
Chapter 2

ALU and Data Path,
CPU Control Design

  Arithmetic and logic unit

  Fixed-point arithmetic operation

  Floating point arithmetic operation

  BCD

  Data path

  CPU control design

  Instruction cycle

  Control unit

  Control of processor

  Function of control unit

  Design of control unit

  Types of micro-instructions

  Micro-instruction sequencing

  RISC and CISC

  RISC characteristic

  CISC characteristic

LEARNING OBJECTIVES

alU (arithMetiC anD logiC Unit)
ALU performs arithmetic and logical operations on data (see
Figure 1).

ALU
Registers

Flags

Registers

Control unit

Figure 1 ALU inputs and outputs

 • Data are presented to ALU in registers and the results of an oper-
ation are stored in registers.

 • Registers are temporary storage locations within the processor
that are connected by signal paths to ALU.

 • The control unit provides signals that control the operation of
ALU and the movement of data into and out of the ALU.

 • Here we will discuss
 1. Fixed-point arithmetic operations
 2. Floating-point arithmetic operations
 3. BCD data arithmetic operations

Fixed-point Arithmetic Operations
Fixed-point representation
The numbers may be positive, zero or negative. So we have two
types of numbers:

Unsigned numbers Only zero and positive integers can be repre-
sented. All bits represent magnitude and no need of sign.

Signed numbers In signed representation, the most signifi cant bit
represents the sign. If the number is positive, the MSB is 0 and
remaining bits represent magnitude. If the number is negative, we
have three techniques to represents that number:

1. Signed magnitude representation: In signed magnitude
representation, the MSB represents sign and remaining bits
represents magnitude. If the number is negative then the
MSB is 1.

 Example: Signed magnitude representation of –10 =

1 0 0 0 1 0 1 0

MagnitudeSign

 2. Signed 1’s complement representation: In signed 1’s com-
plement representation, the MSB bit is 1. The remaining bits
of its signed magnitude bits are inverted i.e., convert 0’s to
1’s and 1’s to 0’s to obtain 1’s complement.

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.17

Example:

 Signed 1’s complement (-10) =

1 1 1 1 0 1 0 1

MagnitudeSign

 3. Signed 2’s complement representation: To get signed
2’s complement representation, add 1 to the signed 1’s
complement of that number.

 Example:
 Signed 2’s complement (-10) =

1 1 1 1 0 1 1 0

MagnitudeSign

Fixed-point arithmetic operations
We will discuss the following operations using signed mag-
nitude data and signed 2’s complement data.

 1. Addition
 2. Subtraction
 3. Multiplication
 4. Division

Addition and subtraction using signed magnitude
data Consider two numbers whose magnitude is represented
as A and B. When the signed numbers are added or subtracted,
there are eight different conditions to consider, depending on
the sign of the numbers and operation performed.

Operation
Add

Magnitudes
Subtract Magnitudes

 (A > B)

(+A) + (+B) +(A + B)

(+A) + (-B) +(A - B)

(-A) + (+B) -(A - B)

(-A) + (-B) -(A + B)

(+A) - (+B) +(A - B)

(+A) - (-B) +(A + B)

(-A) - (+B) -(A + B)

(-A) - (-B) -(A - B)

Algorithm for addition (subtraction): When the signs of
A and B identical (different), add the two magnitudes and
attach the sign of A to the result. When the signs of A and B
are different (identical), compare the magnitudes and sub-
tract the smaller number from the larger. Choose the sign of
result based on magnitudes of A and B.

Example: All eight cases for the numbers A = 5, B = 2.
(+A) + (+B) = (+5) + (+2)

= 0101 + 0010 = 0111= +7
 (+A) + (-B) = (+5) + (-2)

= 0101 + 1010

Take 2’s complement of -2 and add it to 5
101
110

1] 011
↑
Discard
∴ result = + 3 (A > B)
(–A) + (+B) = (–5) + (+2)
= 1101 + 0010
add 2’s complement of –5 to 2
011
010
101
As MSB is 1 take 2’s complement to get original number

i.e., 011.
Result = 1011 = –3 (∵A > B)
(-A) + (-B) = (-5) + (-2)
= 1101 + 1010
101
010
Result = 1111 = -7
Similarly we can perform the subtractions using signed

magnitude data.

Hardware implementation:

B register

A register

Complementer

Parallel adder

Bs

E

AVF

As Load sum

Input carry

Output carry
(Mode control)

M

Sum

Figure 2 Hardware implementation for addition and subtraction.

Figure 2 shows the hardware implementation for addition and
subtraction operations. It consists of registers A and B and sign
flip-flops A

s
 and B

s
. Subtraction is done by adding A to the 2’s

complement of B. The output carry is transferred to flip-flop
E and add overflow flip-flop AVF holds the overflow bit when
A and B are added. The addition is done through the parallel
adder. The output of adder is sent to ‘A’ register. The comple-
menter provides an output of B or complement of B depending
on the state of mode control M. When M = 0, the output equal
to A + B, when M = 1, the output equal to A B+ +1, i.e., A – B.

Addition and Subtraction with signed 2’s complement data
Addition: In 2’s complement representation, addition pro-
ceeds as if the two numbers were unsigned integers. If the
result of the operation is positive, we get a positive number

2.18 | Unit 2  •  Computer Organization and Architecture

in 2’s complement form, which is same as in unsigned inte-
ger form. If the result of the operation is negative, we get a
negative number in 2’s complement form.

Example:
+5 = 0101
+2 = 0010
 0111 = +7

+5: 0101
-2: 1110
10011 = +3
-5: 101
+2: 0010

 1101

As the result is negative, take 2’s complement of result to
get original number, i.e., 0011 and the answer is -3.
-5: 1011
-2: 1110
11001
As the result is negative take 2’s complement to get original
number, i.e., 0110 + 1 = 0111.
∴ Answer is -7.

Note: If two numbers are added and they are both positive
or both negative, then overflow occurs if the result has the
opposite sign.

Subtraction: To subtract subtrahend from minuend, take
the 2’s complement of subtrahend and add it to the minuend.

Example:
+5: 0101
+2: 0010
To subtract these two numbers add 2’s complement of 2 to 5.
+5: 0101
-2: 1110
 10011 = +3
+5: 0101
- 2: 1110
2’s complement of -2 = 0010.
+5: 0101
+2: 0010
 0111 = +7

Similarly for the other cases we can perform the subtraction.

