iii) The copper oxide in the combustion tube is replaced by lead chromate if the organic compound contains sulphur.
  - (a) (i) and (ii) are correct (b) (i) and (iii) are correct
  - (c) (ii) and (iii) are correct (d) All are correct

#### MATCHING TYPE QUESTIONS

154. Match the columns Column-I Column-II (A) Non - benzenoid compound (p) (B) Alicyclic compound (q) (C) Benzenoid compound (D) Heterocyclic aromatic compound (s) (a) A - (r), B - (p), C - (s), D - (q)(b) A - (s), B - (p), C - (q), D - (r)(c) A - (p), B - (r), C - (s), D - (q)(d) A - (r), B - (p), C - (q), D - (s)155. Match Column-I (organic compound) with Column-II (common name of the compound) and choose the correct option. Column-I Column-II (Organic compound) (Common name of compound) (A) C<sub>6</sub>H<sub>5</sub>OCH<sub>3</sub> (p) Neopentane (B)  $H_3CCH_2CH_2OH$ (q) Anisole (C)  $(H_{3}C)_{4}C$ (r) Acetophenone (D)  $C_6H_5COCH_2$ (s) n - propyl alcohol.(a)  $A^{-}(r), B^{-}(s), C^{-}(p), D^{-}(q)$ (b) A - (r), B - (p), C - (s), D - (q)(c) A - (q), B - (s), C - (p), D - (r)(d) A - (q), B - (s), C - (r), D - (p)156. Match the columns Column-I Column-II (p) Chloro (A) Aldehyde (B) Ketone (q) ol (C) Alcohol (r) one (D) Halogen (s) al (a) A - (s), B - (r), C - (q), D - (p)(b) A - (s), B - (q), C - (p), D - (r)(c) A - (p), B - (q), C - (r), D - (s)(d) A - (r), B - (s), C - (q), D - (p)157. Identify (i), (ii), (iii) and (iv) in the structure of given organic compound. On the basis of your identification



