CHEMICAL BONDING, COORDINATION CHEMISTRY & METALLURGY

CONTENTS

	CHEMICAL BONDING	
•	Theory	01
•	EXERCISE-(O-1)	12
•	EXERCISE-(O-2)	18
•	EXERCISE-(S-I)	22
•	EXERCISE-(S-II)	23
•	EXERCISE-JEE(Main)	26
•	EXERCISE-JEE(Advanced)	30
•	ANSWER KEY	33
	COORDINATION CHEMISTRY	
•	Theory	35
•	EXERCISE-(O-1)	56
•	EXERCISE-(O-2)	64
•	EXERCISE-(S-I)	66
•	EXERCISE-(S-II)	67
•	EXERCISE-JEE(Main)	71
•	EXERCISE-JEE(Advanced)	79
•	ANSWER KEY	85
	METALLURGY	
•	Theory	88
•	EXERCISE-(O-1)	101
•	EXERCISE-(O-2)	108
•	EXERCISE-(S-I)	111
•	EXERCISE-(S-II)	112
•	EXERCISE-JEE(Main)	115
•	EXERCISE-JEE(Advanced)	118
•	ANSWER KEY	121
1		

CHEMICAL BONDING

Note: Hydrogen bond is an extreme manifestation of dipole dipole interaction.

VANDER WAAL'S FORCES

- ⇒ These are the weakest type of inter molecular forces that exist among the chemical species which being significant change in physical properties.
- ⇒ These are non-directional, non-valence cohesive forces. These attractive forces being played between the two molecules are independent of the presence of other molecules.
- ⇒ Solid, liquid or gaseous states of many molecules are explained on the basis of inter molecular forces other than covalent, ionic or metallic bonds. Although inert gases do not form any type of bond but may exist in liquid and solid states. This shows that the atoms of inert gases are attracted by each other through some type of inter molecular forces. These intermolecular forces are called Vander Waals forces. *Types of Vander Waal's Forces*
- (1) *Dipole-dipole interaction (Keesom forces) :* The force of attraction between the oppositely charged poles of two polar molecules (for example : H₂S, HCl, PH₃ etc.) is called dipole-dipole attraction.
- (2) *Dipole-induced dipole interaction (Debye forces)*: This type of cohesive forces occurs in a mixture of polar and non polar molecules. The former induce polarity in non polar molecules by disturbing their electron system. for example force of attraction between Cl₂ and H₂O.
- (3) Instantaneous dipole-Induced dipole interaction (Dispersion forces/London forces): The weak intermolecular forces operating in similar non polar gaseous molecules are called London forces. These forces are very weak in nature and exists only at low temperature. For example weak intermolecular forces in F₂, Cl₂, N₂, molecules and in noble gasses.
 (Note in London forces, proceeding in hoth polar and non-polar gaseous)

(Note :- London forces present in both polar and non polar species)

Other Weak Interactions

- (1) Ion-dipole interaction : Polar molecules are attracted by ions. The negative pole is attracted by cation and positive pole attracted by the anion. This type of attraction is called ion dipole attraction, ion-dipole attraction is observed generally in the process of solvation when sodium chloride (Na⁺ Cl⁻) is dissolved in water because negative poles of water aggregate around Na⁺ ions and positive poles around Cl⁻ ions.
- (2) *Ion-induced dipole interaction*: When non polar molecules come in contact with ions, its electron cloud gets polarised and the oppositely charged end of it is attracted by the ion. For example attraction between I^- and I_2 molecule.

HYBRIDISATION

The phenomenon of intermixing of the orbitals of slightly different energies so as to redistribute their energies, resulting in the formation of new set of orbitals of equivalent energies and shape. For example when one 2s and three 2p-orbitals of carbon hybridise, there is the formation of four new sp³ hybrid orbitals.

Salient features of hybridisation: The main features of hybridisation are as under :

- 1. The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- 2. The hybridised orbitals are equivalent in energy and shape.
- 3. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- 4. These hybrid orbitals are directed in space in some preferred direction to have minimum repulsion between electron pairs and thus a stable arrangement. Therefore, the type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation

(i) The orbitals present in the valence shell of the atom are hybridised.

(ii) The orbitals undergoing hybridisation should have almost equal energy.

(iii) Promotion of electron is not essential condition prior to hybridisation.

(iv) It is not necessary that only half filled orbitals participate in hybridisation. In some cases, even filled orbitals of valence shell take part in hybridisation.

Types of Hybridisation

ALLEN.

There are various types of hybridisation involving s, p and d orbitals. The different types of hybridisation are as under :

(ii) sp^2 hybridisation (iii) sp^3 hybridisation (i) *sp* hybridisation (iv) sp^3d hybridisation: (v) sp^3d^2 hybridisation: (vi) sp^3d^3 hybridisation:

BENT'S RULE

(i) A lone pair of electron prefers to occupy that hybrid orbital which has greater percentage of s-character.

(ii) A more electronegative atom/group prefers to occupy that hybrid orbital which has smaller percentage of s-character.

Draw the geometry of PCl_3F_2 Ex.

Sol.

Structure

Because highly electronegative atom occupy axial position (axial position has smaller percentage of s-character).

DRAGO'S RULE

On the basis of experimental bond angles of certain molecules fulfilling the following three conditions,

- (i) Central atom belongs to third or lower period in periodic table
- (ii) Central atom must contain atleast one lone pair of electron
- (iii) Electronegativity of surrounding atom is ≤ 2.5

Drago generalised that in such molecules justification of experimental bond angle can be made satisfactory if one considers no hybridisation, i.e., overlapping of almost pure atomic orbitals from central atom.

In such molecules bond angle is approximately 90°.

Group 15	Bond angle	Group 16	Bond angle
NH ₃	107°48'	H_2O	104°28'
PH ₃	93°36'	H_2S	92°
AsH ₃	91°48'	H ₂ Se	91°
SbH ₃	91°18'	H ₂ Te	90.5°

Right order of bond angle. (a) $H_2O > H_2S > H_2Se > H_2Te$

(b) $NH_3 > PH_3 > AsH_3 > SbH_3$

ELECTRON DEFICIENT BONDING

(a) Back Bonding

Back bonding generally takes place when out of two bonded atoms one of the atom has vacant orbitals(generally this atom is from second or third period) and the other bonded atom is having some non-bonded electron pair(generally this atom is from the second period). Back bonding increases the bond strength and decreases the bond length.

For example, in BF_3 the boron atom completes its octet by accepting 2p-electrons of fluorine into 2p empty orbital.

0

Decrease in B – F bond length is due to delocalised $p\pi$ – $p\pi$ back bonding between filled p-orbital of F atom and vacant p-orbital of B atom.

The extent of back bonding is much larger if the orbitals involved in the back bonding are of same size, for example the extent of back bonding in boron trihalides is as follows :

 $BF_3 > BCl_3 > BBr_3$

There is $p\pi$ - $p\pi$ back bonding in boron trihalide. The extent of back bonding decreases from BF₃ to BI₃ because of increasing size of p-orbitals participating in back bonding that is from 2p(in F) to 5p(in I).

(b) Bridge Bonding

There are many compounds in which some electron deficient bonds are present apart from normal covalent bonds or coordinate bonds which are $2c-2e^{-}$ bonds(two centre two electron bonds). These electron deficient bonds have less number of electrons than the expected such as three centre-two electron bonds (3c-2e) which are present in diborane B_2H_6 , $Al_2(CH_3)_6$, $BeH_2(s)$ etc. bonding in B_2H_6 (diboarane)

The structure of diborane containing four terminal(t) and two bridging(b) hydrogen atoms. The model determined by molecular orbital theory indicates that the bonds between boron and the terminal hydrogen atoms are conventional $2c-2e^-$ covalent bonds. The bonding between the boron atoms and the bridging hydrogen atoms is, however different from that in molecules such as hydrocarbons. Having used two electrons in bonding to the terminal hydrogen atoms, each boron has one valence electron remaining for additional bonding. The bridging hydrogen atoms provide one electron each. Thus the B_2H_2 ring is held together by four electrons, an example of $3c-2e^-$ bonding. This type of bond is sometimes called as **'banana bond'**. Group 13, gallium is known to form a similar compound, digallane, Ga_2H_6 .

But Al_2Cl_6 have covalent bond only and there is no electron deficient bonding as depicted in the given structure.

SILICATES

Silicates are metal derivatives of silicic acid, H₄SiO₄ or Si(OH)₄. Silicates are formed by heating metal oxide or metal carbonates with sand, e.g.,

Silicates have basic unit of SiO_4^{4-} , each silicon atom is bonded with four oxide ions tetrahedrally. There are following types of silicates

Silicates	Sharing of O-atom / Basic Tetrahedral unit	Contribution of O-atom/Basic Tetrahedral unit	General formula
Ortho	0	4	SiO_{4}^{4-}
Pyro	1	3.5	$\operatorname{Si}_{2}O_{7}^{4-6}$
Cyclic	2	3	$(SiO_3)_n^{2n-}$ (n = finite)
Simple chain (pyroxene)	2	3	$(SiO_3)_n^{2n-}$ (n = infinite)
Double chain (Amphibole)	(3, 2) avg. = 2.5	$\frac{11}{4} = \left(\frac{5.5}{2}\right)$	$(Si_4O_{11})_n^{6n-}$
2D or (Sheet)	3	2.5	$(Si_2O_5)_n^{2n-}$
3D	4	2	$(SiO_2)_n$

In p-block elements the stability of the lower oxidation state increases on descending the group. Because increased effective nuclear charge holds ns electrons tightly due to poor shielding effect of inner d & f orbitals and thereby, restrict their (ns electrons) participation in bonding only np electrons take part in bond formation. As a result of this, +1 oxidation state of Tl is more stable than it's +3 oxidation state. Pb shows +2 stable oxidation state and Bi shows +3 stable oxidation state. For example :

Group 13	Group 14
B (+3)	C (+4)
Al (+3)	Si (+4)
Ga (+3), (+1)	Ge (+4), (+2)
In (+3), (+1)	Sn (+4), (+2)
Tl (+3), (+1)	Pb (+4), (+2)
der of stability : $TI^{+1} > In^{+1} > Ga^{+1}$ (due to	inert pair effect

Ord t) **Order of stability :** $Pb^{+2} > Sn^{+2} > Ge^{+2}$ (due to inert pair effect)

- **Ex.** $PbCl_4$ is stable at room temperature whereas PbI_4 doesn't exist.
- Sol. Due to inert pair effect Pb(+4) is less stable than Pb(+2). Hence it is very good oxidant. Pb(IV) + 2e⁻ \longrightarrow Pb(II) Reducing abilities of halides follows the sequence I⁻ > Br⁻ > Cl⁻

MOLECULES THAT DO NOT EXIST

- (1) SF₄, SF₆ & PF₅ exist while. OF₄, OF₆, NF₅ do not exist
- (2) (a) $PI_5(vap)$ does not exist
 - (b) PI₅ (Solid) exist
- (3) SF₆, PF₅, XeF₆, XeF₄ & XeF₂ exist while SH₆, PH₅, XeH₆, XeH₄, XeH₂ do not exist

STRUCTURE OF ODD ELECTRONIC SPECIES

(1) NO₂

 \longrightarrow Free electron occupies the one sp² hybrid orbital.

(2) ClO₂

Structure :-

(3) ClO₃:

Structure :

(4) ČH₃:

Structure :

(5) $\mathbf{\dot{C}F}_3$:

HYDROLYSIS:

In hydrolysis of covalent molecules the nucleophilic centre of molecule is replaced by OH⁻ group of water generally through nucleophilic substitution reaction.

Ex. Hydrolysis of SiCl₄

Note : CCl_4 , NF_3 , is inert towards hydrolysis due to the absence of d orbital, but under drastic condition these molecules under goes hydrolysis.

 $CCl_4 + H_2O \xrightarrow{superheated} COCl_2 + 2HCl$

Note : Hydrolysis of XeF_2 & XeF_4 takes place through with redox reaction.

$$XeF_{2} + H_{2}O \longrightarrow Xe + 2HF + \frac{1}{2}O_{2}$$
$$3XeF_{4} + 6H_{2}O \longrightarrow 2Xe + XeO_{3} + 12HF + \frac{3}{2}O_{2}$$
$$XeF_{6} + 3H_{2}O \longrightarrow XeO_{3} + 6HF$$

IONIC COMPOUNDS

Properties of ionic compound

(a) *Physical state*: Ionic compounds are hard, crystalline and brittle due to strong electrostatic force of attraction. Brittleness \rightarrow {Same charged ions comes nearer. So they repell each other}

(b) Isomorphism : The phenomenon of different ionic compounds, having same crystal arrangement of ions is termed as isomorphism

Condition of Isomorphism :

- (i) Same charge on cation & anion between isomorphs
- (ii) Same radius ratio range of cation & anion between isomorphs
- (iii) Same number of water of crystalization between isomorphs

- **Ex.** (i) $ZnSO_4 \cdot 7H_2O$, $FeSO_4 \cdot 7H_2O$ are isomorphous
 - (ii) All alums are isomorphous

(c) Boiling point and melting point : Ionic compounds have high boiling point and melting point due to strong electrostatic force of attraction among oppositely charged ions.

- (d) Conductivity : It depends on ionic mobility.
- (i) In solid state No free ions Bad conductor of electricity.
- (ii) In fused state or aqueous solution Due to free ions Good conductor of electricity.

Conductivity order : Solid state < fused state < Aqueous solution

(e) Solubility :

Ionic compounds are more soluble in polar solvalents and less soluble in non polar solvents.

- Solubility of ionic compounds in water mainly depends upon hydration energy & lattice energy.
- **Q.** Why does the solubility of alkaline earth metal hydroxides in water increase down the group?
- **Ans.** Among alkaline earth metal hydroxides, the anion being common the cationic radius will influence the lattice enthalpy. Since lattice enthalpy decreases much more than the hydration enthalpy with increasing ionic size, the solubility increases as we go down the group.
- **Q.** Why does the solubility of alkaline earth metal carbonates and sulphates in water decrease down the group?
- **Ans.** The size of anions being much larger compared to cations, the lattice enthalpy will remain almost constant within a particular group. Since the hydration enthalpies decrease down the group, solubility will decrease as found for alkaline earth metal carbonates and sulphates.

FAJAN'S RULE

Just as all the covalent bonds have some partial ionic character, the ionic bonds also have partial covalent character. The partial covalent character of ionic bonds was discussed by Fajans in terms of the following rules :

- The smaller the size of the cation and the larger the size of the anion, the greater the covalent character of an ionic bond.
- The greater the charge on the cation, the greater the covalent character of the ionic bond.
- For cations of the same size and charge, the one, with electronic configuration (n-1)dⁿns⁰, typical of transition metals, is more polarising than the one with a noble gas configuration, ns² np⁶, typical of alkali and alkaline earth metal cations.

- The cation polarises the anion, pulling the electronic charge toward itself and thereby increasing the electronic charge between the two. This is precisely what happens in a covalent bond, i.e., buildup of electron charge density between the nuclei. The polarising power of the cation, the polarisability of the anion and the extent of distortion (polarisation) of anion are the factors, which determine the per cent covalent character of the ionic bond.
- \Rightarrow Polarisation power of a cation is usually called ionic potential or charge density.

Ionic potential ϕ (phi) = $\frac{\text{Charge on cation}}{\text{Size of cation}}$

APPLICATION OF THE CONCEPT OF POLARISATION :

- (a) To compare the covalent and ionic character of molecule
- (b) To compare the nature of oxide
- (c) To compare the electrical conductivity of ionic comopounds
- (d) Tendency of the formation of complex compounds
- (e) To compare the thermal stability of metal salts
- (f) To compare the intensity of colour of compounds
- (g) To compare the solubility of heavier metal halide in water.

MOLECULAR ORBITAL THEORY (MOT)

Given by Hunds & Mulliken

- (a) Two atomic orbital come nearer & then overlap each other to form two molecular orbitals (MO)
- (b) Combination of atomic orbital (AO) forms molecular orbital (MO)

Types of molecular orbitals

Molecular orbitals of diatomic molecules are designated as $\sigma(sigma)$, $\pi(pie)$, $\delta(delta)$ etc.

In this nomenclature, the sigma (σ) molecular orbitals are symmetrical around the inter molecular axis (assumed to be z-axis) while pi (π) molecular orbitals are not symmetrical.

(1) s-s combination of orbitals

(3) p-p combination of orbitals (side by side overlap)

(4) s-p combination of orbitals

- (c) Energy of BMO < Energy of ABMO.
- (d) Molecular orbitals can be filled by electrons according to Aufbau, Hund's, Pauli's principle.(e) Energy order of the molecular orbitals of homonuclear di-atomic molecules.

Note : Molecular orbital energy diagram for up to N₂ (molecule having ≤ 14 electrons) $\sigma_{1s} < \sigma_{1s}^* < \sigma_{2s} < \sigma_{2s}^* < \pi_{2p_x} = \pi_{2p_y} < \sigma_{2p_z} < \pi_{2p_x}^* = \pi_{2p_y}^* < \sigma_{2p_z}^*$

Note : Molecular orbital energy diagram for O₂ and F₂ (molecule having > 14 electrons) $\sigma_{1s} < \sigma_{1s}^*$; $< \sigma_{2s} < \sigma_{2s}^* < \sigma_{2p_z} < \pi_{2p_x} = \pi_{2p_y} < \pi_{2p_x}^* = \pi_{2p_y}^* < \sigma_{2p_z}^*$

- $\sigma *, \pi * =$ antibonding molecular orbital
- σ , π = bonding molecular orbital

node06\80A+80\Kee\EERAdranad\\Erihusiar\Chen\Sheet\Module#Chenicd Bording. Goodinaten diemistry & Metallugy\01-C.8\Eng\01_Theory

Why molecular orbitals have different order of energy in $N_2 \& O_2$? Ex.

Sol. s-p mixing

ALLEN

Hint

The correct MO energy-level diagram when s-p mixing is allowed, the energies of the σ_{2p} and π_{2p} orbitals are reversed.