Figure 3 Hardware implementation for signed 2’s complement
addition and subtraction:

BR register

AC register

Complement and
parallel adderV

Overflow

Figure 4 Flowchart for addition in 2’s complement form

Augend in AC
Addend in BR

AC ← AC + BR
V ← Overflow

Add

End

Figure 5 Flowchart for subtraction of 2’s complement data

Minuend in AC
subtrahend in BR

AC ← AC + BR + 1
V ← Overflow

End

Subtract

Multiplication of signed magnitude data

Multiplicand in B
Multiplier in Q

Qn

SC

EA ← A + B

shr EAQ
SC ← SC − 1

END

Multiply operation

As ← Qs ⊕ Bs
Qs ← Qs ⊕ Bs
A ← 0, E ← 0
SC ← n − 1

= 1= 0

= 0≠ 0

Figure 6 Flowchart for multiplication of signed magnitude data

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.19

Multiplication of two fixed point binary numbers in signed
magnitude representation is a process of successive shift
and add operations (see Figure 6).

Example 1: Multiply the two numbers -7 and +8, using
5-bit registers.
-7 = 10111
+8 = 01000

By excluding sign-bits, the multiplicand, B = 0111 and
multiplier Q = 1000. Initially A = 0000, SC is sequence
counter contains number of bits in multiplier magnitude.

Here SC = 4

Multiplicand
B = 0111 E A Q SC

Multiplier in Q 0 0000 1000 4

Last bit of Q,
Qn = 0 ⇒ Shr EAQ 0 0000 0100 3

Qn = 0 ⇒ Shr EAQ 0 0000 0010 2

Qn = 0 ⇒ Shr EAQ 0 0000 0001 1

Qn = 1 ⇒ Add B to A 0 0000
0111
0111

0001

Shr EAQ 0 0011 1000 0

B × Q = 00111000 = 56
Sign = Q

s
 ⊕ B

s
 = 1 ⊕ 0 = 1

∴ Result = –56

Hardware for signed magnitude data multiplication: B
1
,

A
1
, Q

1
 represent the respective signs of the registers B, A, Q.

Final result will be in AQ, which consist of 2n-bits. (Here
each register has n-bits).

B2 B3 Bn

A2 A3 An Q2 Q3 QnE

n − 1 bit adder
Shift and add
control logic

Multiplication of Singed 2’s complement data The straight
forward multiplication will not work if either the multipli-
cand or the multiplier is negative. There are number of ways
to perform multiplication of signed 2’s complement data.
One such a technique is Booth’s multiplication algorithm.
The following flowchart depicts about Booth’s algorithm
(see figure 7).

Figure 7 Booth’s multiplication algorithm

Multiplicand in BR
Multiplier in QR

QnQn +1

SC

END

Multiply

AC ← 0
Qn +1 ← 0
SC ← n

= 01

= 00
= 11

= 10

= 0≠ 0

AC ← AC + BRAC ← AC + BR + 1

Arithmatic shift
right (AC and QR)

SC ← SC − 1

An additional 1-bit register placed logically to the right of
the LSB(Q

n
) of Q register designated Q

n+1
.

Example 2: Multiply the two numbers -7 and +8 using
booth’s algorithm, using 5 bits.
BR = -7 = 11001
QR = +8 = 01000
Initially AC = 00000, Q

n+1
 = 0, SC = 5

Qn Qn+1

BR = 11001
BR + =1 00111 AC QR Qn+1 SC

Initial 00000 01000 0 5

00 ashr(AC and QR) 00000 00100 0 4

00 ashr(AC and QR) 00000 00010 0 3

00 ashr(AC and QR) 00000 00001 0 2

10 subtract BR
ashr(AC and QR)

00000
00111
00111
00011

10000 1 1

01 add BR
ashr(AC and QR)

00011
11001
11100
11110

10000
01000

1
0

1
0

∴ Result = 1111001000 = –56

2.20 | Unit 2  •  Computer Organization and Architecture

Hardware implementation for Booth’s algorithm:

BR register

AC register QR register

Complementer and
parallel adder

Qn +1Qn

Sequence counter (SC)

Note: These two multiplication algorithms are sequential
but we can also do the operation by means of a combina-
tional circuit that forms the product bits all at once. The
circuit consist of AND gates and adders.

Division algorithms

Division of signed magnitude data: Division of signed
magnitude data is a process of successive compare, shift
and subtract operations.

Example:
Dividend = 0111000000
Divisor = 10001
10001) 0111000000 (11010
 –10001
 010110
 –10001
 0010100
 –10001
 000110

Hardware implementation:
 • The hardware implementation of division is same as

multiplication, instead of shifting the divisor to the right,
the dividend or partial remainder is shifted to the left,
thus leaving the two numbers in the required relative
position.

 • The divisor is stored in the B register and the double-
length dividend is stored in registers A and Q. The divi-
dend is shifted to the left and the divisor is subtracted by
adding its 2’s complement value. The information about
the relative magnitude is available in E.

 • If E = 1, it signifies that A ≥ B. A quotient bit 1 is inserted
into Q

n
 and the partial remainder is shifted to the left to

repeat the process.
 • If E = 0, it signifies that A < B so the quotient is Q

n
 remains

a 0. The value of B is added to restore the partial remain-
der in A to its previous value. The partial remainder is
shifted to the left and the process is repeated again until
all quotient bits are formed.

 • Finally, the quotient is in Q and remainder is in A. This
method is called restoring method.

Divide overflow:
 • A divide overflow condition occurs if the high-order half

bits of the dividend constitute a number greater than or
equal to the divisor.

 • A division by zero must be avoided.

Other algorithms for division: Two other methods are
available for dividing numbers:

Comparison method: To divide the two numbers A and B
in comparison method, they are compared prior to the sub-
traction operation. If A ≥ B, B is subtracted from A. If A < B
nothing is done. The partial remainder is shifted left and the
numbers are compared again.

Non-restoring method: To divide two numbers A and B
is non-restoring method, B is not added if the difference is
negative but instead, the negative difference is shifted left
and then B is added.

Floating-point Arithmetic Operations
Floating-point representation
Fixed-point representation allows representation of
numbers with fractional component as well. But this
approach has limitations. It is not possible to represent
very large numbers and very small numbers in fixed point
representation.