|      | (a)                                                                                     | A - (q), B - (p), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (s), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D - (r)                                                                                                                                                                                                                                                                                               |
|------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                         | A - (p), B - (s), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | A - (q), B - (p), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | A - (q), B - (p), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
| 158  |                                                                                         | the columns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ (-)                                                                                                                                                                                                                                                                                                 |
| 150. | Iviat                                                                                   | Column-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ımn—II                                                                                                                                                                                                                                                                                                |
|      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | $(\mathbf{A})$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I hl                                                                                                                                                                                                                                                                                                  |
|      | (A)                                                                                     | CH <sub>3</sub> — CH <sub>2</sub> – CH <sub>2</sub> –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Isobutyi                                                                                                                                                                                                                                                                                              |
|      |                                                                                         | ĊH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | ( <b>T</b> )                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | (B)                                                                                     | $CH_3 - CH_2 - CH - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sec – Butyl                                                                                                                                                                                                                                                                                           |
|      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | ĊH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | (C)                                                                                     | $CH_3 - CH - CH_2 - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neopentyl                                                                                                                                                                                                                                                                                             |
|      | (0)                                                                                     | 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reopentyr                                                                                                                                                                                                                                                                                             |
|      |                                                                                         | ĊH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | (D)                                                                                     | $CH_{2} = C =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tert – Butyl                                                                                                                                                                                                                                                                                          |
|      | (D)                                                                                     | $CH_3 - C - $<br>$  CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tort Butyr                                                                                                                                                                                                                                                                                            |
|      |                                                                                         | ĊHa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (m) T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | A - (r), B - (q), C - (r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | A - (s), B - (p), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | A - (s), B - (p), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | (d)                                                                                     | A - (s), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (p), I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D –(r)                                                                                                                                                                                                                                                                                                |
| 159. |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ounds given in Column-I,                                                                                                                                                                                                                                                                              |
|      | mat                                                                                     | ch them correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | Column-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Column-II                                                                                                                                                                                                                                                                                             |
|      | (A)                                                                                     | Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>2</sub> H <sub>5</sub> OH                                                                                                                                                                                                                                                                      |
|      | <b>(B)</b>                                                                              | ethyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_3H_8$                                                                                                                                                                                                                                                                                              |
|      |                                                                                         | carboxylic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      | $(\mathbf{C})$                                                                          | euro ongine ueru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |
|      |                                                                                         | ethyl ethanoate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | сн соос н                                                                                                                                                                                                                                                                                             |
|      | $(\mathbf{D})$                                                                          | ethyl ethanoate<br>A = (a) B = (b) C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub>                                                                                                                                                                                                                                                      |
|      | (a)                                                                                     | A – (q), B – (p), C –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (s)<br>(r), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $CH_3COOC_2H_5$<br>D - (s)                                                                                                                                                                                                                                                                            |
|      | (a)<br>(b)                                                                              | A - (q), B - (p), C - A - (p), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (s)<br>(r), l<br>(s), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $CH_{3}COOC_{2}H_{5}$<br>D - (s)<br>D - (r)                                                                                                                                                                                                                                                           |
|      | (a)<br>(b)<br>(c)                                                                       | $\begin{array}{l} A-(q), \ B-(p), \ C-\\ A-(p), \ B-(q), \ C-\\ A-(q), \ B-(s), \ C-\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (s)<br>(r), l<br>(s), l<br>(p), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_3COOC_2H_5$<br>D - (s)<br>D - (r)<br>D - (r)                                                                                                                                                                                                                                                      |
| 160  | (a)<br>(b)<br>(c)<br>(d)                                                                | $\begin{array}{l} A-(q),B-(p),C-\\ A-(p),B-(q),C-\\ A-(q),B-(s),C-\\ A-(q),B-(p),C-\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (s)<br>(r), l<br>(s), l<br>(p), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_3COOC_2H_5$<br>D - (s)<br>D - (r)<br>D - (r)                                                                                                                                                                                                                                                      |
| 160. | (a)<br>(b)<br>(c)<br>(d)                                                                | $\begin{array}{l} A-(q), B-(p), C-\\ A-(p), B-(q), C-\\ A-(q), B-(s), C-\\ A-(q), B-(p), C-\\ ch \ the \ columns \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s)<br>(r), l<br>(s), l<br>(p), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_{3}COOC_{2}H_{5}$<br>D - (s)<br>D - (r)<br>D - (r)<br>D - (r)                                                                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | $\begin{array}{l} A-(q), \ B-(p), \ C-\\ A-(p), \ B-(q), \ C-\\ A-(q), \ B-(s), \ C-\\ A-(q), \ B-(p), \ C-\\ ch \ the \ columns\\ \hline \textbf{Column-I} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s)<br>(r), l<br>(s), l<br>(p), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $D - (r)$ $Column-II$                                                                                                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | $\begin{array}{l} A-(q), B-(p), C-\\ A-(p), B-(q), C-\\ A-(q), B-(s), C-\\ A-(q), B-(p), C-\\ ch \ the \ columns \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s)<br>(r), l<br>(s), l<br>(p), l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $CH_{3}COOC_{2}H_{5}$<br>D - (s)<br>D - (r)<br>D - (r)<br>D - (r)                                                                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | A - (q), B - (p), C - A - (p), B - (q), C - A - (q), B - (q), C - A - (q), B - (s), C - A - (q), B - (p), C - ch the columns Column-I ganic compounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism)                                                                                                                                                                                                         |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | A - (q), B - (p), C - A - (p), B - (q), C - A - (q), B - (s), C - A - (q), B - (p), C - ch the columns Column-I ganic compounds) CH3CH2CH2CH2CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism)                                                                                                                                                                                                         |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | A - (q), B - (p), C - A - (p), B - (q), C - A - (q), B - (q), C - A - (q), B - (s), C - A - (q), B - (p), C - ch the columns Column-I ganic compounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) $p) Functional group$                                                                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat                                                         | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (s), C - \\ ch the columns \\ \hline \mbox{Column-I} \\ \mbox{ganic compounds} \\ CH_3CH_2CH_2CH_2CH_2CH_3 \\ \hline \\ CH_3 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) $p) Functional group$                                                                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or)<br>(A)                                          | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (p), C - \\ ch the columns \\ \hline Column-I \\ ganic compounds) \\ CH_3CH_2CH_2CH_2CH_3 \\ CH_3 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or)<br>(A)                                          | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (s), C - \\ ch the columns \\ \hline Column-I \\ ganic compounds) \\ CH_3CH_2CH_2CH_2CH_2CH_3 \\ CH_3 \\ & CH_3 \\ & CH_3 - CH - CH_2CH_3 \\ CH_3CH_2CH_2OH \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) $p) Functional group$                                                                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or)<br>(A)                                          | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (p), C - \\ ch the columns \\ \hline Column-I \\ ganic compounds) \\ CH_3CH_2CH_2CH_2CH_3 \\ CH_3 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or)<br>(A)                                          | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or)<br>(A)                                          | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (s), C - \\ ch the columns \\ \hline Column-I \\ ganic compounds) \\ CH_3CH_2CH_2CH_2CH_2CH_3 \\ CH_3 \\ & CH_3 \\ & CH_3 - CH - CH_2CH_3 \\ CH_3CH_2CH_2OH \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(t)<br>(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(l)<br>(l)<br>H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(l)<br>(l)<br>H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $CH_{3}COOC_{2}H_{5}$ $D - (s)$ $D - (r)$ $D - (r)$ $Column-II$ (Type of isomerism) p) Functional group isomerism                                                                                                                                                                                     |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (s), C - \\ ch (q), B - (p), C - \\ ch (q), C - \\ ch (q$    | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(l)<br>(l)<br>H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(l)<br>(l)<br>H <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or,<br>(A)<br>(B)                                   | $\begin{array}{c} A - (q), B - (p), C - \\ A - (p), B - (q), C - \\ A - (q), B - (s), C - \\ A - (q), B - (s), C - \\ ch (q), B - (p), C - \\ ch (q), $ | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(g), | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism                                                                                                                                             |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)                             | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>$CH_3$<br>$CH_3$ - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - CH - CH <sub>3</sub><br>$CH_3$<br>$CH_3$ - CH - CH <sub>3</sub><br>$CH_3$ - CH - CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>D - (r)<br><b>Column-II</b><br>( <b>Type of isomerism</b> )<br>p) Functional group<br>isomerism<br>q) Chain isomerism                                                                                            |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)                             | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - C - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH <sub>2</sub> - C =<br>CH <sub>3</sub> OC <sub>3</sub> H <sub>7</sub> & C <sub>2</sub> H <sub>5</sub> OO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(c)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub></li> <li>D - (s)</li> <li>D - (r)</li> <li>D - (r)</li> <li>Column-II (Type of isomerism)</li> <li>p) Functional group isomerism</li> <li>q) Chain isomerism</li> <li>(r) Metamerism</li> <li>(s) Position isomerism</li> </ul>                  |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)<br>(D)<br>(a)               | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>A - (q), B - (p), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> - CH - CH <sub>2</sub> CC<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CC<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - C - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> - C =<br>CH <sub>3</sub> OC <sub>3</sub> H <sub>7</sub> & C <sub>2</sub> H <sub>5</sub> OC<br>A - (s), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)<br>(f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub></li> <li>D - (s)</li> <li>D - (r)</li> <li>D - (r)</li> <li>Column-II (Type of isomerism)</li> <li>p) Functional group isomerism</li> <li>q) Chain isomerism</li> <li>(r) Metamerism</li> <li>(s) Position isomerism</li> <li>D - (p)</li> </ul> |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)<br>(C)<br>(D)<br>(a)<br>(b) | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - C - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH <sub>2</sub> - C =<br>CH <sub>3</sub> OC <sub>3</sub> H <sub>7</sub> & C <sub>2</sub> H <sub>5</sub> OC<br>A - (s), B - (q), C -<br>A - (s), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(r), | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism<br>(r) Metamerism<br>(s) Position isomerism<br>D - (p)<br>D - (r)                                                                           |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)<br>(C)<br>(D)<br>(a)<br>(b) | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CH<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - C - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH <sub>2</sub> - C =<br>CH <sub>3</sub> OC <sub>3</sub> H <sub>7</sub> & C <sub>2</sub> H <sub>5</sub> OC<br>A - (s), B - (q), C -<br>A - (s), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(r), | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism<br>(r) Metamerism<br>(s) Position isomerism<br>D - (p)<br>D - (r)                                                                           |
| 160. | (a)<br>(b)<br>(c)<br>(d)<br>Mat<br>(Or<br>(A)<br>(B)<br>(C)<br>(C)<br>(D)<br>(a)<br>(b) | A - (q), B - (p), C -<br>A - (p), B - (q), C -<br>A - (q), B - (s), C -<br>A - (q), B - (s), C -<br>A - (q), B - (p), C -<br>ch the columns<br>Column-I<br>ganic compounds)<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> - CH - CH <sub>2</sub> CC<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> CC<br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>& CH <sub>3</sub> - CH - CH <sub>3</sub><br>O<br>CH <sub>3</sub> - C - CH <sub>3</sub><br>H<br>& CH <sub>3</sub> - CH - CH <sub>2</sub> - C =<br>CH <sub>3</sub> OC <sub>3</sub> H <sub>7</sub> & C <sub>2</sub> H <sub>5</sub> OC<br>A - (s), B - (q), C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (s)<br>(r), 1<br>(s), 1<br>(p), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(s), 1<br>(r), | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub><br>D - (s)<br>D - (r)<br>D - (r)<br>Column-II<br>(Type of isomerism)<br>p) Functional group<br>isomerism<br>(r) Metamerism<br>(s) Position isomerism<br>D - (p)<br>D - (r)                                                                           |

**161.** Match the columns Column-I Column-II (A) CH<sub>2</sub>COOH& Functional isomers (p) HCOOCH<sub>2</sub> (B) 1 butene & Metamers (a) 2-butene (C) diethyl ether & (r) Position isomers methyl propyl ether (D) dimethyl ether (s) Chain isomers and ethanol and ethanol (a) A - (p), B - (r), C - (q), D - (s)(b) A - (q), B - (r), C - (s), D - (p)(c) A - (q), B - (s), C - (p), D - (r)(d) A - (q), B - (p), C - (s), D - (r)162. Match the columns Column-I Column-II (A) Free radical (p) Trigonal planar (B) Carbocation Pyramidal (q (C) Carbanion (r) Linear (a) A - (p), B - (q), C - (r)(b) A - (p), B - (p), C - (q)(c) A - (r), B - (p), C - (q)(d) A - (p), B - (p), C - (r)163. Match the columns Column - I Column - II (A) Separation of sublimable (p) Steam distillation compounds from non sublimable (B) Method based on the (q) Sublimation difference in the solubilities of the compound and the impurities in a suitable solvent (C) Separation of liquids (r) Distillation having sufficient difference in their boiling points. (D) Separation of substances (s) Crystallisation which are steam volatile and are immiscible with water. (a) A - (q), B - (s), C - (r), D - (p)(b) A - (q), B - (r), C - (p), D - (s)(c) A - (s), B - (q), C - (r), D - (p)(d) A - (q), B - (s), C - (p), D - (r)164. Match the columns Column - I Column - II (Elements) (Colour of precipitate formed in Lassaigne's test) (A) Nitrogen (p) Yellow (B) Sulphur (q) Prussian blue (C) Chlorine Violet (r) (s) White (D) Phosphorus (a) A - (q), B - (r), C - (p), D - (s)(b) A - (r), B - (q), C - (p), D - (s)(c) A - (q), B - (r), C - (s), D - (p)(d) A - (r), B - (q), C - (s), D - (p)

| Column -                    |           | Column - II                                                   |
|-----------------------------|-----------|---------------------------------------------------------------|
| (A) Duma's m                | ethod (p  | $\frac{80 \times m_1 \times 100}{188 \times m}$               |
| (B) Kjeldahl's              | method (q | $\frac{31 \times m_1 \times 100}{1877 \times m}\%$            |
| (C) Carius me<br>for bromin |           | $\frac{1.4 \times M \times 2\left(v - \frac{v}{2}\right)}{m}$ |