Bond Order

Bond order can be defined as :

Bond order =
$$\frac{N_b - N_a}{2}$$

 $N_{b} = No.$ of electron in bonding MO's

 $N_a = No.$ of electron in antibonding MO's

- If bond order = 0, it means species does not exist.
- Bond order of 1, 2 & 3 corresponds to a single bond, double & triple bond respectively.
- Bond order \uparrow stability of molecule \uparrow bond length \downarrow

Magnetic behaviour

- If the molecule has one or more unpaired electron, it will be paramagnetic,
- If all the electrons are paired it will be diamagnetic.
- Magnetic strength can be calculated by using spin only formula of magnetic moment (μ).
- $\mu = \sqrt{n(n+2)}$ B.M. (where n = number of unpaired electron)

Ex.
$$H_2 = \text{Configuration} : \sigma_{(1s)}^2, \sigma_{(1s)}^{*0}$$

Bond order $= \frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$,

Hence H – H (dimagnetic)

Е

EXERCISE # (0-1)

	WEAK F	FORCES			
1.	Statement-1: The melting point of noble gases ind	creases as its atomic mass increases.			
	Statement-2 : Instantaneous dipole induced dipole	attraction increases with increase in atomic mass of noble			
	gases.				
	(A) Statement-1 is true, statement-2 is true and state	ement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2 is true and state	ement-2 is NOT the correct explanation for statement-1			
	(C) Statement-1 is true, statement-2 is false.				
	(D) Statement-1 is false, statement-2 is true.				
2.	The critical temperature of water is higher that	n that of O_2 because the H_2O molecule has :			
	(A) fewer electrons than O_2	(B) two ionic bonds			
	(C) V-shape	(D) dipole moment			
3.	Which of the following boiling point order is a	correct -			
	(A) $\text{He} > \text{T}_2 > \text{D}_2$ (B) $\text{He} < \text{T}_2 < \text{D}_2$	(C) $T_2 > He > D_2$ (D) $He < D_2 < T_2$			
4.	Which is the incorrect match for the energy di	stance function for following interaction -			
	(A) Debye force : r^{-6}	(B) Ion-induced dipole interaction $: r^{-2}$			
	(C) London force : r^{-6}	(D) Keesom force : r^{-3}			
5.	Identify the incorrect order of boilng point in	the following pair.			
	(A) $B(OH)_3 < B(OCH_3)_3$	(B) $NF_3 < N(CH_3)_3$			
	(C) $BF_3 < B(CH_3)_3$	(D) $C_2 H_6 < C_2 F_6$			
BENT'S RULE AND DRAGO'S					
6.	C–H bond distance is the longest in:				
	(A) C_2H_2 (B) C_2H_4	(C) C_2H_6 (D) $C_2H_2Br_2$			
7.	The bond angle and hybridization in ether (Cl	H_3OCH_3) is :			
	(A) $106^{\circ}51'$, sp^3 (B) $104^{\circ}31'$, sp^3	(C) 110° , sp ³ (D) None of these			
8.	Which of the following has been arranged in a	order of decreasing bond length ?			
	(A) $P-O > CI-O > S-O$	(B) $P-O > S-O > CI-O$			
	(C) $S-O > CI-O > P-O$	(D) $CI-O > S-O > P-O$			
9.	Which is correct statement ?	LEng.102			
	As the s-character of a hybrid orbital decrease	S ខ្ញុំ			
	(I) The bond angle decreases	(II) The bond strength increases			
	(III) The bond length increases	(IV) Size of orbital increases			
	(A) (I), (III) and (IV)	(B) (II), (III) and (IV)			
	(C) (I) and (II)	(D) All are correct			
10.	Among the following, the correct statement is	•			
	(A) Between NH_3 and PH_3 , NH_3 is a better elec	tron donor because the lone pair of electrons occupies			
	spherical 's' orbital and is less directional	a di seconda			
	(B) Between NH_3 and PH_3 , PH_3 is a better electronic electron PH_3 , PH_3 is a better electronic e	tron donor because the lone pair of electrons occupies			
	sp ³ orbital and is more directional	ta is ta isota isota ta isota i			
	(C) Between NH_3 and PH_3 , NH_3 is a better elec	tron donor because the lone pair of electrons occupies			
	sp ³ orbital and is more directional	A. S.			
	(D) Between NH_3 and PH_3 , PH_3 is a better electron	tron donor because the lone pair of electrons occupies			
	spherical 's' orbital and is less directional	a do baba			

11.	In which of the follow	wing molecule C—C bo	ond length will be highes	tt?
12.	(A) $CF_3 - CF_3$ In BClBr I molecule t	(B) $F_2CH - CHF_2$ the maximum % s-chara	(C) $FCH_2 - CH_2F$ acter provided from the c	(D) $CH_3 - CF_3$ central atom is in bond :
10	(A) $B - I$	(B) $B - Cl$	(C) B – Br	(D) Can not predict
13.	Find out the % p-chai	racter in the orbital occ	upled by lone pairs in H	20.
	$[HOH = 104^{\circ}5 \text{ and } c$	$\cos(104.5) = -0.25$]		
	(A) 80 %	(B) 20 %	(C) 70 %	(D) 75 %
14.	Which of the following	order is correct for incre	easing p-character in orbit	al used for bonding by central
	atom (A) Si \rightarrow CH	$(\mathbf{P}) \mathbf{U} \mathbf{S} > \mathbf{U} \mathbf{O}$	$(C) \mathbf{DU}^+ > \mathbf{DU}$	(D) NU $>$ DU
	(A) $\operatorname{Sm}_4 > \operatorname{Cm}_4$	$(B) \Pi_2 S > \Pi_2 O$ $BACK B$	$(C) \Pi_4 > \Pi_3$	(D) $MI_3 > III_3$
15.	Boron forms BX, type	of halides. The correct i	increasing order of Lewis	-acid strength of these halides
10.	is	ornundes. The correct		uch strength of these hundes
	(A) $BF_3 > BCl_3 > BE$	$Br_3 > BI_3$	(B) $BI_3 > BBr_3 > BC$	$l_3 > BF_3$
	(C) $BF_3 > BI_3 > BCl$	$_3 > BBr_3$	(D) $BF_3 > BCl_3 > BL$	$_{3} > BBr_{3}$
16.	Select species which i	s planar at nitrogen :		
	(A) $(CH_3)_3N$	(B) $(SiH_3)_3N$	(C) NF_3	(D) NH ₃
17.	Type of back bonding	g in $(SiH_3)_2O$ is :	2	
	(A) $p\pi - d\pi$	(B) $p\pi - p\pi$	(C) $d\pi - d\pi$	(D) None of these
		MULTICENT	TERED BOND	
18.	The type of overlap in	n the bridge bond existi	ing in $Al_2(CH_3)_6$ is :-	
	(A) sp ³ –sp ³ d–sp ³	(B) $sp^3-sp^2-sp^3$	(C) sp^3-s-sp^3	(D) $sp^3-sp^3-sp^3$
19.	Which one of the follo	owing statement is not t	true regarding diborane?	
	(A) It has two bridgin	g hydrogens and four p	erpendicular to the rest.	
	(B) When methylated	, the product is Me_4B_2H	H ₂	
	(C) The bridging hydr	rogens are in a plane pe	rpendicular to the rest.	
• •	(D) All the B–H bond	distances are equal.		
20.	The molecular shape	of diborane, is shown:		
		H	D H	
		H	₽···· ^D \H	
	Consider the following	g statements for diborar	ne :	
	(1) Boron is approxin	nately sp ³ hybridised		
	(2) B–H–B angle is 1	80°		
	(3) There are two term	minal B–H bonds for ea	ch boron atom	
	(4) There are only 12	bonding electrons avail	lable	
	Of these statements:			
	(A) 1 2 1 4		(D) 1 0 10	

- (A) 1, 3 and 4 are correct
- (B) 1, 2 and 3 are correct(D) 1, 2 and 4 are correct

(C) 2, 3 and 4 are correct

node06 \B0AI #0 \Kob \EEFAdvanced)\Enthus iss\\Chen \Sheer\Module#Chenical Bording. Coordination chemistry & Metallurgy\01-C.B\Eng\02_Ex.

Ε

SILICATE

- 21. The number of corners or O-atoms shared per tetrahedron for pyroxene chain silicate is -
 - (A) 3 (B) 2 (C) 2.5 (D) 1
- **22.** The mineral $Na_2Fe_3^{II}Fe_2^{III}[Si_8O_{22}](OH)_2$ (chrocidolite) is a :
 - (A) Pyroxene chain silicate (B) Sheet silicate
 - (C) Amphiboles chain silicate (D) 3D-silicate
- 23. The silicate anion in the mineral kinoite is a chain of three SiO_4 tetrahedral those share corners with adjacent tetrahedral. The mineral also contains Ca^{2+} ions, Cu^{2+} ions, and water molecules in a 1:1:1 ratio mineral is represented as :
 - (A) $CaCuSi_3O_{10}H_2O$ (B) $CaCuSi_3O_{10}H_2O$ (C) $Ca_2Cu_2Si_3O_{10}H_2O$ (D) none of these

ODD ELECTRON SPECIES

- 24. Hybridisation related to NO₂ molecule is -
 - (A) sp^3 (B) sp
 - (C) sp^3d (D) sp^2
- 25. In which of the following processes, the magnetic behaviour of the species is changed :-
 - (A) $2\dot{C}H_3 \longrightarrow C_2H_6$ (B) $2NO_2 \longrightarrow N_2O_4$ (C) $2ClO_3 \longrightarrow Cl_2O_6$ (D) All of these

HYDROLYSIS

- 26. Which of the following statement is correct ?
 - (A) BCl₃ is not hydrolysed while SiCl₄ can be hydrolysed
 - (B) CCl₄ is hydrolysed under ordinary condition
 - (C) XeF₂ produces Xe(OH)₂ on hydrolysis
 - (D) hydrolysis of XeF_2 is a redox reaction

27. Statement-1 : Between SiCl₄ and CCl₄ only SiCl₄ reacts with water at room temperature.
Statement-2 : SiCl₄ is ionic and CCl₄ is covalent.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

- ALLEN _
- **28.** Statement-1 : PCl₃ on hydrolysis gives OH P OH and OH P OHH OH

Statement-2 : H_3PO_3 exists in two tautomeric forms : $OH-P-OH \iff OH-P-OH$

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

MOLECULE DOES NOT EXIST

- 29. Which of the following molecule does not exist.
 - (A) PH_5 (B) NCl_3 (C) NOF_3 (D) XeF_5^-
- 30. Select non existing specie
 - (A) PH_3 (B) PH_4^+ (C) $[PF_6]^-$ (D) None of these

INERT PAIR EFFECT

- 31. Statement-1 : Boron does not show univalent nature but unipositive nature of thallium is quite stable.Statement-2 : Inert pair effect predominates in thallium.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.
- **32. Statement-1 :** PbI_4 doesn't exist and converts into PbI_2 and I_2 spontaneously at room temperature but $PbCl_4$ needs heating to convert into $PbCl_2$ and Cl_2 .

Statement-2: Pb^{2+} is more stable than Pb^{4+} due to inert pair effect.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

	IONIC CO	MPOUND
33.	The dissolution of ionic compounds involves	
	(A) Evolution of heat	(B) Weakening of attractive forces
	(C) Dissociation into ions	(D) All of these
34.	Select correct order out of given options :	
	(A) $BeCO_3 < BaCO_3$: Covalent character	(B) $BeO > SrO$: lattice energy
	(C) $Be^{2+} < Li^+$: Hydration energy	(D) $Be^{2+}(aq.) > Li^{+}(aq.)$: Ionic mobility
35.	The polarizibility of the following ions is/are	n the order of
	(A) $I^- > Br^- > CI^- > F^-$	(B) $I^- > Br^- > F^- > C1^-$
	(C) $I^- < Br^- < Cl^- < F^-$	(D) $I^- < Br^- < F^- < CI^-$
36.	Which of the following equilibria would have	the highest value of K _p at a common temperature?
	(A) $MgCO_3 \Leftrightarrow MgO + CO_2$	(B) $CaCO_3 \Leftrightarrow CaO + CO_2$
	(C) $SrCO_3 \Leftrightarrow SrO + CO_2$	(D) $BaCO_3 \Leftrightarrow BaO + CO_2$
37.	Which of the following set of characteristics l	ead to the increase in solubility of ionic substances?
	(A) High dipole moment, strong attraction by	an ion towards solvent and large solvation energy
	(B) Low dipole moment, weak attraction by a	in ion towards solvent and high solvation energy
	(C) High dipole moment, strong attraction by	an ion towards solvent and low solvation energy
20	(D) High dipole moment, weak attraction by	an ion towards solvent and large solvation energy
38.	The solubility of anhydrous AICl ₃ and hydrate	ed AlCl ₃ in diethyl ether are S_1 and S_2 respectively.
	I nen $(A) S = S (D) S > S$	$(C) C < C \qquad (D) C < C \qquad hat act C = C$
20	(A) $S_1 = S_2$ (B) $S_1 > S_2$	(C) $S_1 < S_2$ (D) $S_1 < S_2$ but not $S_1 = S_2$
39.	Statement-1 : Among alkali metal cations, Li (aq.) has highest electrical conductance.
	Statement-2: L1 (aq.) is largest alkali metal catior	because of greater degree of hydration.
	(A) Statement-1 is true, statement-2 is true and stat	ement-2 is correct explanation for statement-1.
	(B) Statement-1 is true, statement-2 is true and stat	ement-2 is NOT the correct explanation for statement-1
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	
40.	Statement-1 : Al(OH) ₃ is amphoteric in nature.	
	Statement-2 : Al-O and O-H bonds can be brok	en with equal ease in Al(OH) ₃ .
	(A) Statement-1 is true, statement-2 is true and stat	ement-2 is correct explanation for statement-1.
	(B) Statement-1 is true, statement-2 is true and stat	ement-2 is NOT the correct explanation for statement-1
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	
	MOLECULAR O	RBITAL THEORY
41.	The bond energy order of He_2^+ and HeH^+ is	
	(A) $\text{He}_{2}^{+} > \text{HeH}^{+}$ (B) $\text{HeH}^{+} = \text{He}_{2}^{+}$	(C) $\text{HeH}^+ > \text{He}_{a}^+$ (D) Can't be predicted
42.	Among KO ₂ , AIO_2^- , BaO_2 and NO_2^+ unpair	ed electron is present in :
	(A) KO ₂ only (B) NO_2^+ and BaO_2	(C) KO ₂ and AlO ₂ ⁻ (D) BaO ₂ only
43.	During the formation of a molecular orbital from $\frac{1}{2}$	m atomic orbitals, probability of electron density is
	(A) minimum in the nodal plane	(B) maximum in the nodal plane
	(C) zero in the nodel plane	(D) zero on the surface of the labe
	(C) zero in the notal plane	(D) zero on the surface of the lobe

ALLEN _

- 44. Pick out the incorrect statement ?
 - (A) N_2 has greater dissociation energy than N_2^+
 - (B) O_2 has lower dissociation energy than O_2^+
 - (C) Bond length in N_2^+ is less than N_2
 - (D) Bond length in NO⁺ is less than in NO

45. A simplified application of MO theory to the hypothetical molecule 'OF' would give its bond order as :

- (A) 2 (B) 1.5 (C) 1.0 (D) 0.5
- **46.** Which of the following is true ?
 - (A) With increasing Bond order , Bond length decreases & Bond energy increases
 - (B) With increasing Bond order , Bond length increases & Bond energy decreases
 - (C) With increasing Bond order , Bond length decreases & Bond energy decreases
 - (D) With increasing Bond order , Bond length increases & Bond energy increases

47. Which of the following has fractional bond order : (A) $O_2^{2^+}$ (B) $O_2^{2^-}$ (C) $F_2^{2^-}$ (D) H_2^{-}

48. Statement-1: H₂ molecule is more stable than He–H molecule.
 Statement-2: The antibonding electron in He–H molecule decreases the bond order and there by the stability.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

49. Statement-1 : Super oxide ion is paramagnetic whereas peroxide ion is diamagnetic.

Statement-2: Super oxide ion has one unpaired electron whereas peroxide ion has no unpaired electron.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

50. Statement-1: π_{b} and π^{*} orbitals obtained from 2p orbital are lying in the same plane.

Statement-2: Bonding M.O's are formed by constructive interference while antibonding M.O's are formed by destructive interference.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

EXERCISE # (0-2)

WEAK FORCES

- 1. Which of the following factors are responsible for origination of vander Waals forces ?
 - (A) Instantaneous dipole-induced dipole interaction
 - (B) Dipole-induced dipole interaction
 - (C) Dipole-dipole interaction
 - (D) Size of molecule
- 2. Which of the following are true ?
 - (A) Vander Waals forces are responsible for the formation of molecular crystals
 - (B) Branching lowers the boiling points of isomeric organic compounds due to decrease in Vander Waals forces of attraction
 - (C) In graphite, vander Waals forces act between the carbon layers
 - (D) In diamond, vander Waals forces act between the carbon layers

BENT'S AND DRAGO'S RULE

3. Select the correct statement for following molecules :

(I)
$$PF_2(CH_3)_3$$
; (II) $PF_2(CF_3)_3$

- (A) Both have trigonal bipyramidal structure with respect to P.
- (B) P-F bond length is longer in $PF_2(CH_3)_3$ than in $PF_2(CF_3)_3$
- (C) F-atoms occupy axial position in both
- (D) P-F bond length is lower in $PF_2(CH_3)_3$ than in $PF_2(CF_3)_3$

BACK BONDING

- 4. Molecules in which bond angle is changed due to back bonding w.r.t B/O/N.
 (A) H₃BO₃
 (B) B(OMe)₃
 (C) BF₃
 (D) N(SiH₃)₃
- 5. $3d\pi$ -2p π type back bonding is observed in :
 - (A) $N(SiH_3)_3$ (B) $\overline{C}Cl_3$ (C) $S(CH_3)_2$ (D) BCl_3 MULTICENTERED BOND
- 6. No X-X bond exists in which of the following compounds having general form of X_2H_6 ? (A) B_2H_6 (B) C_2H_6 (C) Al_2H_6 (D) Si_2H_6
- 7. Three centre two electron bonds exist in : (A) B_2H_6 (B) $Al_2(CH_3)_6$ (C) $BeH_2(s)$ (D) $BeCl_2(s)$
- 8. Select correct statement about B_2H_6
 - (A) Bridging groups are electron-deficient with 12 valence electrons
 - (B) It has 2c 2e B–H bonds
 - (C) It has 3c 2e B-H-B bonds
 - (D) It has 3c 4e B-H-B bonds

SILICATE

- 9. In which of the following cases the number of corner shared per tetrahedron is '2' -
 - (A) Pyroxene chain silicate (B) Amphibole chain silicate
 - (C) 5-membered cyclic silicate
- (D) None of these