In floating-point representation, the numbers can be rep-
resented in the form,

± S × B ± E

The three fields are
Sign: plus or minus
Significand: S
Exponent: E
are stored in a binary word.
The base B is implicit and need not be stored because

it is same for all the numbers. It is assumed that the radix
point is to the right of the left most or most significant bit
of the significand, i.e., there is one bit to the left of the
radix point.

32-bit floating-point format: The left most bit stores the
sign of the number. The exponent value is stored in next
8-bits. This is represented in biased representation.

Sign of
significand

Biased exponent Significand

 23-bits 8-bits

Biased representation: In biased representation, a fixed
value, called the bias, is subtracted from the exponent field to
get the true exponent value.

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.21

Bias = (2k-1 - 1), where k = number of bits in binary
exponent. In IEEE 32-bit fl oating point representation, bias
= 27 - 1 = 127.

And the range of true exponents is -127 to +128.
The advantage of biased representation is that non-neg-

ative fl oating point numbers can be treated as integers for
comparison purposes.

The last portion of word is the siginifi cand.

Normalized numbers:
 • To simplify operation on fl oating point numbers, it is

typically required that they must be normalized.
 • A normalized number is one in which the most signifi cant

digit of signifi cand is non-zero.
 • For base-2 representation, a normalized number is there-

fore one in which the MSB of the signifi cand is one.
 • Normalized non-zero number is one in the form ±

1.bbb… b × 2 ± E, where b is either binary digit 0 or 1.

Figure 8 Range of expressible numbers in a 32-bit fl oating point format

Negetive
overflow

Negetive
overflow

Positive
underflow

Positive
overflow

Expressible negetive
numbers

Expressible positive
numbers

Zero

− (2 − 2−23) × 2128 (2 − 2−23) × 2128− 2−127 2−1270 Number line

 • As the MSB is always one, it is unnecessary to store this
bit. Thus the 23-bit fi eld is used to store a 24-bit signifi -
cand with a value in the half open internal (1, 2).

 • A number may be normalized by shifting the radix point
to the right of the leftmost 1 bit and adjusting the expo-
nent accordingly.

Example: In 32-bit fl oating representation of
-1.6328125 × 2 - 20,
 Sign = 1 (as the number is negative)
 (.6328125)

10
 = (.1010001…)

2

 Exponent = -20
 Biased exponent = 127 - 20 = 107

= 1101011
∴ -1.6328125 × 2 - 20
= 1 01101011 10100010000000000000000

IEEE standard for binary fl oating-point representation

Sign
bit

Biased exponent Fraction

 23-bits 8-bits

 Single precision format

Sign
bit

Biased exponent Fraction

52-bits11-bits

 Double precision Format

Floating-point arithmetic
 (i) Addition and subtraction: The algorithm consists

the following phases:

 1. Check for zeros
 2. Align the signifi cands/mantissas
 3. Add or subtract the signifi cands
 4. Normalize the result

Example:

(123 × 100) + (234 × 10-2)
=123 × 100 + 2.34 × 100 = 125.34 × 100

 (ii) Multiplication: The steps to multiply two fl oating
point numbers are

 1. Check for zeros
 2. Add the exponents
 3. Multiply the signifi cands
 4. Normalize the result

 (iii) Division: The steps to divide two fl oating point
numbers are

 1. Check for zeros
 2. Initialize registers and evaluate the sign
 3. Align the dividend
 4. Subtract the exponents
 5. Divide the signifi cands

Binary-Coded Decimal (BCD)
Arithmetic Operations
Computers capable of performing decimal arithmetic must
store the data in binary-coded form.

Example: BCD of 239 = 0010 0011 1001

2.22 | Unit 2  •  Computer Organization and Architecture

BCD addition
In BCD each digit do not exceed 9, so the sum of two BCD
digits cannot be greater than 9 + 9 + 1 = 19, the 1 in the
sum being an input carry. When the binary sum of two BCD
digits is greater than 1001, we obtain a non-valid BCD
representation. The addition of binary 6 (0110) to the binary
sum converts it to the correct BCD representation and also
produces an output carry as required.

Example:
239 = 0010 0011 1001
426 = 0100 0010 0110
665 0110 0101 1111 >1001
 0110
 0110 0110 0101

 = 665

BCD subtraction
 • Perform the subtraction by taking the 9’s or 10’s comple-

ment of the subtrahend and adding it to the minuend.
 • The 9’s complement of a decimal digit represented in

BCD can be obtained by complementing the bits in the
coded representation of the digit, provided a correction
is included.

There are two possible correction methods:

 1. Binary 1010 is added to each complemented digit and
the carry discarded after each addition.

Example:
9’s complement of 7 = 2
7 in BCD = 0111.
Complement of 7 = 1000
Add 1010 = 1010
 1] 0010 = 2
 ↑
 Discard

 2. Binary 0110 is added before the digit is complemented.

Example:
BCD of 7 = 0111
Add 0110 = 0110
 1101
Complement = 0010 = 2

Example 4: Which of the following multiplier bit pattern
of Booth’s multiplication algorithm gives worst case
performance?
(A) 01010101….0101
(B) 000000….0000
(C) 11111111….1111
(D) 011110111110….01110

Solution: (A)
Booth’s multiplication algorithm works well with
consecutive 0’s or 1’s. But it gives worst case performance
when the multiplier consists of alternative 0’s and 1’s. (As
01, 10 pattern leads to addition and subtractions).

Example 5: Consider the following 32-bit floating point
representation scheme as shown in the format below:

Sign ExponentFraction

 7 24 1

A value is specified by three fields:
Sign field: 1 bit (0 for positive and 1 for negative values)
Fraction: 24-bits (with binary point being at the left end of
fraction bits)
Exponent:7-bits (in excess-64 signed integer
representation)
The base of exponentiation is 16. The sign bit is in MSB.
Then the normalized floating point representation of - 6.5 is

(A) E8000042 (B) E1000012
(C) D8000841 (D) D0000042

Solution: (D)
Here sign = 1 as the number is negative.

(-6.5)
10

 = (-0110.1)
2

= (-1.101 × 22)

Fraction = 101000000000000000000000

Exponent = Excess - 64 exponent

= 64 + 2 = 66 = 1000010

∴ (-6.5)
10

= 1 1010000000000000000000001000010

= D0000042.

Data Path
Data path consists of the components of the processor that
performs arithmetic operations.