(D) Percentage of phosphorus

165. Match the columns

(s) 
$$\frac{28 \times V \times 100}{22400 \times m}$$
%  
(a) A - (s), B - (r), C - (p), D - (q)

(b) A - (r), B - (s), C - (q), D - (p)

- (c) A (s), B (p), C (q), D (r)
- (d) A (p), B (r), C (q), D (s)

#### **ASSERTION-REASON TYPE QUESTIONS**

**Directions :** Each of these questions contain two statements, Assertion and Reason. Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select one of the codes (a), (b), (c) and (d) given below.

- (a) Assertion is correct, reason is correct; reason is a correct explanation for assertion.
- (b) Assertion is correct, reason is correct; reason is not a correct explanation for assertion
- (c) Assertion is correct, reason is incorrect
- (d) Assertion is incorrect, reason is correct.
- **166.** Assertion : A primary suffix indicates the type of linkage in the carbon atom.

**Reason :** CN is a Primary suffix

**167.** Assertion : The general formula for a dihydric alcohol is  $C_nH_{2n}(OH)_2$ 

Reason : Ethylene glycol is a dihydric alcohol.

**168.** Assertion : IUPAC name of the following organic compound is 3, 4, 7 – trimethyloctane

$$\begin{array}{c} \mathrm{CH}_3 - \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH} - \mathrm{CH} - \mathrm{CH}_2 - \mathrm{CH}_3 \\ | \\ \mathrm{CH}_3 \\ \mathrm{CH}_3 \\ \mathrm{CH}_3 \\ \mathrm{CH}_3 \end{array}$$

**Reason :** The numbering is done in such a way that the branched carbon atoms get the lowest possible numbers.

- 169. Assertion : Chain isomerism is observed in compounds containining four or more than four carbon atomsReason : Only alkanes show chain isomerism
- **170.** Assertion : But-1-ene and 2-methylprop-1-ene are position isomers.

**Reason :** Position isomers have same molecular formula but differ in position of functional group or C = C.

**171.** Assertion : Benzene exhibit two different bond lengths, due to C - C single and C = C double bonds.

**Reason :** Actual structure of benzene is a hybrid of 179 following two structures.



- 172. Assertion : Aniline is better nucleophile than anilium ion.Reason : Anilium ion have +ve charge.
- **173.** Assertion : Different number of electron pairs are present in resonance structures.

**Reason :** Resonance structures differ in the location of electrons around the constituent atoms.

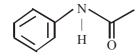
**174. Assertion :** Energy of resonance hybrid is equal to the average of energies of all canonical forms.

**Reason :** Resonance hybrid cannot be presented by a single structure.

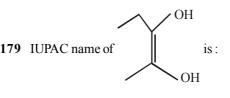
**175.** Assertion : Simple distillation can help in separating a mixture of propan-1-ol (boiling point 97°C) and propanone (boiling point 56°C).

**Reason :** Liquids with a difference of more that 20°C in their boiling points can be separated by simple distillation.

**176.** Assertion : Components of a mixture of red and blue inks can be separated by distributing the components between stationary and mobile phases in paper chromatography.


**Reason :** The coloured components of inks migrate at different rates because paper selectively retains different components according to the difference in their partition between the two phases.

**177. Assertion :** Sulphur present in an organic compound can be estimated quantitatively by Carius method.


**Reason :** Sulphur is separated easily from other atoms in the molecule and gets precipitated as light yellow solid.

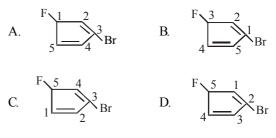
#### **CRITICAL THINKING TYPE QUESTIONS**

**178.** The IUPAC name of the following compounds is



- (a) N phenyl ethanamide
- (b) N phenyl ethanone
- (c) N-phenyl methanamide
- (d) None of these




- (a) But -2 ene -2, 3-diol
- (b) Pent -2 -ene -2, 3 diol
- (c) 2 methylbut 2 ene 2, 3 diol
- (d) Hex 2 ene 2, 3 diol
- **180.** The state of hybridization of  $C_2$ ,  $C_3$ ,  $C_5$  and  $C_6$  of the hydrocarbon,

$$CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{3} \xrightarrow[]{CH_{3}} CH_{4} \xrightarrow[]{CH_{3}} CH_{2} \equiv CH_{1}$$

is in the following sequence

(a) 
$$sp^3$$
,  $sp^2$ ,  $sp^2$  and  $sp$  (b)  $sp$ ,  $sp^2$ ,  $sp^2$  and  $sp^3$   
(c)  $sp$ ,  $sp^2$ ,  $sp^3$  and  $sp^2$  (d)  $sp$ ,  $sp^3$ ,  $sp^2$  and  $sp^3$ 

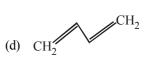
**181.** Which of the following numberings is correct?



 $(a) A \qquad (b) B \qquad (c) C \qquad (d) D$ 

**182.** The ratio of  $\pi$ - to  $\sigma$ - bonds in benzene is

| (a) | 1:4 | (b) | 1:2 |  |
|-----|-----|-----|-----|--|
| (c) | 3:1 | (d) | 1:6 |  |


**183.** In which of the compounds given below there is more than one kind of hybridization (sp, sp<sup>2</sup>, sp<sup>3</sup>) for carbon ?

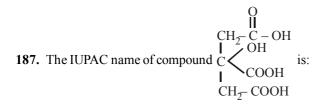
| (i) CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> | CH <sub>3</sub> (ii)   | $CH_3CH = CHCH_3$                                        |
|-----------------------------------------------------|------------------------|----------------------------------------------------------|
| (iii) CH <sub>2</sub> =CH-Cl                        | H=CH <sub>2</sub> (iv) | $\mathbf{H} - \mathbf{C} \equiv \mathbf{C} - \mathbf{H}$ |
| (a) (ii)                                            | (b)                    | (iii) and (iv)                                           |
| (c) (i) and (iv)                                    | (d)                    | (ii) and (iii)                                           |

**184.** Which of the following represents the given mode of hybridisation  $sp^2-sp^2 - sp - sp$  from left to right?

(a)  $H_2C = CH - C \equiv N$  (b)  $CH \equiv C - C \equiv CH$ 

(c) 
$$H_{C}=C=C=CH_{c}$$




- **185.** The compound in which  $\hat{C}$  uses its sp<sup>3</sup> hybrid orbitals for bond formation is
  - (a)  $\stackrel{X}{\text{HCOOH}}$  (b)  $(\text{H}_2\text{N})_2\text{CO}$

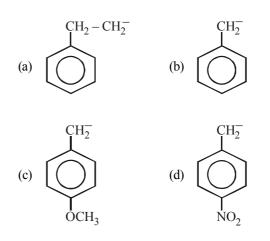
(c) 
$$(CH_3)_3COH$$
 (d)  $CH_3CHO$ 

186. The IUPAC name of the compound is



- (a) 3, 3-dimethyl 1- cyclohexanol
- (b) 1, 1-dimethyl-3-hydroxy cyclohexane
- (c) 3, 3-dimethyl-1-hydroxy cyclohexane
- (d) 1, 1-dimethyl-3-cyclohexanol




- (a) 1, 2, 3 tricarboxy 2, 1 propane
- (b) 3 carboxy 3 hydroxy 1, 5 pentanedioic acid
- (c) 3 hydroxy 3 carboxy 1, 5 pentanedioic acid
- (d) 2 hydroxy propane -1, 2, 3 tricarboxylic acid.
- **188.** The number of possible open chain (acyclic) isomeric compounds for molecular formula  $C_5H_{10}$  would be
  - (a) 8 (b) 7
  - (c) 6 (d) 5
- 189. Which of the following compounds will show metamerism?