A	┗	┣		

		ODD ELECTI	RON SPECIES	
10.	Select correct about N	O ₂ :		
	(A) It is odd electron s	specie	(B) N–O bond order	= 1.5
	(C) Paramagnatic spec	ie	(D) Isoelectronic with	CO ₂
11.	The number of specie	(s) which are not perfec	tly planar.	
	(A) ĊH ₃	(B) Č F ₃	(C) Č HF ₂	(D) Č H ₂ F
12.	Which of the following	g statement is CORRE	CT :-	
	(A) The free electron	of ClO ₃ molecule is pre	sent in d-orbital of Cl-a	tom
	(B) The free electron	of \mathbf{CF}_3 is present in sp ³	hybrid orbital	
	(C) NO is polar			
	(D) The free electron	of ClO ₂ molecule is pre	sent in d-orbital of Cl-a	tom
13.	Which of the following	g statement(s) is / are I	NCORRECT for	
	$\dot{C}H_3 = X$ and $\dot{C}F_3 = X$	Y		
	(A) When X dimeris	es bond angle decrease	S	
	(B) When X dimerise	s bond angle increases		
	(C) In X–Y molecule	C–C bond length less	than that in Y-Y molec	cule
	(D) Bond angle in Y i	s less than X		
		HYDR	OLYSIS	
14.	Which of the following	g halide(s) cannot be hy	drolysed at room tempe	erature
15	(A) SeF_6	(B) SF ₆	(C) CCl ₄	(D) NF_3
19.	(A) P S gives rise to	o H S gas on hydrolys		
	(B) PCl_5 produces PO	Cl ₃ on partial hydroly	sis	
	(C) H_2SO_5 gives rise	to H_2SO_3 on hydrolys	sis	
	(D) d-orbital particip	ates in the hydrolysis	s of SF_6 at room temp	erature
		MOLECULE DO	DES NOT EXIST	
16.	Which of the following	g do/does not exist?		
	(A) SH ₆	(B) HFO ₄	(C) FeI ₃	(D) HClO ₃
17.	Which of the following	g molecule(s) exist-		
	(A) SF_6	(B) PH ₅	(C) PH ₃	(D) PCl ₅
		INERT PAI	IR EFFECT	
18.	Which of the following	g have $(18 + 2)$ electron	n configuration ?	
	(A) Pb^{2+}	(B) Cd^{2+}	(C) Bi ³⁺	(D) SO ₄ ²⁻

19. Which of following stability order is/are correct due to inert pair effect.

(A)
$$Hg > Hg^{2+}$$
 (B) $Bi^{3+} < Bi^{5+}$ (C) $Pb^{2+} > Pb^{4+}$ (D) $Fe^{2+} < Fe^{3+}$
IONIC COMPOUND

- **20.** Choose the correct order(s) for the given properties.
 - (A) $MgSO_4 < SrSO_4 < BaSO_4$: Thermal stability order
 - (B) $BeC_2O_4 < CaC_2O_4 < BaC_2O_4$: Solubility in water
 - (C) LiCl > NaCl > KCl : Melting point order
 - (D) $BeF_2 > CaF_2 > SrF_2$: Covalent character order
- **21.** Polarization may be called the distortion of the shape of an anion by an adjacently placed cation. Which of the following statements is/are incorrect :
 - (A) Minimum polarization is brought about by a cation of low radius
 - (B) A large cation is likely to bring about a large degree of polarization
 - (C) Maximum polarization is brought about by a cation of high charge
 - (D) A small anion is likely to undergo a large degree of polarization
- 22. Most ionic compounds have :
 - (A) high melting points and low boiling points
 - (B) high melting points and nondirectional bonds
 - (C) high solubilities in polar solvents and low solubilities in nonpolar solvents
 - (D) three-dimentional network structures, and are good conductors of electricity in the molten state
- 23. Choose the correct order for the given properties.
 - (A) NaF \leq MgF₂ \leq AlF₃ : covalent character order.
 - (B) NaF < MgF₂ < AlF₃ : melting point order
 - (C) NaF < MgF₂ < AlF₃ : lattice energy order
 - (D) $NaF > MgF_2 > AlF_3$: order of polarising power of cation.

MOLECULAR ORBITAL THEORY

- **24.** Which of the following have identical bond order ? (A) $O_2^{2^+}$ (B) NO^+ (C) CN^- (D) CN^+
- **25.** Which of the following statement is/are correct
 - (A) The peroxide ion has a bond order of 1 while the oxygen molecule has a bond order of 2
 - (B) The peroxide ion has a weaker bond than the dioxygen molecule has.
 - (C) The peroxide ion as well as the dioxygen molecules are paramagnetic
 - (D) The bond length of the peroxide ion is greater than that of the dioxygen molecule

AL	LEN			Cnemical Bond
26.	Which of the	following statements are true	e for these given spe	ecies : N_2 , CO, CN^- and NO^+ .
	(A) All specie	es are paramagnetic	(B) The species	s are isoelectronic
	(C) All the sp	ecies have dipole moment	(D) All the spe	cies are linear
27.	Which of the	following have unpaired elec	tron(s)	
	(A) O_2^+	(B) O_2^-	(C) NO	(D) H_2^+
28.	Which of the	following is/are paramagnetic	e ?	
	(A) B ₂	(B) O ₂	(C) N ₂	(D) He ₂
29.	Which of the	following species have a bon	d order of 3?	
	(A) CO	(B) CN ⁻	(C) NO^+	(D) O ₂ ⁺
30.	Which of the	following is/are correct ?		
	(A) During N	$\frac{1}{2}$ formation, one electron is r	emoved from the bo	onding molecular orbitals
	(B) During O	$\frac{1}{2}$ formation, one electron is re-	emoved from the an	tibonding molecular orbitals
	(C) During O	$\frac{1}{2}$ formation, one electron is a	dded to the bonding	g molecular orbitals

(D) During CN⁻ formation, one electron is added to the bonding molecular orbitals

MISCELLANEOUS

- 31. Rotation around the bond (between the underlined atoms) is restricted in :
 - (A) $\underline{C}_2 H_4$ (B) $H_2 \underline{O}_2$ (C) $\underline{C}_2 H_2$ (D) $\underline{C}_2 H_6$
- 32. The experimental result says that two iodine atoms are in different environments and predict the all possible incorrect arrangement for $I_2Cl_4Br_2$.

EXERCISE # (S-1)

- 1. The number of corner of O-atom shared per tetrahedron in 2D-silicate is
- 2. Find the number of angles less than 120° in PH₂F₃.
- 3. Find the number of molecules which are not having 3c-2e bond from the following. Al₂(CH₃)₆, Si₂H₆, B₂H₆, C₂H₆, Si₂Cl₆, Al₂Cl₆
- 4. Find the ratio of π -electrons in the C₂-molecule with that of B₂ molecule according to M.O.T.
- 5. In which of the following silicates structure, the number of corner/oxygen atoms shared per tetrahedron is '2'.

Pyrosilicate, pyroxene chain silicate,

2D-silicate, 3D-silicate, 4-membered cyclic silicate

6. The total number of bonding and antibonding electrons in O₂⁺ are "....." and "....." respectively.

[If the answer is 14 and 7, then represent as 147]

- 7. Find the total number of following molecule(s) which have all bond lengths are same. XeF_4 , SF_4 , SH_2 , NO_3^- , SiF_4 , ClF_3 , PF_2Cl_3 , XeO_3F_2
- 8. Among the following total number of planar molecules is / are

 $Cl_{2}O$, $P(CH_{3})_{3}$, $N(CH_{3})_{3}$, ClO_{2} , CH_{3} , NCl_{3}

- 9. Calculate the value of "n" in $Zn_nCa_2(Si_3O_{10}).2H_2O$
- 10. How many compound(s) gives diprotic acid on hydrolysis ?

SO₂Cl₂, SOCl₂, POCl₃, XeF₂, N₂O₅, P₄O₆, SF₄, BCl₃

		EXERCIS	SE # (S-2)	
Con	nprehension # 1 (1 to	3 Questions)		
	B is the first element o	$f III^{n}$ group. It forms a nu	imber of electron deficien	t halides and hydrides. Among
	the hydrides diborane	e is an important compo	und.	
1.	Which of the following	ng halide is the stronges	t Lewis acid?	
	(A) BF_3	(B) BCl ₃	(C) BBr ₃	(D) BI_3
2.	Which of the followi	ng compounds has $2p\pi$	- $2p\pi$ bond ?	
	(A) BF_3	(B) BCl ₃	(C) BBr ₃	(D) BI_3
3.	In B_2H_6 number of 3	c – 2e bonds is/are		
	(A) 1	(B) 2	(C) 3	(D) None
	Comprehension # 2	(4 to 6 Questions)		
	Molecular orbital the	ory is based on linear co	ombination of atomic or	bitals (LCAO). According to
	LCAO when respect	ive atomic orbitals of the	he atoms interact, they	undergoes constructive and
	destructive interferen	ce giving two types of mo	olecular orbital i.e. bondi	ng and antibonding molecular
	orbitals respectively.			
4.	Which of the following	ng specie is paramagnet	ic?	
	(A) NO^-	(B) O_2^{2-}	(C) CN^{-}	(D) CO
5.	Bond order of Be_2 is	:		
	(A) 1	(B) 2	(C) 3	(D) 0
6.	Number of anti bond	ing electrons in N_2 is :		
	(A) 4	(B) 10	(C) 12	(D) 14
	Comprehension # 3	(7 to 8 Questions)		
	Polarisation of anion	in ionic compounds play	an important role to infl	unce the various physical and
	chemical properties of	f ionic compound.		
7.	Amongst LiCl, RbCl,	BeCl ₂ and MgCl ₂ the cor	npounds with the greates	t and the least ionic character,
	respectively are :			
	(A) LiCl and RbCl	(B) RbCl and BeCl ₂	(C) RbCl and MgCl ₂	(D) $MgCl_2$ and $BeCl_2$
8.	Compound with max	imum ionic character is	formed from :	
	(A) Na and Cl	(B) Cs and F	(C) Cs and I	(D) Na and F
	Comprehension # 4	(9 to 10 Questions)		
	"Hydrolysis is define	d as the reaction of wate	er with any susbtance"	
9.	Choose the correct o	rder of ease of hydrolysi	is -	
	(A) $MgCl_2 > AlCl_3$	(B) $SF_6 < SeF_6$	(C) $SnCl_2 > SnCl_4$	(D) None
10.	Which of the followi	ng oxyacids are formed	during the stepwise hyd	lrolysis of P ₄ O ₁₀
	(A) tetrametaphospho	oric acid	(B) tetrapolyphosphor	ric acid
	(C) pyrophosphoric a	ncid	(D) All of these	
:		•		23

						MATO	CHING I	JST					
11.	Mate	ch list	I with	n list l	II and	select the corre	ect answer						
]	List I	(spec	ies)]	List I	I (O-1	N-O a	ngle)		
	(P)]	NO_2^+					(1)	180°					
	(Q)]	NO_2					(2)	134°					
	(R)]	NO_2^-					(3)	120°					
	(S)]	NO_3^{-}					(4)	115°					
		5					(5)	109°					
		Р	0	R	S			Р	0	R	S		
	(A)	5	4	3	2		(B)	5	2	4	3		
	(C)	1	2	4	3		(D)	1	4	3	2		
12.	Mate	ch list	I with	h list 1	II and	select the corre	ect answei						
]	List–I	(Mo	lecule	e / Spe	cies)]	List-	II (Ur	ipaire	ed electi	on resid	les in)
	(P)]	NO_2					(1)	d-orb	ital				
	(Q)	ClO ₂					(2) :	sp ² -or	bital				
	(R)	ClO ₃					(3)	sp ³ -or	bital				
	(S) ·	CH ₃					(4)	p-orb	ital				
	Cod	e :											
		Р	Q	R	S			Р	Q	R	S		
	(A)	2	4	1	3		(B)	2	1	3	4		
	(C)	1	4	2	3		(D)	3	1	2	4		
13.	Mate	ch list	I with	n list l	II and	select the corre	ect answer	••					
]	List–I	(Pro	cess)			List	List–II (Operating intraction involved)					
	(P) (Clathr	ate co	ompo	und of	Xe in ice	(1)	(1) Ion - Dipole					
	(Q)]	Liquat	:10n 0	f Xe	gas		(2)	(2) Dipole - Dipole					
	(R)	Liquat	ion o	t HC	l gas		(3)	(3) Dipole - Induced dipole					
	(S)	Hydra	tion c	of Na	F		(4)	(4) London forces					
	Coa	e:	0	D	ç			р	0	D	c		
	(A)	1 1	Q 3	К Л	ы С		(\mathbf{B})	Г 2	Q A	N	3 2		
	(\mathbf{A})	1	<u>з</u>	+ 2	2 1		(D)	1	4	1 2	2 1		
	(C)	5	4	2	1	MATI	(U) RIX MAT	Т	5	2	7		
14.	Mat	ch the	e colu	mn									
		Colun	nn-I			Column	-II						
		(Com	poun	ds giv	ven)	(Charac	teristics a	assoc	iated	with g	given co	mpound	ls)
	(A)]	BeCl,	-	C		(P) Undergo	es partial	hydr	olysis		-	-	
	(B) \$	SiF				(Q) All poss	ible bond	angle	s are	identi	cal		
	(C) \$	so,cl	2			(R) Hydrolys	sed produ	ct of	the att	ackin	g site is	electron	deficient and
	(D)]	BF ₃	-			finally pr	oduces p	olyme	erised	produ	ict		
		5				(S) Maximum	m numbe	r of a	toms	prese	nt in one	e plane is	three

15.	Match the column	
	Column-I	Column-I
	(Molecules)	(Characteristics given among the molecules
		of column-I)
	(A) CH_4	(P) Molecule is having perfect tetrahedral shape
	(B) CH_2F_2	(Q) C-F bond has maximum p-character
	(C) CHF ₃	(R) C-H bond has maximum s-character
	(D) CF ₄	(S) Molecule is having maximum number of
		equal angles
		(T) Molecule has lowest bond angle
16.	Match the column	
	Column-I	Column-II
	Processes	Correct characteristics
	(A) $N_2^+ \longrightarrow N_2$	(P) Magnetic moment gets changed
	(B) $Zn^{2+} \longrightarrow Zn$	(Q) The process is associated with two electronic change
	(C) $O_2^{2-} \longrightarrow 2O^{2-}$	(R) Magnetic behaviour gets changed
	(D) $C_2^{2-} \longrightarrow C_2$	(S) Electron(s) associated in the process enter(s) into π^*_{2p} orbital

(T) Electron(s) associated in the process involve(s) $\sigma_{_{2p}} orbital$

Answer Q.17 to Q.19 by appropriately matching the information given in the three columns of the following table

	Molecular Orbital	Number of nodal plane	Symmetry of Molecular Orbita	al
	(1) σ _s	(P) 3	(I) BMO, gerade	
	(2) π _p	(Q) 2	(II) ABMO, ungerad	le
	(3) $\sigma_{p_z}^*$	(R) 1	(III) BMO, ungerade	
	(4) δ*	(S) 0	(IV) ABMO, gerade	
17.	Which of the follow	ving matching is INCO	RRECT.	
	(A) (1), S, I	(B) (2), R, I	(C) (3), R, II	(D) (4), P, II
18.	How many orbitals	are occupied with set (1	$(S)(I)$ in F_2	
	(A) 0	(B) 1	(C) 2	(D) 3
19.	If z axis is the mo substraction of way	lecular axis then CORI re function.	RECT matching for d_{xy} +	d_{xy} orbital is 4, P, II for the
	Which of the follo	owing matching is CO	RRECT for the addition	of wave function for same
	combination of orb	itals.		
	(A) P, IV	(B) P, III	(C) Q, II	(D) Q, I
				25

Ε

ALLEN

25

EXERCISE # J-MAIN

1.	The bond order in NC these two species ?) is 2.5 while that in NO	D^+ is 3. Which of the fo	Ilowing statement is true for
	(1) Bond length in NO	+ is equal to that NO	(2) Bond length in NO	is greater than NO^+
	(3) Bond length in N	O^+ is greater than NO	(4) Bond length is ur	npredictable
2.	The states of hybridiz	ation of boron and oxy	yen atoms in boric acid	(H.BO.) are respectively
				[AIEEE-2004]
	(1) sp^3 and sp^2	(2) sp^2 and sp^3	(3) sp^2 and sp^2	(4) sp^3 and sp^3
3.	The maximum numbe	er of 90° angles betwee	n bond pair-bond pair of	of electrons is observed in :-
-	(1) dsp^2 hybridization	1	(2) sp^3d hybridization	AIEEE–2004]
	(3) dsp^3 hybridization	l	(4) sp^3d^2 hybridizatio	n
4.	Which one of the follo	wing specie is diamagne	etic in nature ?	[AIEEE-2005]
	$(1) \text{He}_{2}^{+}$	(2) H ₂	(3) H_2^+	(4) H_2^-
5.	Which of the following	g molecule\ion does not	contain unpaired electro	ons? [AIEEE-2006]
	$(1) N_2^+$	(2) O ₂	(3) O_2^{2-}	(4) B ₂
6.	Among the following	mixtures, dipole-dipole a	as the major interaction,	is present in [AIEEE-2006]
	(1) KCl and water		(2) benzene and carbo	n tetrachloride
	(3) benzene and ethan	ol	(4) acetonitrile and ace	etone
7.	A metal, M forms chlo	rides in its +2 and +4 oxi	idation states. Which of	the following statement about
	these chlorides is corre	ect?		[AIEEE-2006]
	(1) MCl_2 is more ionic	than MCl ₄		
	(2) MCl_2 is more easil	y hydrolysed than MCl ₄		
	(3) MCl_2 is more volat	tile than MCl ₄		
	(4) MCl_2 is more solut	ble in anhydrous ethanol	than MCl ₄	
8.	The decreasing values table is due to	of bond angles from NH	$I_3(106^\circ)$ to SbH ₃ (91°) d	own group-15 of the periodic [AIEEE-2006]
	(1) decreasing $lp - bp$	p repulsion	(2) increasing electron	negativity
	(3) increasing bp – b	p repulsion	(4) increasing p-orbita	al character in sp ³
9.	In which of the following the scheme of the following the scheme of the	ng ionization process, the	e bond order has increase	ed and the magnetic behaviour
	(1) NO \rightarrow NO ⁺	(2) $\Omega_2 \rightarrow \Omega_2^+$	(3) $N_2 \rightarrow N_2^+$	$(4) C_2 \rightarrow C_2^+$
10.	Which of the following	$(2) \circ_2 \circ \circ_2$ g species exhibits the dia	amagnetic behaviour	[AIEEE-2007]
200	(1) + +	(2) 0.	(3) NO	(4) + ^{A-}
11		$(2) \cup_2$		
11.	which one of the follow (1) CN = 1 NO ⁺	wing pairs of species has (2) CD (2) (2)	ve the same bond order: $(2) O = 1 O V$	$(4) NO^{+} = 1 CN^{+}$
	(1) $\mathbb{C}\mathbb{N}^{-}$ and $\mathbb{N}\mathbb{O}^{+}$	(2) $CN^{-}and CN^{+}$	(3) O_2^- and CN^-	(4) NO ^{$+$} and CN ^{$+$}
26				