Components of data path: ALU is just one data path
building block. Other components are

1. Computational Components, which consist of
combinational circuits (output follow inputs)

Example: ALU.

2. State components, which consists of sequential circuits
(output changes on clock edge)

Example: Registers.

Example: The sequence of steps for the addition of two
registers content are

1. R1
out

, X
in

2. R2
out

, Choose X, ADDITION, Y
in

3. Y
out

, R3
in

(Each step executed in a single clock cycle).

 • Data path and control unit forms the processing unit of a
computer. The Data path includes ALU, multiplexers, all
registers (like PC, IR) etc.

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.23

Example Data Path Design:

Read address
of instructionPC

Increment PC

memory

fetch

IC
+

CPU Control Design

Instruction Cycle
A program residing in the memory unit of the computer
consists of a sequence of instructions. The program is exe-
cuted in the computer by going through a cycle for each
instruction. Each instruction cycle in turn is subdivided
into a sequence of sub cycles. For example, the phases of
instruction cycle may be

 1. Fetch
 2. Decode
 3. Read effective address
 4. Execute, etc.

Next
instruction

Fetch Execute

 Instruction cycle

The cycle will be repeated, till all the instructions are
executed.

Each phase is made up of more fundamental operations,
called micro-operations.

Example micro-operations: Transfer between registers,
simple ALU operation, etc.

Control Unit
The control unit of a processor performs two tasks:

 1. It causes the processor to execute micro-operations
in the proper sequence, determined by the program
being executed.

 2. It generates the control signals that cause each micro-
operation to be executed.

We now discuss the micro-operations of various phases of
instruction cycle.

Micro-operation
 • These are the functional or atomic operations of a

processor.

Fetch ExecuteDecode

Micro
Operation

Micro
Operation

Instruction
Cycle

Instruction
Cycle

Program Execution

Instruction
Cycle

Instruction
Cycle

Fetch Cycle: ‘Fetch’ stage of an instruction occurs at the
beginning of each instruction, which causes an instruction
to be fetched from memory. The micro-operations involved
in fetch phase are
 t

1
: MAR ← PC (move contents of PC to MAR)

 t
2
: MBR← memory; PC ← (PC) + I (move contents of

MAR location to MBR and increment PC by I)
 t

3
: IR← (MBR) ⋅ (move contents of MBR to IR)

Here I is instruction length.
Each micro-operation can be performed within the time of
a single time unit.

Execute Cycle: For a machine with N different opcodes,
there will be N different sequence of micro-operations. For
the execution of following instruction.
Add R

1
, X, the micro-operations will be

 t
1
: MAR← (IR(Address))

 t
2
: MBR← memory

 t
3
: R

1
← (R

1
) + (MBR)

Control of the Processor
 (i) Functional requirements of control unit: Let us

consider the following concepts to the characterization
of a CU.

 1. Define the basic elements of the processor.
 2. Describe the micro-operations that the processor

performs.
 3. Determine the functions that the control unit

must perform to cause the micro-operations to be
performed.

 (ii) Basic elements of processor:
 • ALU
 • Registers
 • Internal data path: Used to move data between reg-

isters and between register and ALU.
 • External data path: Used to link registers to mem-

ory and input–output modules, often by means of a
system bus.

 • Control unit: Causes operations to happen within
the processor.

 (iii) Micro-operations of processor:
 • Transfer data from one register to another.
 • Transfer data from a register to an external interface.

2.24 | Unit 2  •  Computer Organization and Architecture

 • Transfer data from an external interface to a register.
 • Perform an arithmetic or logic operation, using reg-

isters for input and output.
 (iv) Control unit tasks:

 • Sequencing: The control unit causes the proces-
sor to step through a series of micro-operations in
the proper sequence, based on the program being
executed.

 • Execution: The control unit causes each micro-
operation to be executed.

 (v) Control signals: For the control unit to perform its
function, it must have inputs that allow it to determine
the state of the system and outputs that allows it
to control the behaviour of the system. These are
external specifications of the control unit.

 Internally, the control unit must have the logic
required to perform its sequencing and execution
functions.

Control
unit

Instruction register

Clock

Flags

Control
signals from
control bus

Control
signals within

CPU

Control
signals to

control bus

Control
bus

Figure 9 Block diagram of control unit

 (a) Clock: This is how the control unit ‘keeps time.’
The control unit causes one micro-operation to be
performed for each clock pulse. This is referred as
processor cycle time or clock cycle time.

 (b) Instruction registers: The opcode of current
instruction is used to determine which micro-
operations to perform during the execute cycle.

 (c) Flags: Used to determine the status of the processor
and outcome of previous ALU operations.

 (d) Control signals from control bus: The control bus
portion of system bus provides signals to the control
unit.

 (e) Control signals within the processor:
 1. Those that cause data to be moved from register to

another.
 2. Those that activate specific ALU functions.

 (f) Control signals to control bus:
 1. Control signals to memory.
 2. Control signals to input–output modules.

 Totally, there are three types of control signals:
 1. Those that activate ALU function.
 2. Those that activate a data path.
 3. Those that are signals on the external system bus.

Functions of Control Unit
 • The control unit directs the entire computer system to

carry out stored program instructions.
 • The control unit must communicate with both the

Arithmetic Logic Unit and Main memory.
 • The control unit instructs the arithmetic logic unit by

which, logical or arithmetic operation is to be performed.
 • The control unit coordinate the activities of the other

two units as well as all peripheral and auxiliary storage
devices linked to the computer.

Design of Control Unit
Control unit generates control signals using one of the two
organizations
 (1) Hardwired control unit
 (2) Micro-programmed control unit.

Hardwired control unit
 • It is implemented as logic circuits (gates, flip-flops,

decoders, etc.) in the hardware.
 • It is very complicated if we have a large control unit.
 • In this organization, if the design has to be modified or

changed. It requires changes in wiring among the various
components. Thus the modification of all the combina-
tional circuits may be very difficult.

Architecture of hardwired control unit An example hard-
wired control unit is shown in Figure 9.