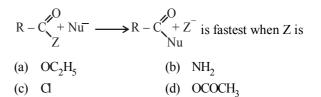
(a) 
$$CH_3-CO-C_2H_5$$
 (b)  $C_2H_5-S-C_2H_5$   
(c)  $CH_3-O-CH_3$  (d)  $CH_3-O-C_2H_5$ 

- **190.** The compound  $C_4 H_{10}O$  can show
  - (a) metamerism (b) functional isomerism
  - (c) position isomerism (d) All of these
- 191. Which pair of isomerism is not possible together?
  - (a) Ring-chain and functional
  - (b) Geometrical and optical
  - (c) Metamerism and functional
  - (d) Metamerism and chain
- **192.** Which of the following represents the correct order of stability of the given carbocations ?

(a) 
$$F_{3}C > F_{3}C - C + F_{3}C + + F_{3}$$

193. The most stable carbanion among the following is




- **194.** Which one of the following is a free-radical substitution reaction?
  - (a)  $CH_3CHO + HCN \longrightarrow CH_3CH(OH)CN$

(b) 
$$CH_3 + Cl_2 \xrightarrow{Boiling} CH_2Cl$$

(c) 
$$+CH_3Cl \xrightarrow{Anh. AlCl_3} CH_3$$

(d) 
$$H_2Cl + AgNO_2 \longrightarrow CH_2NO_2$$

**195.** Rate of the reaction



- **196.** For (i) I<sup>-</sup>, (ii) Cl<sup>-</sup>, (iii) Br<sup>-</sup>, the increasing order of nucleophilicity would be
  - (a)  $Cl^- < Br^- < I^-$  (b)  $I^- < Cl^- < Br^-$
  - (c)  $Br^{-} < Cl^{-} < I^{-}$  (d)  $I^{-} < Br^{-} < Cl^{-}$

#### 194

#### **ORGANIC CHEMISTRY - SOME BASIC PRINCIPLES & TECHNIQUES**

- **197.** Which of the following is least reactive in a nucleophilic substitution reaction.
  - (a)  $(CH_3)_3C-Cl$
  - (b)  $CH_2 = CHCl$
  - (c)  $CH_3CH_2Cl$
  - (d)  $CH_2 = CHCH_2Cl$
- **198.** Which of the following does not represent formation of reactive intermediate correctly ?
  - (i)  $CH_3 \xrightarrow{c} CN \rightarrow \overset{+}{C}H_3 + CN^-$ (ii)  $CH_3 \xrightarrow{-} Cu \rightarrow \overset{-}{C}H_3 + \overset{+}{C}u$ (iii)  $CH_3 \xrightarrow{-} Br \rightarrow {}^+CH_3 + Br^-$
  - (iv)  $CH_3 Cl \rightarrow {}^+CH_3 + Cl^-$
  - (a) (ii) only (b) (ii) and (iii)
  - (c) (ii) and (iv) (d) (iii) and (iv)
- **199.** In Lassaigne's test, the organic compound is fused with a piece of sodium metal in order to
  - (a) increase the ionisation of the compound
  - (b) decrease the melting point of the compound
  - (c) increase the reactivity of the compound
  - (d) convert the covalent compound into a mixture of ionic compounds

- **200.** The most suitable method for separtion of a 1 : 1 mixture of ortho and para nitrophenols is
  - (a) Sublimation (b) Chromatography
  - (c) Crystallization (d) Steam distillation
- **201.** The Lassaigne's extract is boiled with dil. HNO<sub>3</sub> before testing for halogens because
  - (a) silver halides are soluble in  $HNO_3$
  - (b)  $Na_2S$  and NaCN are decomposed by HNO<sub>3</sub>
  - (c)  $Ag_2S$  is soluble in HNO<sub>3</sub>
  - (d) AgCN is soluble is  $HNO_3$
- **202.** The molecular mass of an organic compound which contains only one nitrogen atom can be
  - (a) 152 (b) 146 (c) 76 (d) 73
- **203.** 0.25 g of an organic compound on Kjeldahl's analysis gave enough ammonia to just neutralize  $10 \text{cm}^3$  of 0.5 M H<sub>2</sub>SO<sub>4</sub>. The percentage of nitrogen in the compound is
  - (a) 28 (b) 56
  - (c) 14 (d) 112
- **204.** During hearing of a court case, the judge suspected that some changes in the documents had been carried out. He asked the forensic department to check the ink used at two different places. According to you which technique can give the best results?
  - (a) Column chromatography
  - (b) Solvent extraction
  - (c) Distillation
  - (d) Thin layer chromatography

## HINTS AND SOLUTIONS

#### FACT/DEFINITION TYPE QUESTIONS

- 1. (a) Berzilius, a Swedish chemist proposed the concept of 'vital force'.
- 2. (d) Urea was first discovered in human urine by H.M. Rouelle in 1773. It was synthesised in 1828 by Friedrich Wohler and was the first organic compound to be synthesised from inorganic starting materials. It was found when Wohler attempted to synthesize ammonium cyanate, to continue a study of cyanates which he had be carrying out for several years. On treating silver cyanate with ammonium chloride solution he obtained a white crystalline material which proved identical to urea obtained from urine.
- **3.** (b) F. Wohler synthesised urea from an inorganic compound ammonium cyanate

 $\begin{array}{ccc} \mathrm{NH}_4\mathrm{CNO} & \xrightarrow{\mathrm{Heat}} & \mathrm{NH}_2\mathrm{CONH}_2\\ \mathrm{Ammonium} & & \mathrm{Urea}\\ \mathrm{cyanate} & \end{array}$ 

- (c) According to vital force theory, organic compounds could only be produced by living matter by a vital force. It was in 1828, Friedrich Wholer heated NH<sub>4</sub>CNO (derived from inorganic substance) and obtained urea (an organic compound).
- (c) Wholer synthesized urea from ammonium cyanate in 1828. Kekule proposed catenation and structure of benzene. Liebig is a history maker in sports science (energy metabolism).
- 6. (d) Antoine-Laurent de Lavoisier (August 26, 1743 May 8, 1794) is known as the "*father of modern chemistry*." He was a French nobleman prominent in the histories of chemistry, finance, biology, and economics. He stated the first version of the Law of conservation of mass, co-discovered, recognized and named oxygen (1778) as well as hydrogen, disproved the phlogiston theory, introduced the *Metric system*, invented the first periodic table including 33 elements, and helped to reform chemical nomenclature.
- 7. (c) Hybridisation on the particular carbon can be established by number of  $\sigma$  and  $\pi$  bonds attached to it.  $\sigma$  Bond  $\pi$  Bond Hybridisation

÷

:. Both carbon atoms forming C—C single bond ( $C_2$  and  $C_3$ ) are  $sp^2$  hybridised

(b) C-1 is *sp* hybridized ( $C \equiv C$ ) C-3 is *sp*<sup>3</sup> hybridized (C-C) C-5 is *sp*<sup>2</sup> hybridized (C=C) Thus the correct sequence is *sp*, *sp*<sup>3</sup>, *sp*<sup>2</sup>.

