RACE # 12

SEQUENCE & SERIES

GEOMETRIC PROGRESSION - I

- 1. If the pth, qth, rth terms of a G.P. be a, b, c respectively, then prove that $a^{q-r}b^{r-p}c^{p-q} = 1$.
- 2. The fifth term of a G.P. is 81, and the second term is 24; find the series.
- 3. Find the sum of the series : $3, -4, \frac{16}{3}, \dots$ to 2n terms.
- 4. The sum of the first 6 terms of a G.P. is 9 times the sum of the first 3 terms; find the common ratio.
- 5. The sum of a G.P. whose common ratio is 3 is 728, and the last term is 486; find the first term.
- 6. In a G.P. the first term is 7, the last term 448, and the sum 889; find the common ratio.
- 7. The sum of infinite number of terms of a G.P. is 4 and the sum of their cubes is 192; find the series.
- 8. The sum of three numbers in G.P. is 38, and their product is 1728; find them.
- **9.** The continued product of three nubmers in G.P. is 216, and the sum of the products of them in pairs is 156; find the numbers.
- **10.** The sum of three numbers in G.P. is 70; if the two extremes be multipled each by 4, and the mean by 5, the products are in A.P., find the numbers.
- 11. If the p^{th} , q^{th} , r^{th} , s^{th} terms of an A.P. are in G.P., show that p q, q r, r s are in G.P.
- **12.** The sum of first three terms of a G.P. is to the sum of the first six terms as 125 : 152. Find the common ratio of the G.P.
- 13. Sum the series : (a) $\left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^3 + \frac{1}{x^3}\right)^2 + \dots \left(x^n + \frac{1}{x^n}\right)^2$

(b) $1 + (1 + x) + (1 + x + x^2) + (1 + x + x^2 + x^3) + ...$ to n terms.

- 14. Find the sum of n terms of the following series
 - (a) $\cdot 7 + \cdot 77 + \cdot 777 + \dots$
 - (b) $6 + 66 + 666 + \dots$

1.

4.

(b) Find the value of .123 regarding it as geometric series.
(b) Find the value of .423.

GEOMETRIC PROGRESSION - II

If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of G.P. is (A) $\frac{q-r}{p-q}$ (B) $\frac{r-q}{p-q}$ (C) $\frac{q-r}{q-p}$ (D) $\frac{q-p}{q-r}$

2. If the roots of cubic equation $ax^3 + bx^2 + cx + d = 0$ are in G.P., then (A) $c^3a = b^3d$ (B) $ca^3 = bd^3$ (C) $a^3b = c^3d$ (D) $ab^3 = cd^3$

3. If
$$\frac{p+q.5^{x}}{p-q.5^{x}} = \frac{q+r.5^{x}}{q-r.5^{x}} = \frac{r+s.5^{x}}{r-s.5^{x}}$$
 then p, q, r, s are in
(A) A.P. (B) G.P. (C) H.P. (D) none of these

If the sum of the series $\sum_{n=0}^{\infty} r^n$, |r| < 1, is S, then sum of the series $\sum_{n=0}^{\infty} r^{2n}$ is

(A)
$$S^2$$
 (B) $\frac{2S}{S^2 - 1}$ (C) $\frac{S^2}{2S + 1}$ (D) $\frac{S^2}{2S - 1}$

5. If S denotes the sum of infinity and S_n the sum of n terms of the series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ such that $S - S_n < \frac{1}{1000}$, then the least value of n is

(A) 11 (B) 9 (C) 10 (D) 8

6. If a, b, c are in G.P. then the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

(A) A.P. (B) G.P. (C) H.P (D) None of these

- 7. A certain number is inserted between the number 3 and the unknown number so that the three numbers form an A.P. If the middle term is diminished by 6 then the number are in G.P. The unknown number can be
 (A) 3 (B) 15 (C) 18 (D) 27
- 8. Let the numbers $a_1, a_2, a_3 \dots a_n$ constitute a geometric progression.