OP code Address I

Control
unit

T1T0

3 × 8 Decoder

4 × 16 Decoder

4 bit sequence
counter

D0D7 D1D2D3D6 D5 D4

Figure 10 Hardwired control unit

The above control unit consists of:

 • Instruction Register
 • Number of control logic gates

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.25

 • Two decoders
 • 4-bit sequence counter.
 • An instruction read from memory is placed in the instruc-

tion register (IR)
 • The instruction register is divided into three parts: the I

bit, operation code and Address part.
 • First 12-bits (0-11) to specify an address, next 3-bits

specify the operation code (op code) field of the instruc-
tion and last left most bit specify the addressing mode I.
I = 0 for direct address
I = 1 for indirect address

 • First 12-bits are applied to the control logic gates.
 • The Opcode bits (12-14) are decoded with 3 × 8 decoder.
 • The eight outputs (D0 through D7) from a decoder go to

the control logic gates to perform specific operation.
 • Last bit 15 is transferred to a I flip flop designated by

symbol I.
 • The 4-bit sequence counter SC can count in binary from

0 through15.
 • The counter output is decoded into 16 timing pulses T0

through T15.
 • The sequence counter can be incremented by INR input

or clear by CLR input synchronically.

Advantages:
 • Hardwired control unit is fast because control signals are

generated by combinational circuits.
 • The delay in generation of control signals depends upon

the number of gates.

Disadvantages:
 • More is the control signal required by CPU, more com-

plex will be the design of control unit.

 • Modifications in control signal are very difficult. That
means it requires rearranging of wires in the hardware
circuit.

 • It is difficult to correct mistake in original design or add-
ing new features.

Micro-programming control unit
 • A micro-programmed Control unit is implemented using

programming approach. A sequence of micro-operations
are carried out by executing a program consisting of
microinstructions.

 • Micro-program, consisting of micro instructions is stored
in the control memory of the control unit.

 • Execution of micro-instruction is responsible for genera-
tion of a set of control signals.

A micro-instruction consists of:

 • One or more micro-instructions to be executed.
 • Address of next micro-instruction to be executed.

 (a) Micro-operations: The operations performed on
the Data stored inside the registers are called Micro-
operations.

 (b) Micro-programs: Micro-programming is the concept
for generating control signals using programs. These
programs are called Micro-programs.

 (c) Micro-instructions: The instructions that make
Micro-programs are called micro-instructions.

 (d) Micro-code: Micro-program is a group of micro-
instructions. Micro-program can also be termed as
micro-code.

 (e) Control memory: Micro-programs are stored in the
read-only memory (ROM). That memory is called
control memory.

(f) Architecture of Micro-Programmed Control Unit:

Control
word

Control
data

register

Control
memory

Control
address
register

Next
address

generator

 • The address of micro-instruction that is to be executed is
stored in the control address register (CAR).

 • Micro-instruction corresponding to the address stored in
CAR is fetched from control memory and is stored in the
control data register (CDR).

 • This micro-instruction contains control word to execute
one or more micro-operations.

 • After the execution of all micro-operations of micro-instruc-
tions, the address of next micro-instructions is located.

Advantages:

 • The design of micro-program control unit is less complex
because micro-programs are implemented using software
routines.

 • The micro-programmed control unit is more flexible
because design modifications, correction and enhance-
ment is easily possible.

 • The new or modified instruction set of CPU can be easily
implemented by simply rewriting or modifying the con-
tents of control memory.

 • The fault can be easily diagnosed in the micro-program
control unit using diagnostic tools by maintaining the
contents of flags, registers and counters.

Disadvantages:

 • The micro-program control unit is slower than hardwired
control unit. That means to execute an instruction in
micro-program control unit requires more time.

2.26 | Unit 2  •  Computer Organization and Architecture

 • The micro-program control unit is expensive than hard-
wired control unit in case of limited hardware resources.

 • The design duration of micro-program control unit is
more than hardwired control unit for smaller CPU.

Types of Micro-instructions
Micro-instructions can be classified as

Horizontal micro-instruction
 • Individual bits in horizontal micro-instructions corre-

spond to individual control lines.
 • These are long and allow maximum parallelism since

each bit controls a single control line.
 • No decoding needed.

Microinstruction
address
Jump condition
- unconditional
- zero
- overflow
- indirect bit
System bus
control signals

Internal CPU
control signals

Figure 11 Horizontal micro-instruction format

Vertical micro-instruction
 • Here, control lines are coded into specific fields

within a micro-instruction.
 • Decoders are needed to map a field of k-bits to 2k

possible combinations of control lines.

Microinstruction
address

Jump condition

Function codes

Figure 12 Vertical micro-instruction format

Example: A 3-bit field in a micro-instruction could be
used to specify any one of eight possible lines.

 • Hence these instructions are much shorter than horizontal
ones.

 • Control fields encoded in the same field cannot be acti-
vated simultaneously. Therefore vertical micro-instruc-
tions allow only limited parallelism.

 • Decoding is necessary.

Micro-instruction Sequencing
Two concerns are involved in the design of a micro-instruc-
tion sequencing technique:

 1. The size of micro-instruction: Minimizing size of
control memory reduces the cost of that component.

 2. The address-generation time:

A desire to execute micro-instructions as fast as possible.
In executing a micro program, the address of next micro-
instruction to be executed is in one of these categories.

 1. Determined by IR
 2. Next sequential address
 3. Branch

Micro-instructions Execution
The Micro-instruction cycle has two parts:

 1. Fetch
 2. Execution

The effect of execution of a micro-instruction is to generate
control signals. Some of the signals control points internal
to the processor. The remaining signals go to the external
control bus or other external interface.

Micro-instructions can be classified in a variety of ways.

 1. Vertical/horizontal
 2. Packed/unpacked
 3. Hard/soft micro-programming
 4. Direct/indirect encoding.

risC anD CisC
One of the important aspects of computer architecture is the
design of the instruction set for the processor. The instruc-
tion set chosen for a particular computer determines the
way that machine language programs are constructed. There
are two categories of computers based on instructions:

 1. Complex instruction set computer (CISC)
 2. Reduced instruction set computer (RISC)

CISC: A computer with a large number of instructions is
classified as a complex instruction set computer.

RISC: A computer which has fewer instructions with sim-
ple constructs, so they can be executed much faster with in
the CPU without having to use memory as often. This type
of computer is classified as RISC.

CISC characteristics
 • CISC provides a single machine instruction for each

statement, That is written in a high level language so that
compilation process is simplified and the over all com-
puter performance improved.

 • It has variable length instruction formats.
 • It provides direct manipulation of operands residing in

memory.
 • Some instructions that perform specialized tasks and are

used infrequently.
 • A large variety of addressing modes

Drawback of CISC architecture As more instructions and
addressing modes are incorporated into a computer, the
more hardware logic is needed to implement and support
them and hence this causes the computations to slow down.