**11.** (b) 
$$\begin{array}{c} H & H & H \\ | & | & | \\ H - C - C = C - C - C - H \\ | & | & | \\ H & H & H & H \\ H & H & H & H \end{array};$$
$$2 - Pentene$$

No. of  $\sigma$  bonds = 14, No. of  $\pi$  bonds = 1

- **12.** (c) (ii) and (iii) do not represent 2-bromopentane
- **13.** (c) Correct expanded form of given structure is shown in option (c).
- 14. (c)

8.

9.

- 15. (b) The successive members of a homologous series differ by a -CH<sub>2</sub> unit.
- 16. (a) Correct molecular formula of icosane is  $C_{20}H_{42}$ Correct molecular formula of heptane is  $C_7H_{16}$
- **17.** (c) (iii) is the only correct method of selecting parent chain.
- **18.** (b) Correct order of decreasing priority is  $-COOH, -SO_3H, -COOR, -OH.$

$$24. (d) 2, 2, 3-trimethyl pentane$$

$$\begin{array}{ccccccc} & 1^{\circ} & 1^{\circ} \\ CH_3 & CH_3 \\ H_3C - H_2C - CH - C - CH_3 \\ 3^{\circ} & | 4^{\circ} \\ CH_3 \\ 1^{\circ} \end{array}$$

**25.** (d) 
$${}^{1^{\circ}}_{CH_{3}} - {}^{4^{\circ}}_{C} - {}^{2^{\circ}}_{CH_{2}} - {}^{1^{\circ}}_{CH_{3}}$$

Thus number of secondary hydrogens is two.

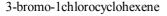
26. (d) 
$$CH_3 - CH_3 = CH_3 + CH_3 +$$

$$CH_3 CH_3 CH_3 C - CHCH_2CH_3 CH_3 CH_3 (c)$$

- CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> (d)
- 27. (d) In isopentane,  $(CH_3)_2CH CH_2 CH_3$ , every carbon is having hydrogen atom(s).

There are four 1° C-atoms, three 2° C-atoms and two 48. 3° C-atoms

29. (c) The structure of neopentane is


It has 1 quaternary and 4 primary carbons.

32. (c) **(b)** 31. (d) 33. (d)

- $CH_{3}-O-CH_{2}-CH_{2}-CH_{2}-O-CH_{2}CH_{3}$ 34. (a)
  - 3-ethoxy-1-methoxypropane
- (c) The correct name is 3 methylbutan 2 ol 35.

36. (a)

30.



37. (c) 
$$\begin{array}{c} & OH \\ 1 & 2 & 3 \\ CH_3 - CH_2 - C - CH_3 \\ & 5 & |4 \\ CH_3 CH_2 \\ 3 - Methyl pentan - 3 - ol \end{array}$$

- (a) The IUPAC name of the given compound is 38. 5-chlorohex-2-ene.
- 39. The compound is a derivative of butane. **(b)**
- 40. **(b)** The compound contains longest chain of 6C atoms and amino group. Hence it is an alkanamine.
- 41. The compound is an ester. Its IUPAC name is derived (d) from alkyl alkanoate.
- 42. (d) The compound is an aldehyde containing longest chain of 6 C-atoms and side chains.

43. (c) 
$$\stackrel{1}{CH_{3}} \stackrel{-2}{-2} \stackrel{-3}{C} \stackrel{-3}{-2} \stackrel{-3}{CH_{3}}$$
  
2-chloro-2-methyl propane  
44. (a)  
45. (d)  $(CH_{3})_{2}CHCH_{2}CH_{2} - \stackrel{-3}{3-methylbutyl group}$ 

Ċl

46. (a)

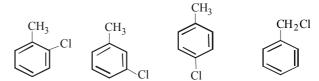
4 4

47. (d) 
$$\begin{array}{c} CH_3 \\ 1 & 2 \\ CH_3CH CH_2CH = CH CH \\ 2,8-Dimethyl-4,6-decadiene \\ \end{array}$$

(a) 
$${}^{4}_{CH_{3}}$$
  ${}^{3}_{CH}$   ${}^{2}_{CO}$   ${}^{1}_{CH_{3}}$   
(b)  ${}^{4}_{CH_{3}}$   ${}^{2}_{CH_{3}}$   ${}^{1}_{CH_{3}}$   ${}^{1}_{CH$ 

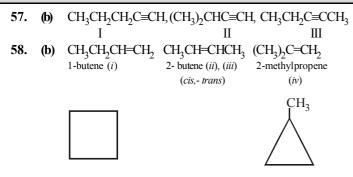
49. (a) CH<sub>3</sub>  

$$H_3C - C - C - CH_3$$
  
 $H_3C - C - CH_3$   
CH<sub>3</sub>  
Neopentane  
or 2,2- Dimethylpropane


50. (b)

- The compound is a derivative of benzoic acid. The 51. **(b)** positions of substituents attached to benzene nucleus are represented by number of C-atoms and not by ortho, meta and para.
- 52. **(a)**  $C_3H_6$  has 2 structural isomers.

$$CH_3 - CH = CH_2$$
 and  $H_2C - CH_2$   
propene


cyclopropane

53. (c)  $C_7H_7Cl$  has 4 isomers



o-Chlorotoluene m-Chlorotoluene p-Chlorotoluene benzyl chloride

- 54. Alcohols and ethers are functional isomers. **(b)**
- 55. **(b)** Structures (a), (c) and (d) have the same molecular formula  $(C_6H_{12}O)$  while (b) has  $C_6H_{10}O$  as molecular formula
- 56. (d)



- cyclobutane (v) methylcyclopropane (vi)
  59. (b) 2, 2, 4, 4 Tetramethylhexane has 10 carbon atoms, only 4-isopropylheptane has also 10 carbon atoms so these two are isomers.
  - (a) 61. (c) 62. (a) 63. (b) 64. (d)
- 65. (c)

**60**.

- **66.** (b) The two isomers differ in the position of the double bond so they are called position isomers.
- 67. (b)
- 68. (b) The order of stability of carbocations is :

$$(CH_3)_3^+C > (CH_3)_2^+CH > CH_3$$

69. (c)

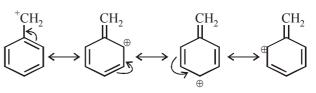
**70.** (d) Greater the number of alkyl groups attached to a positively charged C atom, greater is the hyperconjugation (no bond resonance) and stable is the cation.

Thus order of decreasing stability of carbocation is, tert - Alkyl > Sec-Alky> Pri-Alkyl > Methyl.

71. (a) Carbonium ions are electron deficient species. More the number of alkyl groups attached to it, more will be stability due to + I effect.

$$CH_3 \rightarrow \stackrel{+}{C} \leftarrow CH_3$$
  
 $\uparrow$   
 $CH_3$ 

3°carbonium ion (+ve charge dispersed to maximum extent) (9 hyperconjugative H's)


$$\begin{array}{ccc} \mathrm{CH}_{3} \xrightarrow{+} \mathrm{C-H} \\ & \uparrow \\ \mathrm{CH}_{2}\mathrm{CH}_{3} \end{array} > \begin{array}{c} \mathrm{CH}_{3}\mathrm{CH}_{2} \xrightarrow{+} \mathrm{CH}_{2} \\ & 1^{\circ} \text{ carbonium ion} \\ & (2 \text{ hyper. H's}) \end{array}$$

>

Alternatively, above order of stability order can be explained in terms of hyperconjugation.