AL	LEN			Chemi	cai Bonaing
12.	The bond dissoc 515 kJ mol ⁻¹ . The C–F is :-	iation energy of B–F e correct reason for hig	in BF_3 is 646 kJ mol ⁻¹ whe gher B–F bond dissociation en	ereas that of nergy as comp	C–F in CF ₄ is pared to that of [AIEEE-2009]
	(1) Significant p _π interaction be	$t - p\pi$ interaction betweet tween C and F in CF_4	een B and F in BF_3 whereas t.	here is not po	ssibility of such
	(2) Lower degree(3) Smaller size of	e of $p\pi - p\pi$ interaction of B-atom as compared	between B and F in BF ₃ than to that of C-atom	that between	C and F in CF ₄
	(4) Stronger σ be	ond between B and F i	n BF ₃ as compared to that b	etween C and	F in CF ₄
13.	Using MO theory	predict which of the foll	owing species has the shortest	bond length?	[AIEEE-2009]
	(1) O ₂ ⁻	(2) O ₂ ^{2–}	(3) O_2^{2+}	(4) O ₂ ⁺	
14.	Among the follow	ving the maximum coval	lent character is shown by the	compound :-	[AIEEE-2011]
	(1) $AlCl_3$	(2) $MgCl_2$	(3) FeCl ₂	(4) SnCl ₂	
15.	Which one of the	following molecules is	s expected to exhibit diamagi	netic behaviou	ur?
	(1) C ₂	(2) N ₂	(3) O ₂	(4) S ₂	[AIEEE-2013]
16.	In which of the fo	ollowing pairs of molec	cules/ions, both the species an	e not likely to	o exist ?
	(1) H_2^+, He_2^{2-}	(2) H_2^-, He_2^{2-}	(3) H_2^{2+}, He_2	(4) H_2^-, He_2^{2+}	[JEE-M-2013]
17.	Stability of the sp	becies Li_2 , Li_2^- and Li_2^+	increases in the order of :-		[JEE-M-2013]
	(1) $\text{Li}_2 < \text{Li}_2^+ < \text{I}$	Li_2^- (2) $Li_2^- < Li_2^+ <$	Li ₂ (3) Li ₂ < Li ₂ ⁻ < Li ₂ ⁺	(4) $Li_2^- < L$	$\dot{i}_2 < Li_2^+$
18.	Which one of the	following properties is	s not shown by NO ?		[JEE-M-2014]
	(1) It combines w	vith oxygen to form nit	rogen dioxide		
	(2) It's bond orde	r is 2.5			
	(3) It is diamagne	tic in gaseous state			
	(4) It is a neutral	oxide			
19.	The correct order	of thermal stability of	hydroxides is :	[JEE-M-	2015 (on line)]
	(1) $Ba(OH)_{2} < St$	$(OH)_2 < Ca(OH)_2 < N_2$	ſg(OH),		
	(2) $Mg(OH)_{2} < S$	$r(OH)_{2} < Ca(OH)_{2} < H$	Ba(OH)		
	(3) $Mg(OH)_2 < C$	$Ca(OH)_{2} < Sr(OH)_{2} < H$	Ba(OH),		
	(4) $Ba(OH)_{2} < Ca$	$a(OH)_{2} < Sr(OH)_{2} < N$	fg(OH),		
20.	Which of the alka	lline earth metal halide	s given below is essentially c	ovalent in nat	ture :-
	$(1) \ \Omega_{-} C_{-}^{1}$	$(2) C_{-}C_{-}$	(2) $D_{-}C_{-}^{1}$	[JEE-NI-2	2015 (on line)]
A 1	(1) SrCl_2	(2) CaCl_2	(3) BeCl_2	(4) $MgCl_2$	4 41 ¹ 4
21.	lattice enthalpy ?	following alkaline earth	n metal sulphates has its hydra	ition enthalpy	[JEE-M-2015]
	(1) BaSO ₄	(2) $SrSO_4$	(3) CaSO ₄	(4) BeSO ₄	
					27

22.	The intermolecular inte	eraction that is dependen	t on the inverse cube	e of distance between the molecules
	is :-			[JEE-M-2015]
	(1) London force		(2) Hydrogen bo	nd
	(3) ion-ion interaction	1	(4) ion-dipole interview (4) ion-dipole interv	eraction
23.	Which one has the high	ghest boiling point?		[JEE-M-2015]
	(1) Kr	(2) Xe	(3) He	(4) Ne
24.	Which intermolecular	force is most responsil	ole in allowing xend	on gas to liquefy?
	(1) Ionic			[JEE (MAIN) ONLINE 2016]
	(2) Instantaneous dipo	ole- induced dipole		
	(4) Ion - dipole			
25.	The bond angle H–X–	-H is the greatest in the	e compound :	LIEE (MAIN) ONLINE 2016]
	(1) NH ₂	(2) H_2O	$(3) PH_2$	(4) CH ₄
26.	Which of the followin	g species is not parama	agnetic :-	[JEE-MAINS-2017]
_01	(1) NO	(2) CO	$(3) O_2$	(4) B ₂
27.	Which of the followin	is paramagnetic?		[JEE-MAINS-2017 (On-line)]
	(1) CO	(2) O_2^{2-}	(3) NO ⁺	(4) B ₂
28.	sp ³ d ² hybridization is	not displayed by :		[JEE-MAINS-2017 (On-line)]
	(1) $[CrF_6]^{3-}$	(2) BrF_5	(3) PF ₅	(4) SF ₆
29.	The number of S=O	and S-OH bonds prese	ent in peroxodisulpl	nuric acid and pyrosulphuric acid
	respectively are :			[JEE-MAINS-2017 (On-line)]
	(1) (2 and 4) and (2 a	nd 4)	(2) (4 and 2) and	(2 and 4)
•	(3) (2 and 2) and (2 a	nd 2)	(4) (4 and 2) and	(4 and 2)
30.	The correct sequence of	of decreasing number of	π -bonds in the struct	ures of H_2SO_3 , H_2SO_4 and $H_2S_2O_7$
	1S:-	> U SO	$(2) \cup SO > \cup S$	[JEE-MAINS-2017 (On-line)]
	(1) $H_2S_2O_7 > H_2SO_4$ (3) $H S O > H SO$	> H ₂ SO ₃	(2) $H_2 S O_3 > H_2 S$ (4) $H S O_3 > H S$	$SO_4 > H_2S_2O_7$
21	$(3) \Pi_2 S_2 O_7 > \Pi_2 S O_3$ The increasing order f	$= 11_{2}50_{4}$	$(4) \Pi_2 S O_4 > \Pi_2 S$	$n_2 O_7 > n_2 O_3$
51.	The increasing order (of the boiling points for	the following com	pounds is
				[JEE-MAINS-2017 (On-line)]
	(I) C_2H_5OH	(II) C_2H_5Cl	(III) $C_2H_5CH_3$	(IV) C ₂ H ₅ OCH ₃
	(1) (III) < (II) < (I) <	(IV)	(2) (II) $<$ (III) $<$ (IV) < (I)
	(3) (IV) < (III) < (I) <	< (II)	(4) (III) < (IV) <	(II) < (I)
32.	The number of P–OH	bonds and the oxidati	on state of phospho	orus atom in pyrophosphoric acid
	$(H_4P_2O_7)$ respectively	are :-		[JEE-MAINS-2017 (On-line)]
	(1) five and four	(2) five and five	(3) four and five	(4) four and four
33.	The group having tria	ngular planar structures	s is :-	[JEE-MAINS-2017 (On-line)]
	(1) CO_3^{2-}, NO_3^-, SO_3	(2) NCl ₃ , BCl ₃ , SO ₃	(3) NH_3 , SO_3 , CO_3^2	- (4) BF_3, NF_3, CO_3^{2-}

34.	Which of the following	ng are Lewis acids?		[JEE-MAINS-2018]
	(1) AlCl ₃ and SiCl ₄	(2) PH_3 and $SiCl_4$	(3) BCl ₃ and AlCl ₃	(4) PH_3 and BCl_3
35.	According to molecul	ar orbital theory, which	of the following will	not be a viable molecule ?
				[JEE-MAINS-2018]
	(1) He_2^+	(2) H_2^-	(3) H_2^{2-}	(4) He_2^{2+}
36.	Which of the following	ng compounds contain(s	s) no covalent bond(s)? [JEE-MAINS-2018]
	KCl, PH ₃ , O ₂ , B ₂ H ₆ ,	H_2SO_4		,
	(1) KCl, H_2SO_4	(2) KCl	(3) KCl, B_2H_6	(4) KCl, B ₂ H ₆ , PH ₃
37.	In KO_2 , the nature of	oxygen species and the	e oxidation state of or	xygen atom are, respectively
				[JEE-MAINS-2018 (Online]
	(1) Superoxide and –	1/2	(2) Oxide and -2	
	(3) Peroxide and $-1/2$	2	(4) Superoxide and	-1
38.	Which of the following	ng best describes the dia	agram below of a mo	leuclar orbital?
	(
	$\begin{pmatrix} + \end{pmatrix} - \end{pmatrix}$			
	(\vee)			[JEE-MAINS-2018 (Online]
	(- (+)			
	(1) An antibonding π	orbital	(2) An antibonding	a orbital
	(1) An antioonding π (3) A non-bonding or	bital	(2) All antiboliding π or (4) A bonding π or	bital
39.	In the molecular orbita	l diagram for the molecu	lar ion N_{s}^{+} the number	r of electrons in the $\sigma_{\rm e}$ molecular
	orbital is	i diagram for the molecu		[IFF-MAINS-2018 (Online]]
	(1) 3	(2) 1	(3) 0	(4) 2
40	(1) 5 Xenon hexafluoride o	(2) I on partial hydrolysis pro	duces compounds 'X'	and 'V' Compounds 'X' and 'V'
т ∪ •	and the oxidation stat	a of Ve are respectively		[IFE MAINS 2018 (Online]
	(1) $V_{2}O = (\pm 6)$ and T_{2}	$V_{2}O(\pm 4)$	(2) VoOE (± 6) and	[JEE-MAINS-2018 (Omme]]
	(1) $ACO_2\Gamma_2(+0)$ and X (2) $V_2OE(+6)$ and X	$X_{2}(+4)$	(2) $XeOr_4(+0)$ and (4) $YeO(+4)$ and (5)	$X_{2}O_{2}C_{2}(+0)$
41	(3) $\operatorname{AEOF}_4(+0)$ and A	$100_3(10)$	(4) $AeO_2(+4)$ and 2	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
41.	(1) N II		(2) DU	
40	(1) NaH	(2) NF_3	(3) PH_3	(4) $B(CH_3)_3$
42.	A group 13 element 'X	reacts with chlorine gas	to produce a compour	ad XCl_3 . XCl_3 is electron deficient
	and easily reacts with	NH_3 to form $Cl_3X \leftarrow N_3$	H_3 adduct; however, 2	Cl ₃ does not dimerize. X is :-
				[JEE-MAINS-2018 (Online]
	(1) Ga	(2) Al	(3) In	(4) B
43.	Which of the following	ng conversions involves	change in both shap	e and hybridisation ?
		L		[JEE-MAINS-2018 (Online]
	(1) $BF_3 \rightarrow BF_4^-$	(2) $H_2O \rightarrow H_3O^+$	$(3) \operatorname{CH}_4 \to \operatorname{C_2H}_6$	$(4) \text{ NH}_3 \rightarrow \text{NH}_4^{-}$

		EXERCIJE	: # J-ADVANC		
1.	The molecules	hat will have dipole mom	ent are :		[IIT-1992]
	(A) 2, 2-dimet	nylpropane	(B) trans-pent-2	-ene	
	(C) cis-hex-3-en	ne	(D) 2, 2, 3, 3-te	etramethylbutane	
2.	Which of the fo	llowing have identical bon	nd order ?		[IIT-1992]
	(A) CN ⁻	(B) O_{2}^{-}	(C) NO ⁺	(D) CN ⁺	
3.	Among the follo	owing the one that is pola	r and has the central a	atom with sp ² hybric	lisation is :
	(A) H_2CO_3	(B) SiF ₄	(C) BF ₃	(D) HClO ₂	[IIT-1997]
4.	Which of the fo	ollowing is soluble in wate	er?	-	[IIT 98]
	(A) CS ₂	(B) C_2H_5OH	(C) CCl_4	(D) CHCl ₃	
5.	The correct orde	er of hybridization of the ce	ntral atom in the follow	ving species NH ₃ , [P	$tCl_4]^{2-}$, PCl_5 and
	BCl, is :			-	[IIT 2001]
	(A) dsp^2 , sp^3d ,	sp ² and sp ³	(B) sp^3 , dsp^2 , sp	b^3 d, sp ²	
	(C) dsp^2 , sp^2 , sp^2	p ³ , sp ³ d	(D) dsp^2 , sp^3 , sp^3	p^2 , sp^3d	
6.	The common fe	atures among the species	CN-, CO and NO+ a	re :	[IIT 2001]
	(A) bond order	three and isoelectronic	(B) bond order	three and weak field	d ligands
	(C) bond order	two and π - acceptors	(D) isoelectroni	c and weak field lig	ands
7.	Which of the fo	llowing molecular specie	has unpaired electron	(s) ?	[JEE 2002]
	(A) N ₂	(B) F ₂	(C) O_2^-	(D) O_2^{2-}	
8.	According to m	olecular orbital theory whic	ch of the following stat	ement about the mag	gnetic character
	and bond order	is correct regarding O_2^+			[JEE 2004]
	(A) Paramagnet	tic and Bond order $< O_2$	(B) Paramagnet	ic and Bond order >	> O ₂
	(C) Diamagneti	c and Bond order $< O_2$	(D) Diamagneti	c and Bond order >	· O ₂
9.	Among the folle	owing, the paramagnetic c	compound is		[JEE 2007]
	(A) Na ₂ O ₂	(B) O ₃	(C) N ₂ O	(D) KO ₂	
10.	The species hav	ring bond order different f	rom that in CO is		[JEE 2007]
	(A) NO ⁻	(B) NO^+	(C) CN^{-}	(D) N ₂	
11.	Statement-1 :	In water, orthoboric acid l	behaves as a weak mo	nobasic acid.	[JEE 2007]
	Statement-2 :	n water, orthoboric, acid	acts as a proton donor		
	(A) Statement-1 i	s True, Statement-2 is True; S	tatement-2 is a correct ex	planation for Statemer	nt-1.
	(B) Statement-1 is	s True, Statement-2 is True; S	tatement-2 is NOT a corr	rect explanation for Sta	atement-1.
	(C) Statement-	is True, Statement-2 is F	alse.		
10	(D) Statement-	1 is False, Statement-2 is 1 Dh^{+4} compounds are strong	rue.	$n \Sigma n^{4+}$ compounds	[IEE 2009]
14.	Statement-1 :]	PD compounds are strong	for the group 14 elem	an Sn compounds	[JEE 2008]
	members of the	group due to 'inert pair e	ffect'	ients are more stable	
	(A) Statement-1 i	s True Statement-2 is True S	tatement-2 is a correct ex	planation for Statemer	nt-1
	(B) Statement-1 is	s True, Statement-2 is True: S	tatement-2 is NOT a corr	rect explanation for Sta	atement-1.
		,,		1	

(D) Statement-1 is False, Statement-2 is True.

ALL	.EN	Chemical bonaing
13.	Match each of the diatomic molecules/ions in (Column I with its property / properties in Column II.
	Column I	Column II [JEE 2009]
	$(A) B_{2}$	(P) Paramagnetic
	(B) N_{2}^{2}	(Q) undergoes oxidation
	(C) O_2^{-}	(R) Undergoes reduction
	(D) 0,	(S) Bond order ≥ 2
		(T) Mixing of 's' and `p' orbitals
14.	In the reaction	[JEE 2009]
	$2X + B_2H_6 \longrightarrow [BH_2(X)_2]^+ [BH_4]^-$	
	the amine(s) X is (are)	
	(A) NH_3 (B) CH_3NH_2	(C) $(CH_{3})_{2}NH$ (D) $(CH_{3})_{3}N$
15.	The species having pyramidal shape is	[JEE 2010]
	(A) SO_3 (B) BrF_3	(C) SiO_3^{2-} (D) OSF_2
16.	Assuming that Hund's rule is violated, the bond	l order and magnetic nature of the diatomic molecule
	B ₂ is	[JEE 2010]
	(Å) 1 and diamagnetic (B) 0 and diamagnetic	(C) 1 and paramagnetic (D) 0 and paramagnetic
Subj	ective	
17.	The value of n in the molecular formula Be_n^A	$M_2Si_6O_{18}$ is [JEE 2010]
18.	The total number of diprotic acids among the	following is [JEE 2010]
	H_3PO_4 H_2SO_4	H_3PO_3 H_2CO_3 $H_2S_2O_7$
	H ₃ BO ₃ H ₃ PO ₂	H_2CrO_4 H_2SO_3
19.	Among the following, the number of elements	showing only one non-zero oxidation state is
	O, Cl, F, N, P, Sn, Tl, Na, Ti	[JEE 2010]
20.	Assuming 2s-2p mixing is NOT operative, the	e paramagnetic species among the following is :
		[JEE Adv. 2014]
•	(A) Be_2 (B) B_2	(C) C_2 (D) N_2
21.	Match the orbital overlap figures shown in List	-I with the description given in List-II and select the
	correct answer using the code given below the	[JEE Adv. 2014]
	List-I	List-II
	$\land \land$	
		(1) a d - antihanding
		(1) $p - d \pi$ antibonding
	\mathbf{V}	
	har a b a b a b a b a b a b a b a b a b a	
		(2) $d - d \sigma$ bonding
		(2) a a o bolialing
	$\stackrel{\circ}{\land}$	
	(\mathbf{R})	(3) $p - d \pi$ bonding
	\land	
	(S)	(4) $d - d \sigma$ antibonding
	U	
Code	2:	
	P Q R S	P Q R S
	(A) 2 1 3 4	(B) 4 3 1 2
	(C) 2 3 1 4	(D) 4 1 3 2
I		· · · · · · · · · · · · · · · · · · ·
1	•	

JEE-Chemistry

JEE	-Chemistry		ÅLLEN
22.	Three moles of B_2H_6 are completely reacted wir product formed is -	th methanol. The number of mole	s of boron containing [JEE Adv. 2015]
23.	When O_2 is adsorbed on a metallic surface, elect statement (s) regarding this adsorption is (are) (A) O_2 is physisorbed	(B) heat is released	tal to O ₂ . The TRUE , [JEE Adv. 2015]
	(C) occupancy of π_{2p}^* of O_2 is increased	(D) bond length of O_2 is increased	used
24.	According to Molecular Orbital Theory, (A) $C_2^{2^-}$ is expected to be diamagnetic (B) $O_2^{2^+}$ is expected to have a longer bond (C) N ⁺ and N ⁻ have the same bond order	length than O ₂	[JEE Adv. 2016]
	(D) He_2^+ has the same energy as two isolate	d He atoms	
25.	The colour of the X_2 molecules of group 17 el the group. This is due to -	ements changes gradually from y	ellow to violet down [JEE Adv. 2017]
	(A) the physical state of X_2 at room temperative (B) decrease in HOMO-LUMO gap down f	he group	down the group
	(C) decrease in $\pi^*-\sigma^*$ down the group	le Broup	
•	(D) decrease in ionization energy down the	group	,
26.	Among H_2 , He_2 , Li_2 , Be_2 , B_2 , C_2 , N_2 , O_2 , (Atomic number) : $H = 1$, $He = 2$, $Li = 3$,	and F_2 , the number of diamage Be = 4, B = 5, C = 6, N = 7	gnetic species is - , $O = 8$, $f = 9$) [IEE Adv. 2017]
27.	The sum of the number of lone pairs of elecis.	trons on each central atom in t	he following species [JEE Adv. 2017]
	$[\text{TeBr}_6]^{2-}$, $[\text{BrF}_2]^+$, SNF_3 and $[\text{XeF}_3]^-$		
	[Atomic number : $N = 7$, $F = 9$, $S = 16$, B	r = 35, Te = 52, Xe = 54]	
28.	The option(s) with only amphoteric oxides is	s (are):	[JEE Adv. 2017]
	(A) Cr,O,, CrO, SnO, PbO	(B) NO, B_2O_2 , PbO, SnO ₂	
	(C) Cr_2O_2 , BeO, SnO, SnO ₂	(D) ZnO, Al_2O_2 , PbO, PbO,	
29.	Among the following, the correct statement(s) is are	[JEE Adv. 2017]
	(A) Al(CH ₃) ₃ has the three-centre two-electro	on bonds in its dimeric structure	e
	(B) AlCl _a has the three-centre two-electron b	oonds in its dimeric structure	
	(C) BH ₃ has the three-centre two-electron be	onds in its dimeric structure	
	(D) The Lewis acidity of BCl, is greater that	in that of AlCl ₂	
30.	Based on the compounds of group 15 element	s, the correct statement(s) is (an	re) [JEE Adv. 2018]
	(A) Bi_2O_5 is more basic than N_2O_5		
	(B) NF_3 is more covalent than BiF_3		
	(C) PH_3 boils at lower temperature than NH	3	
	(D) The N–N single bond is stronger than t	he P–P single bond	

nodoo 8004 80 Kota VEEA dora cal) Enthusian/Clem Shed Modulet Chenical Barding. Coordination chemistry & Medilurgy/01 C.B. Eng/02_Ex.