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.27

RISC characteristics
 • Reduce execution time by simplifying the instruction set

of the computer.
 • Fewer numbers of instructions
 • Relatively fewer addressing modes
 • Memory access is limited to load and store instructions.
 • All operations are done with in the register of the CPU.
 • Fixed - length, easily decoded instruction format.
 • Single-cycle instruction execution.
 • Hardwired rather than micro-programmed control.
 • Relatively large number of registers.
 • Uses overlapped register windows to speed - up proce-

dure call and return.
 • Efficient instruction pipeline.
 • Efficient translation of high - level language programs

into machine language programs by the compiler.

Example 6: An instruction set of a processor has 200
signals which can be divided into 5 groups of mutually
exclusive signals as follows.

 Group 1: 30 Signals
 Group 2: 90 Signals

 Group 3: 20 Signals
 Group 4: 10 Signals
 Group 5: 50 Signals
 How many bits of the control words can be saved by

using vertical micro-programming over horizontal
microprogramming?

 (A) 27 (B) 173
 (C) 200 (D) 227

Solution: Horizontal micro-programming requires 200
signals. But vertical micro-programming uses encoding. So

 Group 1 requires 5-bits (∵ 25 = 32)
 Group 2 requires 7-bits (∵ 27 = 128)
 Group 3 requires 5-bits (∵ 25 = 32)
 Group 4 requires 4-bits (∵ 24 = 16)
 Group 5 requires 6-bits (∵ 26 = 64)

 ∴ Total bits required using vertical micro
programming = 27

 ∴ Number of bits saved = 200 – 27 = 173

exerCise

Practice Problems 1
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.
 1. Using two’s complement arithmetic the resultant of

111100001111 – 110011110011 is
 (A) 0010 0001 1111
 (B) 0011 0000 1100
 (C) 0010 0001 1101
 (D) 0010 0001 1100

 2. IEEE 32-bit floating point format of 384 is
 (A) 0 10000111 00000000000000000000000
 (B) 0 10000111 10000000000000000000000
 (C) 0 00001000 00000000000000000000000
 (D) 0 00001000 10000000000000000000000

 3. Consider the following IEEE 32-bit floating point
number:

 0 01111110 10100000000000000000000.
 What is the decimal value equivalent to given number?
 (A) 0.25 (B) 3.25
 (C) 0.8125 (D) 0.9375

 4. What would be the bias value for a base-8 exponent in
a 7-bit field?

 (A) 8 (B) 16
 (C) 63 (D) 64

 5. The normalized value of the resultant of 8.844 × 10 -3
– 2.233 × 10 -1 is

 (A) -2.144 × 10 - 1 (B) -0.2144
 (C) -2 × 10 - 1 (D) -0.2

 6. Which of the following is the correct sequence of
micro-operations to add a number to the AC when the
operand is a direct address operand and store the final
result to AC?

 (A) MAR←(IR(address))
 MBR ← memory
 R

1
← (AC) + (MBR)

 (B) MAR ← IR(address)
 MBR ← MAR
 R

1
← (MBR)

 R
2
← (AC) + (R

1
)

 AC ← R
2

 (C) MAR ← (IR(address))
 MBR ← Memory(MAR)
 R

1
← (MBR)

 R
2
← (AC) + (R

1
)

 AC ← (R
2
)

 (D) MAR ← (IR (address))
 MBR ← Memory(MAR)
 AC ← (AC) + (MAR)

Statement for linked answer questions 7 to 9: Assume
that the control memory is 24 bits wide. The control portion
of the micro-instruction format is divided into two fields. A
micro-operation field of 13-bits specifies the micro-opera-
tion to be performed. An address selection field specifies
a condition, based on the flags, that will cause a micro-in-
struction branch. There are eight flags.

2.28 | Unit 2  •  Computer Organization and Architecture

 7. How many bits are there in address selection field?
 (A) 1 (B) 2
 (C) 3 (D) 4

 8. How many bits are there in address field?
 (A) 8 (B) 9
 (C) 13 (D) 24

 9. What is the size of control memory in bits?
 (A) 256 (B) 768
 (C) 3328 (D) 6144

 10. A simple processor has 3 major phases to its instruc-
tions cycle:

 1. Fetch
 2. Decode
 3. Execute
 Two 1-bit flags are used to specify the current phase in

hardwired implementation. Will these flags required in
micro-programming also?

 (A) Yes
 (B) No
 (C) Cannot predict
 (D) Depends on clock cycle time

 11. In a 3-bus data path, the micro instructions format will
be Opcode src1, src2, desti; The number of operations
supported are 8 and the src1, src2 and desti require 20,
16 and 20 bits respectively.

 The total number of horizontal microinstructions speci-
fied will be

 (A) 264 (B) 28

 (C) 256 (D) 261

 12. What is the smallest positive normalized number rep-
resented using IEEE single precision floating point
representation?

 (A) 2–128 (B) 1 – 2–127

 (C) 2–127 (D) 2–126

 13. A micro program control unit is required to generate
a total of 30 control signals. Assume that during any
micro instruction, almost two control signals are active.
Minimum number of bits required in the control word
to generate the required control signals will be

 (A) 2 (B) 2.5
 (C) 10 (D) 12

 14. What is the fraction field of the single-precision float-
ing point representation of 6.25?

 (A) 1110 1000 0000 0000 0000 000
 (B) 1001 0000 0000 0000 0000 000
 (C) 1100 0000 0000 0000 0000 000
 (D) 0110 0100 0000 0000 0000 000

 15. Let the total number of control signals generated are n,
then what is the number of bits allocated in control field
of vertical micro programming?

 (A) n/2 (B) n
 (C) 2n (D) log

2
n

 16. In a micro programmed control unit, a control field of one
address control instruction has to support two groups of
control signals. In group1 it is required to generate either
one or none of the 32 control signals. In group 2 at most
5 from the remaining, what will be the number of bits
needed for the control field?

 (A) 8 (B) 10
 (C) 35 (D) 37

 17. Assume that the exponent e is constrained to lie in the
range 0 ≤ e ≤ x, with a bias of q, that the base is b and
that the significant is P-digits in length.

 What is the largest positive value that can be written is
normalized floating point?