72. (d) Higher stability of allyl and aryl substituted methyl carbocation is due to dispersal of positive charge due to resonance

$$CH_2 = CH - CH_2 \leftrightarrow CH_2 - CH = CH_2$$
  
Resonating structures of allyl carbocation



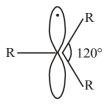
Resonating structures of benzyl carbocation

whereas in alkyl carbocations dispersal of positive charge on different hydrogen atoms is due to hyper conjugation hence the correct order of stability will be

$$\bigcup_{\text{Benzyl}}^{\bigoplus} > \text{CH}_2 = \underset{\text{Allyl}}{\text{CH}_2} = \underset{\text{Propyl}}{\text{CH}_2} = \underset{\text{Propyl}}{\text{CH}_2} = \underset{\text{Propyl}}{\bigoplus}$$

- 73. (b) Structure (b) is a 3° carbocation, while (a) is 2° and (c) and (d) are 1° carbocations; thus (b) is the most stable.
- 74. (a)
- 75. (a) Higher the possibility of delocalisation, greater is its

stability; in 
$$C_6H_5^+CHC_6H_5$$
, +ve charge can delocalise  
over two benzene rings.


- 76. (d) The organic reaction which proceed through heterolytic bond cleavage are called ionic or heteropolar or just polar reactions.
- 77. (b) In carbocations, carbon bearing positive charge is always sp<sup>2</sup>-hybridised
- **78.** (b) Methyl carbanion is  $sp^3$  hybridised, with three bond pairs and one lone pair same is the case with NH<sub>3</sub>.

79. (b) 
$$\begin{array}{c} Cl \\ -C \\ Cl \\ -ve \ charge \\ highly \ dispersed \\ due \ to - I \ effect \\ -ve \ charge \end{array} \xrightarrow{-M \ effect \\ delocalises \\ -ve \ charge \end{array}} \begin{array}{c} -M \ effect \\ -W \ effect \\ -ve \ charge \end{array} \xrightarrow{+I \ effect \ of \ CH_3 \ group \\ intensifies \ the \ -ve \ charge }$$

80. (c) In homolytic fission each of the atoms acquires one of the bonding electrons producing free radicals (species having one unpaired electron).

 $A \xrightarrow{\bullet \bullet} B \longrightarrow A \bullet + \bullet B$ 

- **81.** (b) Homolytic fission of the C C bond gives free radicals in which carbon is  $sp^2$  hybridised.
- 82. (b) The carbon atom of alkyl free radicals which is bonded to only three atoms or groups of atoms is  $sp^2$ -hybridized. Thus free radicals have a planar structure with odd electrons situated in the unused *p*-orbital at right angles to the plane of hybrid orbitals.



84. (a) On exposure to UV light,  $Cl_2$  molecule undergoes homolytic fission, to form chlorine free radicals.

 $Cl-Cl \xrightarrow{U.V.} 2Cl$ 

(Chlorine free radicals)

$$(C_6H_5)_3$$
  $\dot{C} > (C_6H_5)_2$   $\dot{C}H > (CH_3)_3$   $\dot{C} > (CH_3)_2$   $\dot{C}H$ 

The stabilisation of first two is due to resonance and last two is due to inductive effect.

- 86. (d) Free radicals are stabilized by hyperconjugation, thus 3° free radicals having maximum number of hyperconjugative structures are the most stable, and primary free radical the least.
- 87. (b)  $C_6H_5\dot{C}HCH_3$  is a 2° benzylic free radical, hence stabilized most due to resonance.
- **88.** (b) Dichlorocarbene, :  $CCl_2$  (a carbene) is the electrophile formed as an intermediate in Reimer-Tiemann reaction.
- 89. (d) Order of stability of free radicals is

 $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3$ 

**90.** (c) The strength of nucleophile depends upon the nature of alkyl group R on which nucleophile has to attack and also on the nature of solvent. The order of strength of nucleophiles follows the order :

 $CN^{-} > I^{-} > C_{6}H_{5}O^{-} > OH^{-} > Br^{-} > Cl^{-}$ 

91. (c) 92. (d)

- **93.** (a) Electrophile is positivly charged or electron deficient species. Lewis acids are electron acceptors that is electron deficient species.
- **94.** (b) Electrophiles are electron deficient or positively charged species.
- 95. (d)  $BF_3$  and  $R_3C X$  are electrophile while  $(CH_3)_3N$  and  $C_2H_5O^-$  are nucleophile
- **96.** (b)  $-CH_3$  group has +I effect, as number of  $-CH_3$  group increases, the inductive effect increases.
- 97. (d) Due to -I effect of the CHO group, oxygen acquires- $\delta$  - charge and the terminal carbon acquires  $\delta$  + charge.

$$\overset{\delta_{+}}{CH_{2}} = \overset{\bullet}{CH} - \overset{\bullet}{C} = \overset{\bullet}{\overset{\bullet}{O}}$$

- **98.** (c) All resonating structures should have same number of electron pairs.
- **99.** (a) The two structures involve only movement of electrons and not of atoms or groups, hence these are resonating structures.
- **100. (b)** Only structure (b) has a conjugated system, which is necessary for resonance.
- 101. (c)
- **102.** (b) OH shows + R effect while >C = O shows R effect.

- 103. (c) Resonance effect is the polarity produced in the molecule by the interactions of two  $\pi$  bonds or between a  $\pi$  bond and a lone pair of electrons present on an adjacent atom.
- **104. (b)** Electromeric effect is purely a temporary effect and is brought into play only at the requirement of attacking reagent, it vanishes out as soon as the attacking reagent is removed from reaction mixture.

105. (b)

**106.** (b) Alkyl groups with at least one hydrogen atom on the  $\alpha$ -carbon atom, attached to an unsaturated carbon atom, are able to release electrons in the following way.

$$\begin{array}{c} H & H^{+} \\ \overset{\sigma}{\longrightarrow} C \xrightarrow{\pi} C \xrightarrow{\pi} C & \longleftrightarrow & -C = C - \bar{C} \\ I & II \end{array}$$

Note that the delocalisation involves  $\sigma$  and  $\pi$  bond orbitals (or *p* orbitals in case of free radicals); thus it is also known as  $\sigma - \pi$  conjugation. This type of *electron release due to the presence of the system* H—C—C=C is known as hyperconjugation

**107.** (b) The stability of carbocation on the basis of hyperconjugation can be explained as hyperconjugation stabilises the carbocation because electron density from the adjacent  $\pi$ -bond helps in dispersing the positive charge.

In general greater the number of alkyl groups attached to a positively charged carbon atom, the greater is the hyperconjugation interaction and stabilisation of the cation. Thus, we have the following relative stability of carbocation.

$$CH_{3} - CH_{3} + CH_{3} + CH_{3}CH_{2} + CH_{3}CH_{3} + CH_{3}C$$

Hence, stability of carbocation is directly proportional to number of alkyl group directly attached to carbocations.

**108. (b)** Stability order of different alkyl carbocations on the basis of hyperconjugation is :

 $3^\circ > 2^\circ > 1^\circ > methyl$ 

In t-butyl cation, the C-atom bearing the positive charge is attached to three methyl groups therefore it possess nine  $\alpha$ -hydrogens. It will give maximum nine hyperconjugative structures leading to maximum stability.