ANSWERS KEY

EXERCISE # 0-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	А	D	D	В	А	С	С	В	А	С
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	А	С	В	В	В	Α	D	D	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	С	D	D	D	С	Α	А	D
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	А	В	D	В	А	А	Α	В	D	С
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	С	A	С	С	В	A	D	A	A	В

EXERCISE # 0-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A, B, C	A, B, C	A, B, C	A, B, D	A, B	A, C	A, B, C	В, С	A, C	A,B,C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	B,C,D	B,C,D	B,C	B, C, D	C, D	A, B, C	A, C, D	A, C	A, C	A, D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A, B, D	B, C, D	A, B, C	A, B, C	A, B, D	B, D	A,B,C,D	Α, Β	A, B, C	A, B, D
Que.	31	32			-	-	-		-	
Ans.	A, B, C	B,C,D								

EXERCISE # S-1

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	8	4	2	2	105	4	3	2	4

EXERCISE # S-2

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	А	В	А	D	А	В	В	В	D
Que.	11	12	13		1	4	15			
Ans.	С	В	С	(A)-Q,R,S (B)-P,Q,S (C)-S (D)-P,Q				(A)-P,S (B)-Q,T (C)-R (D)-P,S		
Que.	16					17	18	19		
Ans.	(A) - P, R, T(B) - Q(C) - Q(D) - Q, T					В	С	D		

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	3	4	2	3	4	1	4	1	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	3	1	2	3	2	3	3	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	2	2	4	2	4	1 & 3	4	1
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	1	3	3	2	1	1	2	2
Que.	41	42	43							
Ans.	4	4	1							

EXERCISE # J-ADVANCE

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	B, C	A, C	А	В	В	Α	С	В	D	Α
Que.	11	12		13					15	16
Ans.	С	С	(A)-P,Q,	(A)-P,Q,R,T(B)-Q,R,S,T(C)-P,Q,R(D)-P,Q,R,S					D	Α
Que.	17	18	19	20	21	22	23	24	25	26
Ans.	3	6	2	С	С	6	B,C,D	A,C	B, C	5 or 6
Que.	27	28	29	30						
Ans.	6	C, D	A, C, D	A, B, C						
CO-ORDINATION CHEMISTRY

INTRODUCTION :

- The concept of co-ordination compounds arises from the complex formation tendency of (a) transition elements.
- These compounds play a vital role in our lives, as chlorophyll of plants, vitamin B_{12} and (b)haemoglobin of animal blood are the co-ordination compounds of Mg, Co and Fe respectively.
- The co-ordination compounds play important role in analytical chemistry, polymerisation (c) reactions, metallurgy and refining of metals, photography, water purification etc.
- (d) Co-ordination compounds also find many applications in electroplating, textile dyeing and medicinal chemistry.

ADDITION COMPOUNDS :

When solutions containing two or more salts in simple molecular proportion are evaporated, crystals of new compound separate out.

These compounds are called molecular or addition compounds.

Ex.
$$K_2SO_4 + Al_2(SO_4)_3 + 24 H_2O \longrightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$$

 $CuSO_4 + 4NH_2 + H_2O \longrightarrow [Cu(NH_2)_4]SO_4 \cdot H_2O$

$$CuSO_4 + 4NH_3 + H_2O \longrightarrow [Cu(NH_3)_4]SO_4 \cdot H_2O$$

These addition compounds can be divided into two classes :

(A) DOUBLE SALTS :

Those which lose their identity in solution

In solutions these compounds break down into simpler ions. Such addition compounds which lose their identity in solutions are called double salts .

Example :

Potash alum $K_2SO_4 \cdot Al_2(SO)_4)_3 \cdot 24H_2O$ when dissolved in water breaks down into K^+ , r a $_t^{A-}$, Al^{+3} ions and therefore is an example of double salt.

COORDINATION COMPOUNDS: (B)

Those which retain their identity in solution.

In aqueous solution, these addition compounds do not furnish all simple ions but instead give more complex ions having complicated structure .

Example :

Potassium ferrocyanide $K_4[Fe(CN)_6]$ does not furnish simple K^+ , Fe^{2+} and CN^- ions but gives K^+ ions and complex ferrocyanide ions, $[Fe(CN)_6]^4$. These types of compounds are called **complex** compounds or co-ordination compounds.

On the basis of stability of complex ion, complex ions are further divided as follows -

Perfect complexes : The compounds in which complex ion is fairly stable and further (i) dissociation or feebly dissociation is not possible in solution state.

Ex.
$$K_4[Fe(CN)_6] \longrightarrow 4K^+ + [Fe(CN)_6]^4$$

 $\stackrel{\checkmark}{\text{Fe}^{2+}}$ + 6CN⁻ (Feebly dissociated)

The ferrocyanide ion $[Fe(CN)_6]^{4-}$ is so insignificantly dissociated that it can be considered as practically undissociated and does not give the qualitative test of Fe²⁺ or CN⁻ ions..

Imperfect complexes : Those complexes in which complex ion is less stable and is reversibly **(ii)** dissociated to give enough simple ions and thus respond to their usual qualitative test. **Ex.** $K_2[Cd(CN)_4] \longrightarrow 2K^+ + [Cd(CN)_4]^{2-1}$

 $Cd^{2+} + 4CN^{-}$ (appreciably dissociated)

35

DEFINITIONS OF TERMS USED IN CO-ORDINATION COMPOUNDS

- (a) **Co-ordination or complex compound :** Co-ordination compounds are those molecular compounds which retain their identity even when dissolved in water or any other solvent and their properties are completely different from those of the constituent ions.
- (b) Central ion : The cation to which one or more neutral molecules or ions are attached is called the atom / ion. Since, the central ion acts as an acceptor and thus has to accommodate electron pairs donated by the donor atoms of neutral molecules or ions, it must have empty orbitals of appropriate energy.
- (c) **Complex ion :** A complex ion may be defined as an electrically charged radical which is formed by the combination of a simple cation with one/more neutral molecules or one/more simple.
- (d) **Co-ordination number :** The total number of co-ordinate covalent bond formed by central metal in complex is called the co-ordination number of the central metal ion .

Metal	Coordination Number	Metal	Coordination Number
Cu ⁺	2, 4	Ni ²⁺	4, 6
Ag^+	2	Fe ²⁺	4, 6
Au ⁺	2, 4	Fe ³⁺	6
${{\rm Hg}_{2}}^{2+}$	2	Co ²⁺	4, 6
Cu ²⁺	4, 6	Co ³⁺	6
Ag ²⁺	4	Al^{3+}	6
Pt ²⁺	4	Sc ³⁺	6
Pd^{2+}	4	Pt ⁴⁺	6
Mg ²⁺	6	Pd ⁴⁺	6

Some common co-ordination number of important metals are as given below.

Example. Coordination number of the central metal ions in

(i) $[Cu(NH_3)_4]^{2+}$ is four (ii) $[Fe(EDTA)]^-$ is six

(e) **Co-ordination sphere :** The part of the complex enclosed in square bracket is known as co-ordination sphere. It is actually combination of central metal and ligands.

(f) Ligands :

- (a) The ions or neutral molecules which combine with central metal ion to form complex are called ligands.
- (b) They act as electron pair donor (i.e. Lewis bases) though certain ligands also accept electron from central metal and such ligands are known as π acid ligands.

* **CLASSIFICATION OF LIGANDS**

(A) Based on charge

ALLEN.

- (i) Neutral ligands : H_2O , NO, CO, C_6H_6 etc.
- (ii) Positive ligands : NO^+ , $N_2H_5^+$ (iii) Negative ligands : CI^- , NO_2^- , CN^- , OH^-

(B) Based on denticity

The number of electron pairs donated to central metal by a particular ligand is known as DENTICITY. Depending on number of electron pairs donated, these are classified in following categories.

Unidentate/monodentate ligands (a)

Ligands which donate one pair of electron to the central metal are called unidentate ligands. X^{-} , CN^{-} , NO_{2}^{-} , NH_{3} , Pyridine, OH^{-} , NO_{3}^{-} , $H_{2}O$, SO_{3}^{-2} , CO, NO, OH^{-} , O^{-2} , $(C_{6}H_{5})_{3}P$ etc.

Bidentate ligands (b)

Ligands which have two donor atoms and have the ability to link with central metal ion at two positions are called bidentate ligands.

Tridentate ligands (c)

The ligands which donate three pairs of electrons to the central metal are called tridentate ligands

Example.

x NRepuls1 SR 120 No1 SQ 1Ns4

AUSARSARPMI) p)NJNJISOMI) p4

(**d**) **Tetradentate ligands**

Those ligands which can donate four electron pairs to the central metal are known as tetradentate ligands,

Example : (Underline atoms are donating atom)

N CH₂COO CH₂COO Nitrilotriacetato (nta³⁻)

Pentadentate ligands : Those ligands which can five electron pairs to the central metal are **(e)** known as pentadentate ligands.

Example : Ethylenediamine triacetate ion. (Underline atoms are donating atom)

$$\begin{array}{c} c i & \underline{a} & \underline{o} \\ c i & \underline{c} a & \underline{a}^{E} \\ c i & \underline{c} a & \underline{a}^{E} \\ c i & \underline{a} & \underline{o} \\ c i & \underline{a} & \underline{c} a & \underline{a}^{E} \\ c i & \underline{a} & \underline{c} & \underline{a}^{E} \\ \end{array}$$

n Repulsi b 120 Ni R 120 R2R SNHs

(**f**) **Hexadentate ligands**: Those ligands which can donate six electron pairs to the central metal are known as hexadentate ligands.

Example : (Underline atoms are donating atom)

n Repulsib 120 No IR R 22gl R2R SH+5 SO x MG⁴

Chelating ligands (g)

Polydentate ligands whose structures permit the attachment of two or more donor site to metal ion simultaneously, thus resulting in cyclic structure are called chelating ligands and compound formed is known as chelate compound.

Example :

Ambidentate ligands (h)

Ligands which can ligate through two different atoms present in it are called ambidentate

ligands. At a time only one atom can donate. $\begin{bmatrix} c o^{E} \\ oc^{E} \end{bmatrix} \begin{bmatrix} oa^{E}_{A} \\ aoa^{E} \end{bmatrix} \begin{bmatrix} r c o^{E} \\ ocr^{E} \end{bmatrix} \begin{bmatrix} coa^{E} \\ oca^{E} \end{bmatrix} \begin{bmatrix} r_{A}a^{AE} \\ ara_{A}r^{EA} \end{bmatrix} \begin{bmatrix} r l co^{E} \\ ocrl^{E} \end{bmatrix}$

Example :

CN⁻ can coordinate through either the nitrogen or the carbon atom to central metal ion.

(i) **Flexidentate ligands**

Ligands which sometimes do not use all the donor sites to get coordinated with central metal ion are known as flexidentate ligands.

Ex. ra_{t}^{A-} , ca_{-}^{A-} etc.

- (**C**) Based upon bonding interaction between the ligand and the central atom.
 - (i) Classical or simple ligand : These ligand only donate the lone pair of electrons to the central atom.

eg. : O^{2-} , OH^{-} , F^{-} etc.

(ii) Non classical or π -acid or π -acceptor ligand : These ligand not only donate the lone pair of electrons to central metal but also accept the electron cloud from central atom eg. : CO, CN^- , NO^+ , PF_3 , PR_3 etc.

<u>BONDING IN METAL CARBONYL</u> : Ex. $[Fe(CO)_5; [Ni(CO)_4]; [Cr(CO)_6]$

dative π-bond is formed by fullyfilled d orbital on M to empty antibonding molecular orbital on CO

Schematic diagram of orbital overlaps in metal carbonyls.

- (a) The metal-carbon bond in metal carbonyls may be represented as the donation of an electron pair from carbon to vacant orbital of metal & form σ bond (M \leftarrow CO).
- (b) A second bond is formed by back bonding sometimes called dative π -bonding. This is arises from side ways overlap of a full orbital on the metal with the empty antibonding $\pi^* p_y / \pi^* p_z$ (if x-axis is molecular axis) molecular orbital of the carbon monooxide, thus forming a π M $\xrightarrow{b\pi-\pi}$ CO. bond ($d\pi$ -p π back bond).
- (c) The filling or partial filling, of the antibonding orbital on CO reduces the bond order of C-O bond from the triple bond in CO towards a double bond. This shown by the increase in C-O bond length from 1.128Å in CO to about 1.15 Å in many carbonyls.
- (d) Since CO accept the back donated electrons from the metal atom in to its vacant π^* orbital, CO is called π -acid or π -acceptor ligand or π -bonding ligand. Other such π -acid ligands are- CN⁻, RCN, $\overset{3}{\circ}a$.
- **Note:-** π -acid ligands like PF₃, PPh₃ AsCl₃ etc. accept the back donated electrons from the metal atom in to its vacant d-orbital of central atom.

Bonding in π -bonded organo metallic compound. Like zeises salt K [Pt Cl₃(π -C₂H₄)]

The bonding of alkenes to a transition metal to form complexes has two components. First, the π -electron density of the alkene overlaps with a σ -type vacant orbital or the metal atom.

Second is the π back bond formed by the flow of electron density from a filled d-orbital on the metal into the vacant π^* -antibonding molecular orbital on the alkene molecule as shown below :

ALLEN

ALLEN

□ IUPAC NOMENCLATURE OF COORDINATION COMPOUNDS

The main rules of naming of complexes are -

- (a) Like simple salts, the positive part of the coordination compound is named first. **Ex.** $K_4[Fe(CN)_6]$ the naming of this complex starts with potassium. $[Cr(NH_3)_6]Cl_3$ the naming of this complex starts with name of complex ion.
- (b) Naming of coordination sphere :- The names of ligands along with their numerical prefixes (to represent their no) are written first, followed by the name of central metal.
- (c) The ligands can be neutral, anionic or cationic.
 - (i) The neutral ligands are named as the molecule **Ex**. C_5H_5N pyridine, $(C_6H_5)_3P$ Triphenyl phosphine.

H₂N — CH₂—CH₂—NH₂ ethylene diamine.

The neutral ligands which are not named as the molecule are CO carbonyl, NO nitrosyl, H_2O Aqua, NH_3 ammine.

(ii) Anionic ligands ending with 'ide' are named by replacing the 'ide' with suffix 'O'.

Symbol	Name as ligand	Symbol	Name as ligand
Cl	Chloro/Chlorido	N^{3-}	Nitrido
Br⁻	Bromo/Bromido	O_2^{2-}	Peroxo/Peroxido
CN^{-}	Cyano/Cyanido	O_2H^-	Perhydroxo/Perhydroxido
O^{2-}	Oxo/Oxido	S^{2-}	Sulphido
OH^-	Hydroxo/Hydroxido	NH^{2-}	Imido
H^{-}	Hydrido/Hydrido	NH_2^-	Amido

Ligands whose names end in 'ite' or 'ate' become 'ito' i.e., by replacing the ending 'e' with 'o' as follows.

Symbol	Name as ligand	Symbol	Name as ligand
CO ₃ ²⁻	Carbonato	SO_{3}^{2-}	Sulphito
C ₂ O ₄ ²⁻	Oxalato	CH ₃ COO ⁻	Acetato
SO_4^{2-}	Sulphato	ONO	(bonded through oxygen) nitrito
NO ₃ ⁻	Nitrato	NO_2^{-}	(bonded through nitrogen) nitro
$S_2O_3^{-2}$	Thiosulphato		

(iii) Positive ligands naming ends in 'ium' $NH_2 - NH_3^+$ Hydrazinium, NO^+ nitrosonium/nitrosylium.

- (d) If ligands are present more than once, then their number is indicated by prefixes like di, tri, tetra etc.
- (e) If words like di, tri, tetra are already used in the naming of ligand, or if it is polydented ligand or organic ligand, the prefixes bis-, tris- tetrakis-, pentakis- etc. are used to specify their number.

Example : [Pt(en)₂Cl₂]Cl₂ : Dichlorobis(ethylenediamine)platinum(IV) chloride.

- (f) When more than one type of ligands are present in the complex, then the ligands are named in the alphabetical order.
- (g) After naming of ligands the central metal ion is to be named followed by its oxidation state in Roman numbers in brackets. (as per IUPAC)

If the complex is neutral or provides a cationic complex ion, then the central metal ion is to be named as it is.