 (A) bx – q(1 – b – p) (B) b–q –1

 (C) b–q – p (D) b x – q (b–p –1)

 18. By using Booth’s Multiplication algorithm. Below two
numbers are multiplied:

 Multiplicand: 0111 0111 1011 1101
 Multiplier: 0101 1010 1110 1110
 How many additions/subtractions are required for the

multiplication of the above two numbers?
 (A) 8 (B) 10
 (C) 13 (D) 7

 19. Let us assume, we are multiplying two positive inte-
gers 1101 and 1011. The multiplicand M is 1101 and
Multiplier Q is 1011. What is partial product after sec-
ond cycle?

 (A) 0110 1101 (B) 1001 1110
 (C) 0100 1111 (D) 1000 1111

 20. The decimal representation of the 2’s complement
number 1101011 is

 (A) 21 (B) -21
 (C) 219 (D) 91

Practice Problems 2
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.
 1. A microprogrammed control unit
 (A) is faster than a hard-wired control unit
 (B) facilitates easy implementation of new instructions.
 (C) is useful when very small programs are to be run.
 (D) usually refers to the control unit of a micro-processor.

 2. Micro-program is
 (A) the name of a source program in micro computers.
 (B) a primitive form of macros used in assembly lan-

guage programming.
 (C) a program of a very small size.
 (D) the set of instruction indicating the basic elemental

commands which directly control the operation of a
system.

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.29

 3. Programming that actually controls the path of signal
or data within the computer is called

 (A) System programming
 (B) Micro-programming
 (C) High-level language programming
 (D) Assembly language programming
 4. The instruction cycle time in a generic microprocessor

is
 (A) Longer than the machine cycle time
 (B) Shorter than the machine cycle time
 (C) Same as the machine cycle time
 (D) Double the machine cycle time
 5. Microprocessor unit or central processor unit consist of
 (A) Control circuitry (B) ALU
 (C) Memory (D) All of these
 6. The exponent of a floating point number is represented

in excess-N code so that
 (A) the dynamic range is large
 (B) overflow is avoided
 (C) the precision is high
 (D) the smallest number is represented efficiently

 7. Using Booth’s algorithm for Multiplication, the
Multiplier -14 is coded as

 (A) 11110 (B) 01110
 (C) 10010 (D) 00010

 8. Data Path consists of
 (A) Registers (B) ALU
 (C) Bus (D) All of these

 9. A floating point number that has a ‘0’ in MSB of man-
tissa is said to have ____

 (A) Overflow (B) Underflow
 (C) Normalization (D) Positive exponent

 10. Let the Binary sum after BCD addition is stored in K,
Z

8
, Z

4
, Z

2
, and Z

1
 Then the condition for a correction

and output carry can be expressed as C =
 (A) K + Z

8
 Z

4
+ Z

8
Z

2
(B) K + Z

8
 Z

4
+ Z

4
Z

2

(C) K + Z

8
 Z

2
+ Z

8
Z

1
(D) K + Z

4
 Z

2
+ Z

2
Z

1

 11. Which of the following is an advantage of biased
exponents?

 (A) Convenient way to represent exponents
 (B) Useful for conversion
 (C) Convenient for comparison purposes
 (D) All of these

 12. Booth multiplication skips over runs of zeros and ones
which reduces the number of add and subtract steps
needed to multiply two n-bit numbers to n to a variable
number whose average value n

avg
 is less than n what

will be n
avg

?
 (A) n/3 (B) n/4
 (C) n/2 (D) n

 13. The sequence of events that happen during a fetch
operation is:

 (A) PC → memory → IR
 (B) PC → MAR → memory → IR
 (C) PC → MAR → memory → MDR → IR
 (D) PC → memory → MDR → IR

 14. Micro-programming is a technique for
 (A) Programming input or output routines
 (B) Programming the microprocessors
 (C) Programming the control steps of a computer
 (D) Writing small programs

 15. In a micro program ____ specifies the address of
Micro-instructions to be executed.

 (A) AR (B) PC
 (C) SP (D) CAR

 16. Which one of the following statements is correct?
 (A) Micro-programmed control unit is costlier and

slow.
 (B) Micro-programmed control unit are cheap and

slow.
 (C) Micro-programmed control unit is costlier and

fast.
 (D) Micro-programmed control unit are fast and

cheaper.

 17. Horizontal micro-instructions have
 (A) High degree parallelism, more encoding of control

information.
 (B) High degree parallelism, little encoding of control

information.
 (C) Low degree parallelism, more encoding of control

information.
 (D) Low degree parallelism, little encoding of control

information.

 18. A vertical micro-instruction have ____.
 (A) Short formats and considerable encoding of con-

trol information
 (B) Long formats and considerable encoding of con-

trol information
 (C) Short formats and little encoding of control infor-

mation
 (D) Long formats and little encoding of control infor-

mation

 19. Guard bits are used to
 (A) avoid unnecessary loss of MSB
 (B) avoid unnecessary loss of LSB
 (C) the loss of MSB
 (D) the loss of LSB

 20. Which of the following is not the essential element of a
number represented in floating-point notation?

 (A) Exponent (B) Significand
 (C) Sign (D) Normalization

2.30 | Unit 2  •  Computer Organization and Architecture

Common data for questions 1 and 2: Consider the fol-
lowing data path of a CPU.

MAR MDR

ALU

GPRs
PCIR

S T

The ALU, the bus and all the registers in the data path
are of identical size. All operations including incremen-
tation of the PC and the GPRs are to be carried out in
the ALU. Two clock cycles are needed for memory read
operation—the first one for loading address in the MAR
and the next one for loading data from the memory bus
into the MDR.

 1. The instruction ‘add R
0
, R

1
’ has the register transfer

interpretation R
0
 ← R

0
 + R

1
. The minimum number

of clock cycles needed for execution cycle of this
instruction is

 (A) 2 (B) 3
 (C) 4 (D) 5

 2. The instruction ‘call Rn, sub’ is a two word instruction.
Assuming that PC is incremented during the fetch cycle
of the first word of the instruction, its register transfer
interpretation is

 Rn ← PC + 1;

 PC ← M[PC]

 The minimum number of CPU clock cycles, needed
during the execution cycle of this instruction is

 (A) 2 (B) 3
 (C) 4 (D) 5

Data for question 3: Consider the following floating-
point format.

 14 15 8 7 0

Sign bit Excess-64
exponent

Manitssa

 Mantissa is a pure fraction in sign-magnitude form.