**109. (b)** In elimination reactions one or two molecules are lost from the substrate to form a multiple bond. Dehydration of ethanol is an example of elimination reaction.

$$C_2H_5OH \xrightarrow{Conc} H_2SO_4 \rightarrow CH_2 = CH_2 + H_2O$$

110. (a) 111. (d) 112. (a)

- **113. (b)** Coloured impurities are removed by adsorbing over activated charcoal.
- 114. (a) This method is applied for the purification of substances which (i) are insoluble in water, (ii) are volatile in steam, (iii) are associated with non steam volatile impurities, (iv) have high molecular weights and (v) possess a fairly high vapour pressure at about the boiling point of water e.g. Aniline.
- 115. (a) Aniline is purified by steam distillation. A mixture of water and aniline boils at 371 K and 760 mm pressure which is less than boiling point of water.
- 116. (b) Among the given compounds naphthelene is volatile but benzoic acid is non-volatile (it forms a dimer). So, the best method for their separation is sublimation, which is applicable to compounds which can be converted directly into the vapour phase from its solid state on heating and back to the solid state on cooling. Hence it is the most appropriate method.

117.(d)

- **118.** (b) If there is a small difference (10 or less) in the boiling points of liquids fractional distillation is used e.g. actione b.p. 333 K and methanol b.p. 338 K.
- 119. (a) Fractional distillation is used for the distillation of petroleum. This method is used for separating a mixture of two or more miscible, volatile liquids having close (less than 40 degrees) boiling points. (For example, a mixture of acetone, b.p., 56°C and methanol, b.p. 65°C)
- **120. (c)** If any liquid decomposes at its boiling point, it can be purified by vacuum distillation.
- **121. (c)** Glycerol decomposes at its boiling point, hence it should be purified by distillation under reduced pressure.
- **122. (c)** Vaccum distillation means distillation under reduced pressure.
- 123. (c)
- **124. (a)** The latest technique for the purification of organic compounds is chromatography. These are of various types like column, paper and gas-chromatography.
- **125.** (d) Both silica gel and alumina are used as adsorbents in adsorption chromatography.
- **126. (a)** Chromatography paper contains water trapped in it, which acts as the stationary phase.
- **127. (c)** The mixture of sugars is a homogenous one. Homogeneous mixtures of a solvent and one or more solutes (dissolved substances) are often separated by chromatography. Chromatography works to separate a mixture because the components of a mixture distribute themselves differently when they are in

contact with a "two phase system". One phase is stationary and the other is moving or mobile. The stationary phase may be a solid packed in a tube or a piece of paper. The mobile phase may be liquid of gaseous.

128. (b) 129. (b)

**130.** (b) Carbon and hydrogen are detected by heating the compound with copper (II) oxide. Carbon present in the compound is oxidised to  $CO_2$  and hydrogen to  $H_2O$ .

131. (b)

- 132. (b) Hydrazine (NH<sub>2</sub>NH<sub>2</sub>) does not contain carbon and hence on fusion with Na metal, it cannot form NaCN; consequently hydrazine does not show Lassaigne's test for nitrogen.
- **133.** (a) Prussian blue  $Fe_4[Fe(CN)_6]_3$  is formed in lassaigne test for nitrogen.

$$3Na_4[Fe(CN)_6 + Fe^{3+} \longrightarrow$$

$$Fe_4[Fe(CN)_4]_3 + 12Na^4$$
  
Prussian blue

134. (d)

**135.** (d) Kjeldahl method is not applicable to any of the given compounds. As nitrogen of these compounds does not change to ammonium sulphate on heating with conc.  $H_2SO_4$ .

- **138. (b)** In Kjeldahl's method nitrogen is converted into  $(NH_4)_2 SO_4$ , then to  $NH_3$
- **139.** (d) To increase the bpt of  $H_2SO_4$ ,  $K_2SO_4$  is added

140. (b) 
$$N\% = \frac{1.4 \times N \times V}{\text{wt.of organic compound}}$$

$$=\frac{1.4\times29\times1/5}{0.5}=16.24\%$$

**141. (b)** % of S = 
$$\frac{32}{233} \times \frac{0.233}{0.32} \times 100 = 10\%$$

142. (c) As in above question,

$$C = \frac{40}{12} = 3.33; H = \frac{13.33}{1} = 13.33; N = \frac{46.67}{14} = 3.34$$

Relative No. of atoms,

$$C = \frac{3.33}{3.33} = 1; H = \frac{13.33}{3.33} = 4; N = \frac{3.34}{3.33} = 1$$

 $\therefore$  Empirical formula = CH<sub>4</sub>N

143. (b) Percentage of P = 
$$\frac{62}{222} \times \frac{\text{wt.of } Mg_2P_2O_7}{\text{wt.of compound}} \times 100$$

$$= \frac{62}{222} \times \frac{1.332}{2.79} \times 100 = 13.33\%$$

|   | % of element | Relative no. of atoms    | Simpleratio                                                    |
|---|--------------|--------------------------|----------------------------------------------------------------|
| C | 38.8         | $\frac{38.8}{12} = 3.2$  | 1                                                              |
| Н | 16.0         | $\frac{16}{1} = 16.0$    | 5                                                              |
| N | 45.28        | $\frac{45.28}{14} = 3.2$ | 1                                                              |
|   | Н            | Н 16.0                   | C 38.8 $\frac{38.8}{12} = 3.2$<br>H 16.0 $\frac{16}{1} = 16.0$ |

145. (b) Compound  $\xrightarrow{\text{heat}}$  O<sub>2</sub> + Other gaseous products

(C)

$$2C + O_2 \xrightarrow{1373K} 2CO$$

$$I_2O_5 + 5CO \rightarrow I_2 + 5CO_2$$

(A)

(B)

**146.** (c) A carbon having an *sp* hybrid orbital with 50% *s*-character is more electronegative than carbon atoms having *sp*<sup>2</sup> and *sp*<sup>3</sup> hybrid orbitals with 33% and 25% *s*-character respectively. In  $CH_2 = C = CHCH_3$ Number of  $\sigma$  bonds :  $\sigma_{C-C} = 3$ ,  $\sigma_{C-H} = 6$ , total = 6 + 3 = 9 Number of  $\pi$  bonds = 2

147. (a) 
$$\hat{R} - \hat{X} \xrightarrow{\text{heat or}} \hat{R} + \hat{X}$$

Above equation is an example of homolytic cleavge

- **148.** (c)  $CH_3$  is an electron donating group.
- **149. (b)** The resonance structures have same positions of nuclei and same number of unpaired electrons.
- **150. (b)** Fractional distillation method is used if the difference in boiling points of two liquids is not much.
- **151. (d)** For statement (ii),

$$R_{\rm F} = \frac{\text{Distance moved by the substance from base line}}{\text{Distance moved by the solvent from base line}}$$

For statement (iv), amino acids sports may be detected by spraying the TLC plate with ninhydrin solution.

- **152. (b)**  $K_2SO_4$  raises bpt. and CuSO<sub>4</sub> acts as catalyst.
- 153. (d) When organic compound contains nitrogen, upon combustion it will produce oxides of nitrogen soluble in KOH solution. The copper will convert them into  $N_2$

 $2NO + 2Cu \longrightarrow 2CuO + N_2$ 

 $2 \text{ NO}_2 + 4\text{Cu} \longrightarrow 4\text{CuO} + \text{N}_2 \text{ etc.}$ 

Halogens will be removed as AgX. In case of sulphur

 $SO_2$  formed will be removed as  $PbSO_4$ .