If
$$S = a_1 + a_2 + \dots + a_n$$
, $T = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$ and $P = a_1 a_2 a_3 \dots a_n$ then P^2 is equal to

- (A) $\left(\frac{S}{T}\right)^n$ (B) $\left(\frac{T}{S}\right)^n$ (C) $\left(\frac{2S}{T}\right)^n$ (D) $\left(\frac{2T}{S}\right)^n$
- 9. Let α , β be the roots of $x^2 x + p = 0$ and γ , δ be the roots of $x^2 4x + q = 0$. If α , β , γ , δ are in G.P., then the integral values of p and q respectively, are

(A) - 2, -32 (B) - 2, 3 (C) - 6, 3 (D) - 6, -32

10. a, b, c, d are in increasing G.P. If the AM between a and b is 6 and the AM between c and d is 54., then the AM of a and d is

- (A) 15 (B) 48 (C) 44 (D) 42
- 11. Insert 3 geometric means between $\frac{9}{4}$ and $\frac{4}{9}$.

12. If the arithmetic mean between a and b is twice as great as the geometric mean, show that $a: b = 2 + \sqrt{3} : 2 - \sqrt{3}$.

13. If a, b, c, d be in G.P. Prove that

(a)
$$(a^2 + ac + c^2)(b^2 + bd + d^2) = (ab + bc + cd)^2$$
.
(b) $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) = (ab + bc + cd)^2$.

14. If a, b, c, d be in G.P. $(a \neq b \neq c \neq d)$. Prove that

(a)
$$(a-d)^2 = (b-c)^2 + (c-a)^2 + (d-b)^2$$

(b)
$$a^2 - b^2$$
, $b^2 - c^2$, $c^2 - d^2$ are in G.P.

- 15. (a) If one geometric mean G and two arithmetic means p and q be inserted between any two given numbers, then show that $G^2 = (2p q) (2q p)$.
 - (b) If one arithmetic mean A and two geometric means p and q be inserted between any two given numbers, then show that $p^3 + q^3 = 2$ Apq.

16. Find the $\prod_{i=1}^{3} Gi$ (Geometric means) inserted between 'a' and 'b' which satisfy the equation $(G_1+2)^4 + (G_2-4)^2 + |G_3+8| = 0$. Also find ab =

Answers

RACE # 12 GEOMETRIC PROGRESSION - I

2.	16, 24, 36	3.	$\frac{9}{7}\left(1\right)$	$-\left(\frac{4}{3}\right)^2$	n)	4.	2	5.	2	6.	2	7.	6, –3	$1, 1\frac{1}{2}$,		
8.	8, 12, 18	9.	2, 6,	18		10.	40, 2	20, 10		12.	3/5						
13.	(a) $\frac{x^{2n}-1}{x^2-1}\left[\frac{x^2}{x^2}\right]$	$\frac{x^{n+2}+1}{x^{2n}}$	$\left]+2n\right.$	(b)	$\frac{1}{\left(1-x\right)}$	$\frac{1}{\left(n\right)^{2}}\left[n\right]$	$(1-\mathbf{x})$	-x(1 - x)	$-\mathbf{x}^{n}$								
15.	(a) $\frac{7n}{9} - \frac{7}{81} \left(1 \right)$	$-\frac{1}{10^n}$)	(b)	$\frac{2}{27} \left[1\right]$	0 ⁿ⁺¹ -	- 9n –	10]		15.	(a)	$\frac{122}{990}$	(b)	$\frac{419}{990}$			
	GEOMETRIC PROGRESSION - II																
1.	(A) 2. (A)	3.	(B)	4.	(D)	5.	(A)	6.	(A)	7.	(D)	8.	(A)	9.	(A)	10.	(D)
11.	$\frac{3}{2}$, 1, $\frac{2}{3}$	16.	64,1	6													