 3. The normalized representation for the above format
is specified as follows. The mantissa has an implicit 1

preceding the binary (radix) point. Assume that only
0 ′s are padded in while shifting a field.

 The normalized representation of the above number
(0.239 × 213) is: [2005]

 (A) 0A 20 (B) 11 34
 (C) 49 D0 (D) 4A E8

 4. In the IEEE floating point representation the hexa-
decimal value 0x00000000 corresponds to [2008]

 (A) The normalized value 2 - 127

 (B) The normalized value 2 - 126

 (C) The normalized value + 0
 (D) The special value + 0
 5. P is a 16-bit signed integer. The 2’s complement rep-

resentation of P is (F87B)
16

. The 2’s complement rep-
resentation of 8*P is [2010]

 (A) (C3D8)
16

 (B) (187B)
16

 (C) (F878)
16

 (D) (987B)
16

 6. The decimal value 0.5 in IEEE single precision float-
ing point representation has [2012]

 (A) fraction bits of 000 … 000 and exponent value of 0
 (B) fraction bits of 000…000 and exponent value of –1
 (C) fraction bits of 100…000 and exponent value of 0
 (D) no exact representation

 7. The smallest integer that can be represented by an
8-bit number in 2’s complement form is [2013]

 (A) –256 (B) –128
 (C) –127 (D) 0

 8. Let A = 1111 1010 and B = 0000 1010 be two 8-bit 2’s
complement numbers. Their product in 2’s comple-
ment is [2004]

 (A) 1100 0100 (B) 1001 1100
 (C) 1010 0101 (D) 1101 0101

 9. The microinstructions stored in the control memory
of a processor have a width of 26 bits. Each micro-
instruction is divided into three fields, a micro-oper-
ation field of 13 bits, a next address field (X), and a
MUX select field (Y), there are 8 status bits in the
inputs of the MUX [2004]

Control address
register

Control
memory

MUX

Load

Increment

Status bits Micro operation
X

Y
8

13

PrevioUs Years’ QUestions

Chapter 2  •  ALU and Data Path, CPU Control Design | 2.31

 How many bits are there in the X and Y fields, and
what is the size of the control memory in number of
words?

 (A) 10, 3, 1024 (B) 8, 5, 256
 (C) 5, 8, 2048 (D) 10, 3, 512

 10. Consider the following sequence of micro-operations.
 MBR ← PC
 MAR ← X
 PC ← Y
 Memory ← MBR

 Which one of the following is a possible operation
performed by this sequence? [2013]

 (A) Instruction fetch
 (B) Operand fetch
 (C) Conditional branch
 (D) Initiation of interrupt service

 11. For computers based on three-address instruction for-
mats, each address field can be used to specify which
of the following: [2015]

 (S
1
) A memory operand

 (S
2
) A processor register

 (S
3
) An implied accumulator register

 (A) Either S
1
 or S

2

 (B) Either S
2
 or S

3

 (C) Only S
2
 and S

3

 (D) All of S
1
, S

2
 and S

3

 12. Let X be the number of distinct 16 - bit integers in 2’s
complement representation. Let Y be the number of
distinct 16 - bit integers in sign magnitude representa-
tion. They x – y is ______ . [2016]

 13. The n-bit fixed-point representation of an unsigned
real number X uses f bits for the fraction part. Let i =
n - f. The range of decimal values for X in this repre-
sentation is [2017]

 (A) 2- f to 2i (B) 2- f to (2i - 2- f)
 (C) 0 to 2i (D) 0 to (2i - 2- f)

 14 Consider the C code fragment given below.
typedef struct node {

int data;
node* next;

} node;
void join (node* m, node* n) {

node* p = n;
while (p − >next != NULL) {

p = p − >next;
}
p − >next = m;

}

 Assuming that m and n point to valid NULL-
terminated linked lists, invocation of join will [2017]

 (A) append list m to the end of list n for all inputs.
 (B) either cause a null pointer dereference or append

list m to the end of list n.
 (C) cause a null pointer dereference for all inputs.
 (D) append list n to the end of list m for all inputs.

 15. The representation of the value of a 16-bit unsigned
integer X in hexadecimal number system is BCA9.
The representation of the value of X in octal number
system is [2017]

 (A) 571244 (B) 736251
 (C) 571247 (D) 136251

 16. Consider the following processor design
characteristics.
I. Register-to-register arithmetic operations only
II. Fixed-length instruction format
III. Hardwired control unit

 Which of the characteristics above are used in the
design of a RISC processor? [2018]

(A) I and II only (B) II and III only
(C) I and III only (D) I, II and III

 17. Consider the unsigned 8-bit fixed point binary num-
ber representation below:

b
7
 b

6
b

5
b

4
 b

3
 ⋅ b

2
 b

1
 b

0

 where the position of the binary point is between b
3

and b
2
. Assume b

7
 is the most significant bit. Some

of the decimal numbers listed below cannot be repre-
sented exactly in the above representation:

 (i) 31.500 (ii) 0.875
 (iii) 12.100 (iv) 3.001

 Which one of the following statements is true?
 [2018]

 (A) None of (i), (ii), (iii), (iv) can be exactly repre-
sented

 (B) Only (ii) cannot be exactly represented
 (C) Only (iii) and (iv) cannot be exactly represented
 (D) Only (i) and (ii) cannot be exactly represented

2.32 | Unit 2  •  Computer Organization and Architecture

answer KeYs

exerCises

Practice Problems 1
 1. D 2. B 3. C 4. C 5. A 6. C 7. C 8. A 9. D 10. B
 11. A 12. D 13. C 14. B 15. D 16. B 17. A 18. B 19. B 20. B

Practice Problems 1
 1. B 2. D 3. B 4. C 5. D 6. D 7. C 8. D 9. B 10. A
 11. C 12. C 13. C 14. C 15. D 16. A 17. B 18. A 19. B 20. D

Previous Years’ Questions
 1. B 2. B 3. D 4. D 5. A 6. B 7. B 8. A 9. A 10. D
 11. A 12. 1 13. D 14. B 15. D 16. D 17. C

	Unit 2: Computer Organization and Architecture
	Chapter 2: ALU and Data Path, CPU Control Design
	ALU (Arithmetic and Logic Unit)
	Data Path
	CPU Control Design
	RISC and CISC
	Exercise
	Previous Years’ Questions
	Answer Keys