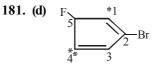
| MATCHING TYPE QUESTIONS |          |          |          |          |  |  |
|-------------------------|----------|----------|----------|----------|--|--|
| 154. (b)                | 155. (c) | 156. (a) | 157. (c) | 158. (a) |  |  |
| 159. (a)                | 160. (d) | 161. (a) | 162. (b) | 163. (d) |  |  |
| 164. (c)                | 165. (a) |          |          |          |  |  |

#### **ASSERTION-REASON TYPE QUESTIONS**

**166.** (c) - CN is a secondary suffix.

167. (b)

- **168. (d)** The correct name of the given compound is 2, 5, 6-trimethyloctane
- 169. (c) 170. (d)
- **171. (c)** Benzene has a uniform C C bond distance of 139 pm, a value intermediate between the C C single. (154 pm) and C = C double (134 pm) bonds.
- 172. (a) It is fact that aniline is better nucleophile than anilium ion. Anilium ion contain +ve charge, which reduces the tendency to donate lone pair of electron


 $C_6H_5NH_3^+$ . Anilium ion

- 173. (d) Resonance structures contain the same number of unpaired electrons. However, they differ in the way of distribution of electrons.
- 174. (d) 175. (a) 176. (a) 177. (c)

#### **CRITICAL THINKING TYPE QUESTIONS**

- 178. (a) It is derivative of ethanamide having N-phenyl group.
- 179. (b) The compound contains longest chain of 5C atoms and e of ene is retained as the suffix name starts with constant

**180.** (d) 
$$\underset{7}{\text{CH}_3} = \frac{sp^3}{{}_{6|}^{6|}} \frac{sp^2}{{}_{5}^{CH}} = \underset{4}{\text{CH}_4} = \frac{sp^3}{{}_{3|}^{1}} \frac{\text{CH}_3}{{}_{3}^{1}} = \underset{2}{\overset{5p}{}_{1}^{2}} \underset{1}{\overset{5p}{}_{2}^{2}} = \underset{1}{\overset{5p}{}_{1}^{2}} \underset{1}{\overset{5p}{}_{2}^{2}} = \underset{1}{\overset{5p}{}_{1}^{2}}$$



The numbering of C-atom starts from  $\overset{*}{C}$  or  $\overset{**}{C}$ . But numbering from  $\overset{*}{C}$  give minimum locant (2) to Br which is correct.

182. (a)

(a)

No. of  $\sigma$  bonds = 12; No. of  $\pi$  bonds = 3  $\therefore$  Ratio of  $\pi$ :  $\sigma$  bonds = 3: 12 = 1: 4

**183.** (a) In compounds (i), (iii) and (iv), all carbon atoms are  $sp^3$ ,  $sp^2$  and sp hybridised, respectivley. However, compound (ii) has  $sp^2$  and  $sp^3$  hybridised carbon atoms;

$$CH_3 - CH = CH - CH_3$$

184. (a)

**185.** (c) See the number of  $\sigma$  bonds formed by  $\overset{\text{a}}{C}$  in each case.

In HCOOH,  $(H_2N)_2CO$  and  $CH_3CHO, C$  forms  $3\sigma$  bonds and 1  $\pi$  bond, hybridisation is sp<sup>2</sup>. In

 $(CH_3)_3^{X}COH$ ,  $\overset{x}{C}$  forms  $4\sigma$  bonds, hence hybridisation is sp<sup>3</sup>

**186.** (a) 
$$1 - 3$$
 IUPAC name - 3, 3-Dimethyl -1

cyclohexanol

- **187.** (d) The compound contains longest chain of 3 C atoms and three -COOH groups and one -OH group attached to it (latest convention).
- **188.** (c)  $C_5H_{10}$  has 1° degree of unsaturation since the isomers are acyclic, all of these are alkenes. For writing the isomers, first introduce the double bond at different possible positions, and then consider the possibility of branching in the alkyl group.

$$CH_{3}CH_{2}CH_{2}CH=CH_{2} CH_{3}CH_{2}CH=CHCH_{3}$$
1-pentene (i) 2- pentene, (cis,- trans) (ii), (iii)
$$CH_{3} CH_{3} CH_{3}$$

$$CH_3 - CH - CH = CH_2$$
  $CH_3 CH_2 C = CH_2$ 

3-methyl-1-butene, (iv) 2-methyl-1-butene, (v)

$$CH_3 - C = CHCH_3$$

2-methyl-2-butene, (vi)

189. (b) 190. (d)

- **191. (c)** Metamerism shown among compounds of the same functional group.
- **192. (b)** I group destablises carbocation and since inductive effect decreases with increasing length of carbon chain. Therefore (b) is the correct option.
- **193. (d)** -NO<sub>2</sub> group, being strong electron-withdrawing, disperses the -ve charge, hence stabilizes the concerned carbanion.
- **194. (b)** In the presence of UV rays or energy, by boiling chlorine, free radical is generated which attack the methyl carbon atom of the toluene.

$$CH_{3} \xrightarrow{CH_{2}} H^{\bullet}$$
  
benzyl free  
radical  
$$Cl_{2} \xrightarrow{hv} 2Cl^{\bullet}$$
  
$$CH_{2} + Cl^{\bullet} \xrightarrow{CH_{2}Cl}$$

- **195.** (c) Cl<sup>-</sup> is the best leaving group among the given option.
- 196. (a) Nucleophilicity increases down the periodic table.

 $I^- > Br^- > Cl^- > F^-$ 

**197.** (b)  $H_2C = CHCl$  is capable of showing resonance which develops a partial double bond character on C–Cl bond, thereby making it less reactive toward nucleophilic substitution.

$$H_2C = CH - Cl: \longleftrightarrow H_2 \overline{C} - CH = Cl^+$$

198. (d) 
$$CH_3 \xrightarrow{f}Br \rightarrow {}^+CH_3 + Br^-$$
  
 $\dot{CH}_3 \xrightarrow{f}Cl \rightarrow \dot{CH}_3 + \dot{Cl}$ 

- **199.** (d) To convert covalent compounds into ionic compounds such as NaCN, Na<sub>2</sub>S, NaX, etc.
- 200. (d) The boiling point of o-nitrophenol is less than paranitrophenol due to presence of intramolecular hydrogen bonding. Since p-nitrophenol is less volatile in than onitrophenol due to presence of inter molecular hydrogen bonding hence they can be separated by steam distillation.
- **201. (b)** Na<sub>2</sub>S and NaCN, formed during fusion with metallic sodium, must be removed before adding  $AgNO_3$ , otherwise black ppt. due to Na<sub>2</sub>S or white precipitate due to AgCN will be formed and thus white precipitate of AgCl will not be identified easily.

 $Na_{2}S + 2AgNO_{3} \longrightarrow 2NaNO_{3} + Ag_{2}S \downarrow_{Black}$   $NaCN + AgNO_{3} \longrightarrow NaNO_{3} + AgCN \downarrow_{White}$   $NaCl + AgNO_{3} \longrightarrow NaNO_{3} + AgCl \downarrow_{White}$   $Na_{2}S + 2HNO_{3} \xrightarrow{boil} 2NaNO_{3} + H_{2}S \uparrow$   $NaCN + HNO_{3} \xrightarrow{boil} NaNO_{3} + HCN \uparrow$ The compounds with odd number of N ato

**202. (d)** The compounds with odd number of N-atoms have odd masses and with even number of N-atoms have even masses. This is "<u>nitrogen rule</u>".

**203.** (b) Percentage of N in a compound

$$=\frac{1.4 \times \text{Normality of acid} \times \text{Volume of acid used}}{\text{Mass of the substance taken}}$$

Given, 0.5 M  $H_2SO_4$  is used. Normality = Molarity × n

where n = 
$$\frac{\text{Mol.mass}}{\text{Eq.mass}} = \frac{98}{49} = 2$$

 $\therefore \text{ Normality} = 0.5 \times 2 = 1 \text{ N H}_2 \text{SO}_4$ Volume of acid used to neutralise  $\text{NH}_3 = 10 \text{ cm}^3$ Mass of organic compound taken = 0.25 g

:. % N = 
$$\frac{1.4 \times 1 \times 10}{0.25}$$
 = 56.

204. (d)