If the complex provides anionic complex ion then the name of central metal ion ends with 'ate' **Example :** $(NH_4)_2[CuCl_4]$: Ammonium tetrachloridocuprate(II)

(h) After the naming of central metal ion, anion which is in the outer sphere is to be named. The naming of some of the complexes is done as follows – (as per IUPAC)

	Complex Compounds	IUPAC Name
(i)	$K_{4}[Fe(CN)_{6}]$ (anionic complex) so suffix 'ate' is added with metal name	Potassium hexacyanoferrate(II)
(ii)	K ₂ [Pt Cl ₆]	Potassium hexachloridoplatinate(IV)
(iii)	[Co (NH ₃) ₆] Cl ₃ (Cationic complex)	Hexamminecobalt(III) chloride
	so metal is without any suffix	
(iv)	$[Cr(H_2O)_4Cl_2]$ Cl	Tetraaquadichloridochromium(III) chloride
(v)	$[Pt(NH_3)_2Cl_4]$	Diamminetetrachloridoplatinum(IV)
(vi)	$[Co(NH_3)_3 Cl_3]$ (Neutral complex)	Triamminetrichloridocobalt(III)
	So no suffix is used with metal ion	
(vii)	K ₃ [Co(NO ₂) ₆]	Potassium hexanitrocobaltate(III)
(viii)	Na ₃ [Fe(CN) ₅ NO]	Sodium pentacyanonitrosylferrate(II)
(ix)	[NiCl ₄] ⁻²	Tetrachloridonickelate(II) ion
(x)	$[\mathbf{Ru}(\mathbf{NH}_3)_5\mathbf{Cl}]^{+2}$	Pentamminechloridoruthenium(III) ion
(xi)	[Fe(en) ₃]Cl ₃	Tris(ethylenediamine)iron(III) chloride
(xii)	[Ni (Gly) ₂]	Bis(glycinato)nickel(II)

(i) If a complex ion has two metal atoms then it is termed polynuclear. The ligand which connects the two metal ions is called as **Bridging ligand or Bridge group**.

A prefix of Greek letter μ , is repeated before the name of each different kind of bridging group.

M R 22T+21N+5 OFF4q r 20 NiHq rapb) H CHR R 22T+21N+5 OFF45 +u e 2R

ALLEN

FORMATION OF CO-ORDINATION COMPOUNDS

It can be explained by number of theories.

- (A) Werner's co-ordination theory
- (B) Sidwick theory or Effective Atomic Number Theory (EAN)
- (C) Valence bond theory
- (D) Crystal field theory

(A) WERNER'S CO-ORDINATION THEORY :

Werner's co-ordination theory was the first attempt to explain the bonding in co-ordination compounds. The main postulates of this theory are :

- (a) Metals possesses two types of valencies Primary valency and secondary valency.
- (b) Primary valencies are normally ionisable and are exhibited by a metal in the formation of its simple salts such as CoCl₃, CuSO₄ and AgCl. In these salts the primary valencies of Co, Cu and Ag are 3, 2, 1 respectively. Primary valencies are referred to as oxidation state of their metal ion.
- (c) Secondary valencies are non-ionisable and are exhibited by a metal in the formation of its complex ions such as $[Co(NH_3)_6]^{3+}$, $[Cu(NH_3)_4]^{2+}$ and $[Ag(NH_3)_2]^+$. In these complex, the secondary valencies of Co^{3+} , Cu^{2+} , Ag^+ are 6, 4 and 2 respectively. These are referred to as co-ordination number (C.N.) of the metal cation.
- (d) Primary linkages (valencies) are satisfied by negative ions while secondary valencies are satisfied by neutral molecules, negative ions or in some cases positive ions also.
- (e) Every metal atom or ion has a fixed number of secondary valencies. In other words, the co-ordination number of the metal atom is usually fixed.
- (f) Every metal has tendency to satisfy both its primary and secondary valencies.
- (g) The ligands satisfying secondary valency are always directed towards fixed positions in space about the central metal atom or ion. Thus, the co-ordination compounds have a definite geometry. Werner deduced that in CoCl₃·5NH₃ only two of the three chlorine atoms are ionic and 5 NH₃ and one Cl form co-ordinate bonds to Co³⁺ ion.

Formula of some cobalt complexes.

Example :

Old		New	No. of Cl [−] lons	Total No. of ions
			precipitated	
(i)	$CoCl_3 \cdot 6 NH_3$	$[Co(NH_3)_6]Cl_3$	3	4
(ii)	$CoCl_5 \cdot 5 NH_3$	[Co(NH ₃) ₅ Cl]Cl ₂	2	3
(iii)	$CoCl_3 \cdot 4 NH_3$	[Co(NH ₃) ₄ Cl ₂]Cl	1	2

Con	ıplex	Mo	dern formula	No. of C precipita	l [−] lons	Total number of ions	
PtCl	4. 6NH3	[Pt($NH_{3})_{6}]Cl_{4}$	4		5	
PtCl	4. 5NH3	[Pt(NH_3 , Cl]Cl ₃	3		4	
PtCl	4. 4NH ₃	[Pt($\operatorname{NH}_{3}_{4}\operatorname{Cl}_{2}\operatorname{Cl}_{2}$	2		3	
PtCl	4. 3NH ₃	[Pt(NH_3) ₃ Cl ₃]Cl	1		2	
PtCl	4 2NH ₃	[Pt($\mathrm{NH}_{3}\mathrm{)}_{2}\mathrm{Cl}_{4}\mathrm{]}$	0		0 (non-electrolyte)	
WE	RNER'S I	REPRI	ESENTATION	OF COMP	PLEXES	·	
(i)	Fe(NH ₃) ₆	Cl ₃		cu [Fe Do Do cu sec		$H_3)_6$]Cl ₃ I lines indicate primary valency ontinuous lines indicate lary valency of metal ion.	
(ii)	Fe(NH ₃)	Cl ₃	i o l	i [Fe(NH ₃) ₅ Cl]Cl ₂ In this complex two 'Cl' groups act as primary valencies and one of the 'Cl' as secondary valency also.		$H_3)_5CI]CI_2$ complex two 'CI' groups act as valencies and one of the 'CI' acts ondary valency also.	
(iii)	Fe(NH ₃) ₄	Cl ₃		cu [Fe(NH ₃)] In this convalency ar secondary		$[I_3)_4Cl_2]Cl$ complex one 'Cl' group act as primary and two of the 'Cl' groups act as ary valencies also.	

(B) SIDWICK THEORY OR EFFECTIVE ATOMIC NUMBER CONCEPT (EAN)

Sidwick proposed effective atomic number theory to explain the stability of the complexes. Total number of electrons on central metal including those transferred from ligands is known as EAN. The EAN generally coincides with the atomic number of next inert gas except in some cases.

EAN can be calculated by the following relation :

EAN = (atomic number of the metal – oxidation state of central metal with sign) + number of electrons gained from the donor atoms of the ligands.

Example

*

Effective atomic number of the metal atom in the following :

(a) $K_3[Cr(C_2O_4)_3]$ is 33 (b) $K_4[Fe(CN)_6]$ is 36

hemistry & Metallurgy \02-C.C.\Eng\Theory+Ex.p65

ALLEN

(C) VALENCE BOND THEORY

The main features of this theory are -

- (a) Every metal ion when it forms a complex compound undergoes formation of coordinate covalent bond.
- (b) During this bond formation, the metal ion acts as electron pair acceptor. For this the metal ion provides vacant orbitals.
- (c) The number of vacant orbitals provided is equal to the coordination number of metal ion. **Example :** In the formation of $[Fe(NH_3)_6]^{3+}$, Fe^{+3} ion provides six vacant orbitals. In $[Cu(NH_3)_4]^{2+}$, Cu^{+2} ion provides four vacant orbitals.
- (d) The metal provides vacant orbitals only after the process of hybridisation, thus vacant hybrid orbitals are provided by the metal ion.
- (e) The vacant hybrid orbitals of metal ion get overlapped by orbitals of ligands containing lone pair of electrons.
- (f) The number of such overlappings is equal to the coordination number of metal ion.
- (g) The empty 'd' orbitals involved in hybridisation may be inner (n-1)d or outer "nd" orbitals and accordingly complexes are called as **Inner orbital complexes** and **outer orbital complexes** respectively.
- (h) In certain complexes pairing of electrons takes place in ligand field, resulting in decrease in spin only magnetic moment, such complexes are known as Low spin complexes

(i) Bohr magneton =
$$\frac{\text{eh}}{4\pi\text{mc}}$$

(j) Paramagnetism is represented in the term of spin only magnetic moment.

$$\mu = \sqrt{s \Theta + A4}$$
 B.M. $n =$ Number of unpaired electron

Example $[Fe(CN)_6]^{3-}$ is weakly paramagnetic while $[Fe(CN)_6]^{4-}$ is diamagnetic.

Sol.

 $[Fe(CN)_6]^{3-}$ involves d^2sp^3 hybridization.

$$Fe^{3+}, [Ar] 3d^{5} 1 1 1 1 1 1 4s^{4s} 7p^{4s}$$

$$[Fe(CN)_{6}]^{3-} \qquad \boxed{11/11/11}_{Rearrangement} 4s^{4s} 7p^{4s}$$

One d-orbital is singly occupied, hence it is weakly paramagnetic in nature. $[Fe(CN)_6]^{4-}$ also involves d^2sp^3 hybridization but it has Fe^{2+} ion as central ion.

All electrons are paired, hence it is diamagnetic in nature.

ALLEN

Some Example :				
Coordination Number	Hybridised orbitals	Geometrical shape of the Complex	Examples of Complex	
2	sp	° Nil 2)	$[Ag(NH_3)_2]^+$ $[Ag(CN)_2]^-$	
3	sp^2	°	[HgI ₃] ⁻	
4	sp ³	° hdL8AµI	$[CuCl_{4}]^{-2}$ $[ZnCl_{4}]^{-2}$ $[FeCl_{4}]^{-}$ $[Ni(CO)_{4}]$ $[Zn(NH_{3})_{4}]^{+2}$	
4	$dsp^2 (d = d_{x^2 - y^2})$	° Ld8 Ld8 Ld8	$[PdCl_4]^{2-}$ $[Ni(CN)_4]^{2-}$ $[Pt(NH_3)_4]^{+2}$ $[Cu(NH_3)_4]^{+2}$ $[PtCl_4]^{2-}$	
5	$sp^{3}d (d = d_{z2})$ or $dsp^{3} (d = d_{z2})$	• <u>Lds</u> 1 N NHs 2€EDN p) 20 № 2u	$[Fe(CO)_5]$ $[CuCl_5]^{3-}$	
5	$sp^{3}d (d = d_{x2-y2})$ or $dsp^{3} (d = d_{x2-y2})$	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	[Ni(CN) ₅] ⁻³	
6	$d^{2}sp^{3}$ (inner orbital complex) or $sp^{3}d^{2}$ (outer orbital complex) in both case d-orbitals are $d_{z^{2}} \& d_{x^{2}-y^{2}}$.	a gRel b) 2u	$[Cr(NH_3)_6]^{+3}$ $[Ti(H_2O)_6]^{+3}$ $[Fe(CN)_6]^{-3}$ $[Co(NH_3)_6]^{+3}$ $[PtCl_6]^{-2}, [CoF_6]^{-3}$	
			٨٢	

node06\B0AI-B0\Kota\UEE(Advanced)\Enthusiast\Chem\Sheet\Mad Uei

Ε

• Drawback of valence bond theory :

- (a) It describes bonding in co-ordination compounds only qualitatively but not account for the relative stabilities for different co-ordination complexes.
- (b) It does not offer any explanation for optical absorption spectra (coloration) of complexes
- (c) It does not describe the detailed magnetic properties of co-ordination compounds.

(D) CRYSTAL FIELD THEORY : The drawbacks of VBT of coordination compounds are, to a considerable extent, removed by the Crystal Field Theory.

The crystal field theory (CFT) is an electrostatic model which considers the metal-ligand bond to be ionic arising purely from electrostatic interaction between the metal ion and the ligand. Ligands are treated as point charges in case of anions or dipoles in case of neutral molecules. The five d-orbitals in an isolated gaseous metal atom/ion have same energy, i.e., they are degenerate. This degeneracy is maintained if a spherically symmetrical field of negative charges surrounds the metal atom/ion. However, when this negative field is due to ligands (either anions or the negative ends of polar molecules like NH_3 and H_2O) in a complex, it becomes asymmetrical and the degeneracy of the d orbitals is lost. It results in splitting of the d orbitals. The pattern of splitting depends upon the nature of the crystal field.

(a) Crystal field splitting in octahedral coordination entities :

In an octahedral coordination entity with six ligands surrounding the metal atom/ion, there will be repulsion between the electrons in d orbitals of metal and the electrons (or negative charges) of the ligands. Such a repulsion is more when the d orbitals of metal are directed towards the ligand than when it is away from the ligand.

Thus, the $d_{x^2-y^2}$ and d_{z^2} orbitals (axial orbitals) which point towards the axis along the direction of the ligand will experience more repulsion and will be raised in energy; and the d_{xy} , d_{yz} and d_{zx} orbitals (non-axial) orbitals which are directed between the axis will be lowered in energy relative to the average energy in the spherical crystal field.

Thus, the degeneracy of the d orbitals has been removed due to ligand electron-metal electron repulsions in the octahedral complex to yield three orbitals of lower energy, t_{2g} set and two orbitals of higher energy, e_g set. This splitting of the degenerate levels due to the presence of ligands in a definite geometry is termed as crystal field splitting and the energy separation is denoted by Δ_0 (the subscript o is for octahedral). Thus, the energy of the two e_g orbitals will increase by $(3/5)\Delta_0$ and that of the three t_{2g} will decrease by $(2/5) \Delta_0$.

ALLEN

The crystal field splitting, Δ_0 , depends upon the fields produced by the ligand and charge on the metal ion. Some ligands are able to produce strong fields in which case, the splitting will be large whereas others produce weak fields and consequently result in small splitting of d orbitals. In general, ligands can be arranged in a series in the order of increasing field strength as given below :

 $\Gamma < Br^{-} < SCN^{-} < C\Gamma < F^{-} < OH^{-} < C_{2}O_{4}^{2-} < H_{2}O < NCS^{-} < edta^{4-} < NH_{3} < en < CN^{-} < CO^{-} < C$

Note : In SCN⁻, S is donating atom and in NCS⁻, N is donating atom.

Such a series is termed as spectrochemical series. It is an experimentally determined series based on the absorption of light by complexes with different ligands. For d⁴ configuration, the fourth electron will singly occupy e_g orbital (according to Hund's rule) or will undergo pairing in t_{2g} orbital, which of these possibilities occurs, depends on the relative magnitude of the crystal field splitting, Δ_0 and the pairing energy, P (P represents the energy required for electron pairing in a single orbital). The two possibilities are :

- (i) If $\Delta_0 < P$, the fourth electron enters in one of the e_g orbitals giving the configuration $t_{2g}^3 e_g^1$. Ligands for which $\Delta_0 < P$ are known as weak field ligands and form high spin complexes.
- (ii) If $\Delta_0 > P$, it becomes more energetically favourable for the fourth electron to occupy a t_{2g} orbital with configuration $t_{2g}^{4} e_{g}^{0}$. Ligands which produce this effect are known as strong field ligands and form low spin complexes.

Crystal Field stabilising energy in Octahedral field :

Formula : CFSE = $[-0.4 \ n_{t_{2\sigma}} + 0.6 \ n_{e_{\sigma}}] \ \Delta_0 + xP.$

Where $n_{t_{2g}} \& n_{e_g}$ are number of electron(s) in $t_{2g} \& e_g$ orbitals respectively and Δ_0 crystal field splitting energy for octahedral complex. "x" represents the number of electron pairs and P is mean pairing energy.

(b) Crystal field splitting in tetrahedral coordination entities :

In tetrahedral coordination entity formation, the d orbital splitting is inverted and is smaller as compared to the octahedral field splitting. For the same metal, the same ligands and metal-ligand distances, it can be shown that $\Delta_t = (4/9)\Delta_0$. This may attributes to the following two reasons.

(i) There are only four ligands instead of six, so the ligand field is only two thirds the size ; as the ligand field spliting is also the two thirds the size and (ii) the direction of the orbitals does not concide with the direction of the ligands. This reduces the crystal field spliting by

roughly further two third. So
$$\Delta_t = \frac{2}{3} \times \frac{2}{3} = \frac{4}{9} \Delta_o$$

Consequently, the orbital splitting energies are not sufficiently large for forcing pairing and, therefore, low spin configurations are rarely observed.

Figure showing crystal field splitting in tetrahedral complex.

Since $\Delta_t < \Delta_o$ crystal field spliting favours the formation of octahedral complexes.

Crystal Field stabilising energy in Tetrahedral field :

Formula : CFSE = $[-0.6 n_e + 0.4 n_{t_2}] \Delta_t + xP$.

where n_{t_2} & n_e are number of electron(s) in t_2 & e orbitals respectively and Δ_t crystal field splitting energy for tetrahedral complex. "x" represents the number of electron pairs and P is mean pairing energy.

(c) Crystal field splitting in square planar co-ordination entities :

The square planar arrangement of ligands may be considered to be one derived from the octahedral field by removing two trans-ligands located along the Z-axis. In the process, the e_g and t_{2g} sets of orbitals is lifted i.e., these orbitals will no longer be degenerate.

The four ligands in square planar arrangement around the central metal ion are shown in Fig. As the ligands approach through the x and y axis, they would have greatest influence on $d_{x^2-y^2}$ orbital, so the energy of this orbital, will be raised most. The d_{xy} orbital, lying in the same plane, but between the ligands will also have a greater energy though the effect will be less than that on the $d_{x^2-y^2}$ orbitals. On the other hand, due to absence of ligands along Z-axis, the d_{z^2} orbital becomes stable and has energy lower than that of d_{xy} orbital. Similarly d_{yz} and d_{xz} become more stable. The energy level diagram may be represented as shown in figure along with tetrahedral and octahedral fields.

The value of Δ_{sp} has been found larger than Δ_{o} because of the reason that d_{xz} and d_{yz} orbitals interact with only two ligands in the square planar complexes, while in octahedral complexes the interaction takes place only with four ligands. Δ_{sp} has been found equal to $1.3\Delta_{o}$. Thus.

$$\Delta_{\rm sp} = (\Delta_1 + \Delta_2 + \Delta_3) > \Delta_{\rm o} \quad \text{and} \quad \Delta_{\rm sp} = 1.3 \ \Delta_{\rm o}.$$

(E). STABILITY OF COORDINATION COMPOUNDS :

The stability of a coordination compound $[ML_n]$ is measured in terms of the stability constant (equilibrium constant) given by the expression,

$$\beta_n = [ML_n]/[M(H_2O)_n][L]^n$$

for the overall reaction :

ALLEN

 $M(H_2O)_n + nL \implies ML_n + nH_2O$

By convention, the water displaced is ignored, as its concentration remains essentially constant. The above overall reaction takes place in steps, with a stability (formation) constant, K_1 , K_2 , K_3 , ..., K_n for each step as represented below :

$$\begin{split} M(H_2O)_n + L &\rightleftharpoons ML(H_2O)_{n-1} + H_2O \\ K_1 &= [ML(H_2O)_{n-1}] / \{[M(H_2O)_n][L]\} \\ ML_{n-1} (H_2O) + L &\rightleftharpoons ML_n + H_2O \\ K_n &= [ML_n] / \{[ML_{n-1} (H_2O)] [L]\} \end{split}$$

$$M(H_2O)_n + nL \Longrightarrow ML_n + nH_2O$$

$$\beta_n = K_1 \times K_2 \times K_2 \times \dots \times K_n$$

 β_n , the stability constant, is related to thermodynamic stability when the system has reached equilibrium. Most of the measurements have been made from aqueous solutions, which implies that the complex is formed by the ligand displacing, water from the aqua complex of the metal ion. Ignoring the charge and taking L as an unidentate ligand, the stepwise formation of the complex is represented as shown above.

K₁, K₂, K₃ K_n representing the stepwise stability (or formation) constants.

The above is thermodynamic stability criteria, there can be another kind of stability called kinetic stability, which measures the rate of ligand replacement.

(F). FACTORS INFLUENCING THE MAGNITUDE OF C.F.S.E. :

1. Different charges on the cation of the same metal : The cation with a higher oxidation state has a larger value of CFSE than that with lower oxidation state e.g.,

 $[Fe(H_2O)_6]^{3+} > [Fe(H_2O)_6]^{2+}$

2. Same charges on the cation but the number of d-electrons is different : The metal cation the magnitude of CFSE with the increase of the number of d-electrons, e.g.,

 $[Co(H_2O)_6]^{2+} < [Ni(H_2O)_6]^{2+}$

- 3. Quantum number (n) of the d-orbitals of the central metal ion : As 'n' increase CFSE increases. $[Co(NH_{3})_{6}]^{3+} < [Rh(NH_{3})_{6}]^{3+} < [Ir(NH_{3})_{6}]^{3+}$
- 4. Types of Hybridisation :

$$\Delta_{t} = \frac{4}{9}\Delta_{0}$$

5. Presence of cheleting ligand increases CFSE :

 $[Fe(Ox)_3]^{3-} > [Fe(SCN)_6]^{3-}$

node0 6/B0AF.B0 \Kets \FEE Advanced \Enthusics \\Chem\Sheet \Wad ue#Chemical Bonding, Coordination chemistry & Metallur gy\02-C.C. \Eng\Theory+Ex. p6 5

JEE-Chemistry

□ ISOMERISM IN COMPLEXES

- (a) Compounds which have the same molecular formula, but differ in their properties due to the difference in structure are called as **Isomers**.
- (b) Isomerism is commonly considered, to be the characteristic of only organic compounds, it is also found although less frequently among inorganic substances.

✤ CLASSIFICATION OF ISOMERISM

(A) Structural isomerism

It arises due to the difference in the type of chemical linkages and distribution of ligands within and outside the coordination sphere.

(a) Ionisation isomerism

The type of isomerism which is due to the exchange of groups or ions between the coordination sphere and the ionisation sphere.

Example. (i) $Co(NH_3)_4 Br_2 SO_4$ can be represented as

 $[Co(NH_3)_4Br_2]SO_4$ (red violet) and $[Co(NH_3)_4SO_4]Br_2$ (red)

These complexes give sulphate ion and bromide ion respectively

- (ii) $[Pt(NH_3)_4 Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$
- (iii) $[Co(NH_3)_4(NO_3)_2]SO_4$ and $[Co(NH_3)_4SO_4](NO_3)_2$

(b) Hydrate isomerism

This type of isomerism is due to presence of different number of water molecules inside a coordination sphere.

Example. $Cr(H_2O)_6Cl_3$ has four possible structures

- (i) $[Cr(H_2O)_6]Cl_3$ violet
- (ii) $[Cr(H_2O)_5Cl]Cl_2 H_2O$ green
- (iii) $[Cr(H_2O)_4Cl_2]Cl_2H_2O$ dark green.
- (iv) $[Cr(H_2O)_3Cl_3].3H_2O$ dark green.

These complexes differ from one another with respect to the number of water molecules acting as ligands. Other hydrate isomers are

```
[Co(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)Cl]Cl<sub>2</sub>and [Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]Cl.H<sub>2</sub>O
```

- (c) Linkage isomerism
- (i) This type of isomerism arises due to presence of ambidentate ligands like NO_2^{-} , CN^{-} and SCN^{-}
- (ii) These ligands have two donor atoms but at a time only one atom is directly linked to the central metal atom of the complex.
- (iii) Such type of isomers are distinguished by infra red (I.R.) spectroscopy.

- *Example.* [Co(NH₃)₅NO₂]Cl₂ and [Co(NH₃)₅ONO]Cl₂
 - In NO₂⁻ ligand, The coordinating sites are nitrogen (i.e., NO₂⁻ Nitro ligand) or through oxygen (i.e. ONO Nitrito ligand)
 - The nitro isomer is yellow and is stable to acids whereas nitrito isomer is red and is decomposed by acids.

(d) Coordination isomerism

- This type of isomerism is exhibited when the complex has two complex ions in it -'cationic and anionic'.
- (ii) This type of isomerism is caused by the interchange of ligands between the two complex ions of the same complex.

E xample.	$[Co(NH_3)_6] [Cr(CN)_6]$	and	$[Co(NH_3)_6] [Cr(C_2O_4)_3]$
	$[Cr(NH_3)_6] [Co(CN)_6]$		$[Cr(NH_3)_6] [Co(C_2O_4)_3]$

- (e) Ligand isomerism
- (i) Ligands with $C_3H_6(NH_2)_2$ have two different structures i.e. 1, 3-diamino propane and 1, 2-diaminopropane(propylene diamine).
- (ii) Those complexes which have same molecular formula, but differ with respect to their ligands are called as **Ligand isomers**.

Example. [Fe(H₂O)₂ C₃H₆(NH₂)₂Cl₂] has two different structures

(f) Co-ordination Position Isomerisation :

It is shown by polynuclear complexs, due interchange of ligands between the different metal nuclei.

Example.

node0 6/B0AF.B0 \Kets \FEE Advanced \Enthusics \\Chem\Sheet \Wad ue#Chemical Bonding, Coordination chemistry & Metallur gy\02-C.C. \Eng\Theory+Ex. p6 5

Е

ALLEN

1

(g) **Polymerization Isomerism :**

This is not true isomerism because it occurs between compounds having the same empirical formula, but different molecular weights.

Example. [Pt(NH₃)₂Cl₂]

 $[Pt(NH_3)_4] [PtCl_4]$

(B) Stereo isomerism

They have same molecular formula, same constitution, they differ only with respect to the spatial orientation of ligands in space around the metal ion. The two stereo isomers which are possible Geometrical and Optical.

(a) Geometrical isomerism

- (i) The ligands occupy different positions around the central metal ion.
- (ii) When two identical ligands are co-ordinated to the metal ion from same side then it is cis isomer. (Latin, cis means same).
- (iii) If the two identical ligands are co-ordinated to the metal ion from opposite side then it is trans isomer (in Latin, trans means across).

Geometrical isomers with co-ordination number = 4 (Square planar complexes)

(i) Complexes with general formula, Ma₂b₂ (where both a and b are monodentate) can have cis-and trans isomers.

Example.

 $[Pt (NH_3)_2Cl_2]$

(ii) Complexes with general formula Ma, bc can have cis - and trans-isomers.

ALLEN_

Example. [Pt(NH₃)₂ClBr]

(iii) Complexes with general formula, Mabcd can have three isomers.

Geometrical isomers with Co-ordination number = 6

Complexes with general formula $\mathbf{Ma}_4\mathbf{b}_2$ can have cis - and trans-isomers. (i) *Example.* [Fe(NH₃)₄Cl₂]

Facial and Meridional isomerism (Ma₃b₃) (iii)

Other 6-Coordinated geometrical isomers are

Note :	General formula	Total No. of geometrical isomers
	Mabcdef	15
	Ma ₂ bcde	9
	Ma_2b_2cd	6
	Ma ₂ b ₂ c ₂	5
	Ma ₃ bcd	4
	Ma ₃ b ₂ c	3
	Ma ₃ b ₃	2
	Ma ₄ bc	2
	Ma_4b_2	2
	Ma ₅ b	Not possible
	Ma ₆	Not possible
He	are $M = central atom a, b, c,$	d, e, $f = Monodentate$ ligands

(b) **Optical isomers**

- (i) Optically active complexes are those which are nonsuperimposable over the mirror image structure.
- (ii) An optically active complex is one which is asymmetric in nature i.e., not divisible into two identical halves.
- (iii) The complex which rotates plane polarised light to left hand side is laevo rotatory i.e. '*l*' or '—' and if the complex rotates the plane polarised light to right hand side then it is dextro rotatory 'd' or '+'.
- (iv) Thus complexes which have same physical and chemical properties but differ in their action towards plane polarised light are called as **optical isomers**.
- (v) The 'd' and ' ℓ ' isomers of a compound are called as **Enantiomers or Enantiomorphs**.
- (vi) Optical isomerism is expected in tetrahedral complexes of the type Mabcd.

Optical isomers with Co-ordination number = 6

(ii) [Mabcedf]
$$\rightarrow$$
 [Pt(py) (NH₃) (NO₃) ClBrI]

(iii) $[\mathbf{M}(\mathbf{AA})_3]^{n+} \rightarrow [\mathbf{Co}(\mathbf{en})_3]^{3+}$

ALLEN.

Formula	Number of stereoisomers	Pairs of Enantiomers			
1 _{2, DA}	2	0			
1 _{2.D}	2	0			
$1_{2_t D_g}$	2	0			
1 _{2. Dyb}	5	1			
$1_{2_AD_3bl}$	15	6			
1 _{2Dgbl B}	30	15			
$1_{2_A D_A S_A}$	6	1			
$1_{2_AD_Agb}$	8	2			
1 _{2. DAS}	3	0			
M(AA)(BC)de	10	5			
M(AB)(AB)cd	11	5			
M(AB)(CD)ef	20	10			
M(AB) ₃	4	2			

NUMBER OF POSSIBLE ISOMERS FOR SPECIFIC COMPLEXES

Note : Uppercase letters represent chelating ligands and lowercase letters represent monodentate ligands.

2.

EXERCISE # O-1

SINGLE OPTION CORRECT :

Double salt and complex compound

1. Some salts although containing two different metallic elements give test for one of them in solution. Such salts are

(A) complex salt (B) double salt (C) normal salt (D) none of these

Aqueous solution of FeSO₄ gives tests for both Fe²⁺ and SO²⁻₄ but after addition of excess of KCN,

solution ceases to give test for Fe^{2+} . This is due to the formation of

- (A) the double salt $FeSO_4.2KCN.6H_2O$ (B) $Fe(CN)_3$
- (C) the complex ion $[Fe(CN)_6]^{4-}$ (D) the complex ion $[Fe(CN)_6]^{3-}$

Werner theory

3. Consider the following statements:

According the Werner's theory.

- (a) Ligands are connected to the metal ions by covalent bonds.
- (b) Secondary valencies have directional properties
- (c) Secondary valencies are non-ionisable

Of these statements:

- (A) a, b and c are correct (B) b and c are correct
- (C) a and c are correct (D) a and b are correct
- **4.** A complex of platinum, ammonia and chloride produces four ions per molecule in the solution. The structure consistent with the observation is:

(A) $[Pt(NH_3)_4]Cl_4$ (B) $[Pt(NH_3)_2Cl_4]$

(C) $[Pt(NH_3)_5Cl]Cl_3$ (D) $[Pt(NH_3)_4Cl_2]Cl_2$

5. Which of the following Werner's complex has least electrical conductivity?

		M
A		

		Classificat	ion of ligand	
6.	How many EDTA	A ⁻⁴ molecules are required	to make an octahed	dral complex with a Ca ²⁺ ion ?
	(A) Six	(B) Three	(C) One	(D) Two
7.	π -bonding is not	involved in :		
	(A) ferrocene (E	B) dibenzene chromium	(C) Zeise's salt	(D) Grignard reagent
8.	Which of the follo	owing is not considered as	an organometallic o	compound ?
	(A) Ferrocene	(B) Cis-platin	(C) Ziese's salt	(D) Grignard reagent
9.	Diethylene triami	ne is:		
	(A) Chelating age	ent	(B) Polydentate li	igand
10	(C) Tridentate lig	and	(D) All of these	
10.	which of the follo	owing species is not expec	ted to be a ligand	
	(A) NO^+	(B) NH_4^+	(C) $NH_2 - NH_3^+$	(D) CO
11.	The disodium salt the aqueous solut	of ethylene diamine tetraa	cetic acid can be used	d to estimate the following ion(s) in
	(A) Mg^{2+} ion	(B) Ca^{2+} ion	(C) Na ⁺ ion	(D) both Mg^{2+} and Ca^{2+}
12.	Which of the foll	owing ligand does not act	t as bidentate ligand	l
	(A) dipy	(B) dien	(C) gly ⁻	(D) dmg ⁻
		Synerg	ic bonding	
13.	Which of the foll	owing order is correct for	the IR vibrational	frequency of CO.
	(A) $[Fe(CO)_4]^{2-4}$	$< [Co(CO)_4]^- < [Ni(CO)_4]^-$	(B) $[Fe(CO)_4]^{2-}$	$[\mathrm{Co(CO)}_4]^- > [\mathrm{Ni(CO)}_4]$
	(C) $[Fe(CO)_4]^{2-2}$	$> [Co(CO)_4]^- < [Ni(CO)_4]$	(D) $[Fe(CO)_4]^{2-1}$	$< [Co(CO)_4]^- > [Ni(CO)_4]$
14.	In the isoelectroni	c series of metal carbonyl, th	he C–O bond strength	n is expected to increase in the order.
c od x3+Kr	$(A) [Mn(CO)_6]^+$	$< [Cr(CO)_6] < [V(CO)_6]^-$	(B) $[V(CO)_6]^- < $	$[Cr(CO)_6] < [Mn(CO)_6]^+$
uz-c.c.,tmg,the	$(C) [V(CO)_6]^- <$	$[Mn(CO)_{6}]^{+} < [Cr(CO)_{6}]$	(D) [Cr(CO) ₆] <	$[Mn(CO)_6]^+ < [V(CO)_6]^-$
15.	Which of the foll	owing has higher stretching	ng frequency for C-	-O bond -
n chemistry &	(A) $[Ni(CO)_3PF_3]$]	$(B) [Ni(CO)_3(PM)]$	[e ₃)]
Coordinatio	(C) both have eq	ual stretching frequency	(D) None of thes	e
⁵⁰ 16.	Which of the foll	lowing has higher multiple	bond character in	M–C bond -
ad ue#Chem	(A) $[Ni(CO)_4]$			
am/Sheet W	(B) $[Co(CO)_4]^-$			
musica fy Che	(C) $[Fe(CO)_4]^{2-}$			
	(D) (B) and (C)	both have equal multiple	oond character in M	I–C bond
17.	The V–C distance	e in $V(CO)_{\epsilon}$ and $[V(CO)_{\epsilon}]$	- are respectively (in	n pm)-
	(A) 200, 200	(B) 193, 200	(C) 200, 193	(D) 193, 193
Ē				۲ 7
<u>ک</u>				57

5/

		F N
--	--	-----

	Co-ordination number and E.A.N.					
18.	Among the following complexes which can act as oxidising agent.					
	(A) $[Mn(CO)_6]$	(B) $[Mn(CO)_6]^+$	(C) $[Mn(CO)_5]^-$	(D) $[V(CO)_6]$		
19.	Which of the follow	ing statement is correc	t regarding the compou	nd " $[(CO)_{3}Fe(CO)_{3}Fe(CO)_{3}]$ ".		
	(A) The d _{C-O} (brid	ging) is greater than d _C	-O (terminal)			
	(B) The bond order	r of bridging C – O bor	nd is greater than that o	of terminal C – O bond		
	(C) The E.A.N. val	ue of each Fe-atom is	35			
	(D) The oxidation	state of Fe in this comp	lex is (–I)			
20.	How many π electron	ons are donated by C_5	$\mathrm{H_5^{-}}$ ligand -			
	(A) 2	(B) 4	(C) 5	(D) 6		
21.	Effective atomic nu	mber of $Co(CO)_4$ is 35,	hence it is less stable. I	t attains stability by		
	(A) Oxidation of Co)	(B) Reduction of Co			
	(C) Dimerization		(D) Both (B) & (C)			
22.	In the complex Fe($CO)_{x}$, the value of x is:				
	(A) 3	(B) 4	(C) 5	(D) 6		
23.	The EAN of platinum in potassium hexachloroplatinate (IV) is:					
	(A) 46	(B) 86	(C) 36	(D) 84		
24.	The EAN of metal	atoms in $Fe(CO)_2(NO)_2$	and $\text{Co}_2(\text{CO})_8$ respectively are			
	(A) 34, 35	(B) 34, 36	(C) 36, 36	(D) 36, 35		
		Naming of co	mplex compound			
25.	The IUPAC name f	or the coordination con	npound $Ba[BrF_4]_2$ is			
	(A) Barium tetrafluo	probromate (V)	(B) Barium tetrafluorobromate (III)			
	(C) Barium bis (tetra	afluorobromate) (III)	(D) none of these			
26.	The number of ions formed, when bis (ethane-1,2-diamine) copper (II) sulphate is dissolved in water will be					
	(A) 1	(B) 2	(C) 3	(D) 4		
27.	The IUPAC name of	of the Wilkinson's cataly	$vst [Rh Cl (P Ph_3)_3] is$			
	(A) Chloridotris(trij	ohenylphosphine)rhodiu	m(I)			
	(B) Chloridotris(trip	ohenylphosphine)rhodiu	m(IV)			
	(C) Chloridotris(trip	ohenylphosphine)rhodiu	m(0)			
	(D) Chloridotris(trij	phenylphosphine)rhodiu	ım(VI)			
28.	The formula for the	compound tris (ethane-	1, 2-diamine)cobalt (III) sulphate is		
	(A) $[Co(en)_3]SO_4$		$(B) [Co(SO)_4(en)_3]$			
	(C) $[Co(en)_3](SO_4)$	2	(D) $[Co(en)_3]_2(SO_4)_2$	3		

58

ALLEN

Е

- **35.** How many coordination isomers of $[Pt(NH_3)_4][PtCl_4]$ show geometrical isomerism.
 - (A) All (B) One (C) Two (D) None
- 36. Identify the pair of complex which are stereoisomer of each other -

- 37. Find complex which have maximum number of stereoisomers -
 - (A) $[Ma_3b_3]$ (B) $[Ma_3b_3c]$ (C) $[Ma_3b_3c_3]$ (D) $[M(AA)a_3b_3]$
- **38.** In which of the following pairs both the complexes show optical isomerism ?

(A) cis-
$$[Cr(C_2O_4)_2Cl_2]^{3-}$$
, trans- $[Co(NH_3)_4Cl_2]$

- (B) $[Co(en)_3]Cl_3$, cis- $[Co(en)_2Cl_2]Cl_3$
- (C) [PtCl (dien)]Cl, $[NiCl_2Br_2]^{2-}$

(D)
$$[Co(NO_3)_3 (NH_3)_3]$$
, cis- $[Pt(en)_2Cl_2]$

39. Which of the following is considered to be an anticancer species ?

40.Which of the following can exhibit geometrical isomerism ?(A) $[MnBr_4]^{2-}$ (B) $[Pt(NH_3)_3Cl]^+$ (C) $[PtCl_2(P(C_2H_5)_3)_2]$ (D) $[Fe(H_2O)_5NOS]^{2+}$

ALLEN

node0 6/80A+80 Vkota VIEI Advanced \ Enthusias \\ Chem\Sheet \\ Mad ule#Chemical Bonding, Coordination chemistry & Metallurgy \ \ U2-C.C. \ Eng \\ Theory+Ex \ \ u5

Е

41. The oxidation state of Mo in its oxo-complex species $[Mo_2O_4(C_2H_4)_2(H_2O)_2]^{2-}$ is:

(A)
$$+2$$
 (B) $+3$ (C) $+4$ (D) $+5$

42. Which of the following ions are optically active?

(A) I only (B) II only (C) II and III (D) IV only43. The complex ion has two optical isomers. Their CORRECT configurations are:

JEE-Chemistry

50.	Which of the following is diamagnetic and sp ³ hybridised -						
	(A) [NiCl ₄] ²⁻	(B) [Ni(CN) ₄] ^{4–}	(C) $[Ni(CN)_4]^{2-}$	(D) $[NiCl_2(PPh_3)_2]$			
51.	$[Cr(H_2O)_6]Cl_3$ (atom distribution of 3d ele	nic number of $Cr = 24$) lectrons in the chromium	has a magnetic moment of 3.83 B.M. The CORRECT a present in the complex is:				
	(A) $3d_{xy}^1$, $3d_{yz}^1$, $3d_{yz}^1$, $3d_{yz}^1$	1 zx	(B) $3d^{1}_{xy}$, $3d^{1}_{yz}$, $3d^{1}_{yz}$	z ²			
	(C) $3d^{1}_{(x^{2}-y^{2})}, 3d^{1}_{z^{2}}, $	$\mathrm{3d}_{\mathrm{xz}}^1$	(D) $3d_{xy}^1, 3d_{(x^2-y^2)}^1, 3d_{(x^2-y^2)}^1$	$3d_{yz}^1$			
52.	$[Fe(H_2O)_6]^{+2}$ has C 17,600 cm ⁻¹ then it	Crystal Field Splitting	Energy value 10,400 cm ⁻¹ and pairing energy value				
	(A) Low spin comp	olex	(B) Paramagnetic in	nature			
	(C) Diamagnetic in	nature	(D) None of these				
53.	In which of the follo	wing coordination entiti	es, the magnitude of Δ_0	[CFSE in octahedral field] will			
	be maximum? :						
	(A) $[Co(CN)_6]^{3-}$		(B) $[Co(C_2O_4)_3]^{3-1}$				
	$(C) [Co(H_2O)_6]^{3+}$		(D) $[Co(NH_3)_6]^{3+}$	$[I_3)_6]^{3+}$			
54.	The number of unpa	ired electrons calculated	d in $[Co(NH_3)_6]^{3+}$ and	$[CoF_6]^{3-}$ are :			
	(A) 4 and 4	(B) 0 and 2	(C) 2 and 4	(D) 0 and 4			
55.	An ion M^{2+} , forms the complexes $[M(H_2O)_6]^{2+}$, $[M(en)_3]^{2+}$ and $[MBr_6]^{4-}$, match the complex wit the appropriate colour.						
	(A) Green, blue and red (B) Blue, red and green						
	(C) Green, red and blue		(D) Red, blue and gr	een			
56.	Formula of ferrocene is:						
	(A) $[Fe(CN)_6]^{4-}$	(B) $[Fe(CN)_6]^{3+}$	(C) [Fe(CO) ₅]	(D) $[Fe(C_5H_5)_2]$			
57.	Ni(CO) ₄ and [Ni(N]	$(H_3)_4]^{2+}$ do not differ in					
	(A) magnetic mome	nt	(B) oxidation numbe	r of Ni			
	(C) geometry		(D) EAN				
58.	A complex of certains	n metal has the magnetic	e moment of 4.91 BM v	whereas another complex of the			
	(A) Co^{2+}	(B) Mn ²⁺	(C) Fe ²⁺	(D) Fe^{3+}			
59.	The tetrahedral [Co	$[.]^{2-}$ and square planar [$PdBr_{1}^{2-}$ complex ions	are respectively			
	(A) low spin, high s	pin	(B) high spin, low sp				
	(C) both low spin	•	(D) both high spin				
60.	Which one of the fe aqueous solution	ollowing species does r	not represent cationic s	species of vanadium formed in			
	(A) VO ₂ ⁺	(B) VO ²⁺	(C) $[V(H_2O)_6]^{3+}$	(D) VO_2^{2+}			
62		•					

nado0/804/80/168/Veb/IERAkaraad/Erhivian/Chem/Shee/Walue#Cheniad Bonding, Coordination chemistry & Meed Jurgy/02: CC:\Eng\Theory#Exp65

ALLEN

ALL	en			Coordination Chemisiry		
61.	On treatment of $[Ni(NH_3)_4]^{2+}$ with concentrated HCl, two compounds I and II having the same formula, $[NiCl_2(NH_3)_2]$ are obtained, I can be converted into II by boiling with dilute HCl. solution of I reacts with oxalic acid to form $[Ni(C_2O_4)(NH_3)_2]$ wheras II does not react. Point of the correct statement of the following					
	(A) I cis, II trans; bot	th tetrahedral	(B) I cis, II trans; bot	h square planar		
	(C) I trans, II cis; bot	h tetrahedral	(D) I trans, II cis; bot	h square planar		
62.	Among the following	g, the compound that is	both paramagnetic and	coloured is		
	(A) $K_2Cr_2O_7$	(B) $(NH_4)_2[TiCl_6]$	(C) VOSO ₄	(D) $K_3[Cu(CN)_4]$		
63.	The magnetic mome (X = monodentate a	ent of $[NiX_4]^{2-}$ ion is for nionic ligand).	ound to be zero. Then t	he metal of the complex ion is		
	(A) sp ³ hybridised	(B) spd ² hybridised	(C) dsp ² hybridised	(D) d ² sp hybridised		
64.	For which of the follo complexes remains s	owing types of d ⁿ config ame irrespective of the	guration, the number of u ligand field strength.	unpaired electrons in octahedral		
	(A) d^3	(B) d ⁴	(C) d ⁵	(D) d ⁶		
65.	Which of the follwoi	ng electronic arrangem	ent gives the highest va	lue of the magnetic moment?		
	(A) d^6 , strong field	(B) d ⁷ , high spin	(C) d^4 , weak field	(D) d^2 , strong field		
66.	Select appropriate lip $[Co()_6]^{\pm x}$; $\mu =$	gand for given complex 0 BM				
	(A) $C_{2}O_{4}^{2-}$	(B) en	(C) H ₂ O	(D) F ⁻		
67.	According to C.F.T.	, ligands are treated as	5 -			
	(A) Point charges	(B) Lewis acids	(C) Proton donor	(D) All of the above		
68.	Which of the follow	ing is correct electronic	c configuration of 3d or	bital in excited state of central		
	metal ion, when $[Ti(H_2O)_6]^{3+}$ absorbed yellow-green light.					
	(A) 3d	1	(B) t_{2g}^1 , e_g^0			
	(C) $t_{2\sigma}^1, e_{\sigma}^1$		(D) $t_{2\sigma}^0, e_{\sigma}^1$			
69.	If $\lambda_{absorbed}$ for d-d tra	insition is in order [Ti(2	$X_{6}^{3+} > [Ti(Y_{6}^{3+})]^{3+} > [T$	$[i(Z)_6]^{3+}$.		
	Select correct order	of strength of ligands ((X, Y, Z are monodenta	ate ligand)-		
	(A) $Z > Y > X$		(B) $X > Y > Z$			

MORE THAN ONE MAY BE CORRECT

- Which of the following exhibit geometrical isomerism (M stands for a metal, and a and b are achiral 1. ligands)?
 - (A) Ma_2b_2 (Sq. Pl.) (B) Ma_4b_2 (C) Ma_5b $(D) Ma_6$
- 2. Which of the following statement(s) is (are) CORRECT ?
 - (A) The oxidation state of iron in sodium nitroprusside $Na_2[Fe(CN)_5(NO)]$ is +II.
 - (B) $[Ag(CN)_2]^-$ is linear in shape.
 - (C) In $[Fe(H_2O)_6]^{3+}$, Fe is d^2sp^3 hybridized.
 - (D) In $Ni(CO)_4$, the oxidation state of Ni is zero.
- 3. Which of the following compound(s) show(s) optical isomerism.

(A) $[Pt(bn)_{2}]^{2+}$ (B) $[CrCl_2(en)_2]^+$ (C) $[Co(en)_2] [CoF_6]$ (D) $[Zn(gly)_2]$

- Select **INCORRECT** statement(s) for $[Cu(CN)_4]^{3-}$, $[Cd(CN)_4]^{2-}$ and $[Cu(NH_3)_4]^{2+}$ complex ion. 4.
 - (A) Both $[Cd(CN)_4]^{2-}$ and $[Cu(NH_3)_4]^{2+}$ have square planar geometry
 - (B) $[Cu(CN)_4]^{3-}$ and $[Cu(NH_3)_4]^{2+}$ have equal no. of unpaired electron
 - (C) $[Cu(CN)_4]^{3-}$ and $[Cd(CN)_4]^{2-}$ can be separated from the mixture on passing H₂S gas.
 - (D) All the three complexes have magnetic moment equal to zero.
- 5. Which of the following will have two stereoisomeric forms?
 - (A) $[Cr(NO_3)_3(NH_3)_3]$ (B) $K_{3}[Fe(C_{2}O_{4})_{3}]$ (D) $[CoBrCl(Ox)_2]^{3-}$ (C) $[CoCl_2(en)_2]^+$
- 6. Which is / are **NOT** correctly matched.
 - **Complex compounds**
 - $K[CrF_4O]$ (A)
 - $Na[BH(OCH_2)_2]$ **(B)**
 - $[Be(CH_3-CO-CH_2-CO-C_6H_5)_2]^\circ$ (C)
 - (D) H[AuCl₄]
- 7. Which of the following statement(s) is/are INCORRECT
 - (A) In [CoBrCl(en)₂]⁺ geometrical isomerism exists, while optical isomerism does not exist
 - (B) Potassium aquadicyanidosuperoxidoperoxidochromate(III) is IUPAC name for $K_2[Cr(CN)_2O_2(O_2)(H_2O)]$
 - (C) There are 3 geometrical isomers and 15 stereoisomers possible for [Pt(NO₂)(NH₂)(NH₂OH)(py)]⁺ and $[PtBr Cl I (NO_2)(NH_3)(py)]$ respectively
 - (D) cis and trans forms are not diastereomers of each other

Potassium tetrafluoridooxidochromate(V) Sodium hydridotrimethoxyborate(III) Bis(benzoylacetonato)beryllium(III)

IUPAC name

Hydrogen tetrachloroaurate(III)

8. Which of the following complexes are polymerisation isomers :

(A)
$$\left[(NH_3)_3 Co \xleftarrow{OH}_{OH} Co (NH_3)_3 \right]^{3+}$$
 and $\left[Co \xleftarrow{OH}_{OH} Co (NH_3)_4 \right]_3^{6+}$

- (B) $[Pt(NH_3)_4] [PtCl_4]$ and $[Pt(NH_3)_4] [Pt(NH_3)Cl_3]_2$
- (C) [Pt(NH₃)₂Cl₂] and [Pt(NH₃)₃Cl]₂ [PtCl₄]
- (D) $[Pt(NH_3)_2Cl_4]$ and $[Pt(NH_3)_2Cl_2]$
- 9. Which of the following is **CORRECT** about

Tetraamminedithiocyanato-Scobalt(III) tris(oxalato)cobaltate(III)

- (A) formula of the complex is $[Co(SCN)_2(NH_3)_4][Co(ox)_3]$
- (B) It is a chelating complex and show linkage isomerism.
- (C) It shows optical isomerism.
- (D) It shows geometrical isomerism.
- **10.** Which is **CORRECT** statement(s)?
 - (A) $[Ag(NH_3)_2]^+$ is linear with sp hybridised Ag^+ ion
 - (B) NiCl $_4^{2-}$, VO $_4^{3-}$ and MnO $_4^-$ have tetrahedral geometry
 - (C) $[Cu(NH_3)_4]^{2+}$, $[Pt(NH_3)_4]^{2+}$ & $[Ni(CN)_4]^{2-}$ have dsp² hybridisation of the metal ion
 - (D) Fe(CO)₅ has trigonal bipyramidal structure with d_{2}^{2} sp³ hybridised iron.
- 11. In which of the following complex(s) spin only magnetic moment is independent, from the nature of ligand. (L = monodented ligand) -

	(A) $\begin{bmatrix} \text{II} \\ \text{Ni} L_4 \end{bmatrix}$	(B) $[\operatorname{Ni}^{II} L_6]$	(C) $[FeL_6]$	(D) $[\operatorname{Cr}^{III} L_6]$	
12.	Which of the following	g compound(s) can show	optical isomerism?		
	(A) $[PtCl_4]^{2-}$	$(B) [PtCl_2(NH_3)_2]$	(C) [Fe(EDTA)] ⁻	(D) $[Fe(en)_3]^{3+}$	
13.	Which of the following compounds are resolvable into d or ℓ -forms?				
	(A) $[ZnCl_2(en)]$	$(B) [Be(acac)_2]$	(C) $[Co(gly)_3]$	(D) $[Cr(C_2O_4)_3]^{3-1}$	
14.	Which of the following ion is/are diamagnetic and non planar?				
	(A) $[Ni(CN)_4]^{2-}$	(B) MnO_4^{-}	(C) $[Cu(NH_3)_4]^{2+}$	(D) CrO ₄ ^{2–}	

65

Е

EXERCISE # S-1

INTEGER TYPE

1. Find number of ligands which is / are stronger ligand as compared to NH_3

 NO_{2}^{-} , $H_{2}O$, NO_{3}^{-} , F^{-} , $C_{2}O_{4}^{2-}$, en, CI^{-} , \overline{CN}

- 2. If crystal field stablization energy of $[ML_6]^{+n}$ is $-0.8 \Delta_0$. Find minimum number of electrons in t_{2g} orbitals of metal ion ?
- 3. Find number of Co–N linkage in,

$Pentaammine cobalt (III) - \mu - amidodi ammine tria qua cobalt (III) \ chloride.$

- 4. Find the EAN value of central atom of $[Fe(\pi-C_4H_4) (CO)_3]$
- 5. Find the maximum number of atoms lying in one plane for $[Cr(CN)_6]^{3-1}$
- 6. Select complex in which metal–carbon linkage(s) is / are present :

$$\begin{bmatrix} III \\ Fe(EDTA) \end{bmatrix}^{-}, K[PtCl_{3}(\pi - C_{2}H_{4})], [Cr(acac)_{3}]^{\circ}, [Fe(CO)_{5}], [Co(C_{2}H_{5}O)_{6}]^{3-}, [Ni(dmg)_{2}] \end{bmatrix}$$

- 7. Find out the total number of geometrical isomers of $[Co(H_2O)_3Cl_3]$.
- 8. Find the value of E.A.N of $[Pd(CO)_4]^{+2}$ (atomic number = 46) :
- **9.** A co-ordination compound have magnetic moment 5.92 B.M. Find out the number of unpaired electron(s) in the compound.
- 10. Find the number of optically active isomers for $[Pd(en)_2(NH_3)(H_2O)]^{4+}$ cation.

EXERCISE # S-2

MATCH THE COLUMN :

1. Match the complexes in column-I with the EAN of central atom in column-II:					central atom in column-II:		
		Column-I				Column-II	
	(A)	$[Fe(CO)_{4}]^{2-}$			(P)	34	
	(B)	[Co(NH ₃) ₅ Cl](Cl_2		(Q)	35	
	(C)	$K_2[Ni(CN)_4]$			(R)	36	
	(D)	$[Cu(NH_3)_4]^{2+}$			(S)	37	
2.		Column - I				Column -II	
	(A)	Na_2 [Fe(CN) ₅]	NO]		(P)	$\mu = 0 \text{ B.M.}$	
	(B)	[Fe(H ₂ O) ₅ NO] SO ₄		(Q)	octahedral	
	(C)	$[Ag(CN)_2]^-$			(R)	$\mu = \sqrt{15} \text{ B.M.}$	
	(D)	$K_4[Fe(CN)_6]$			(S)	NO ⁺ ligand	
3.	Matc	Match the complexes in column I with their stereoproperties is column II					
		Column I				Column II	
	(A)	[CoCl ₃ (NH ₃) ₃]			(P)	Has a facial isomer	
	(B)	$[Cr(ox)_3]^{3-}$			(Q)	Cis form is optically active	
	(C)	$[CrCl_2(ox)_2]$			(R)	Trans form is optically inactive	
	(D)	$[RhCl_3(Py)_3]$			(S)	Has a meridional form	
Ex.p65					(T)	Two optically active isomer	
4.	Match	Match each coordination compound in List-I with co-ordination number of central metal/ion from					
List-II and select the correc			rrect answer	using th	ie code g	given below the lists.	
ry & Metallur	I	List-I				List-II	
nation chemis	(P) [C	$o(en)_{3}^{3+}$			(1) 6		
$(Q) [Ca(EDIA)]^{2}$				(2) 4 (3) 2			
Chemical Bor	(R) [R (S) [A	$g(NH_{2})_{3}$]Cl			(4) 5		
CC	ode :	y y 2 1					
ast/Chem\S	I	P Q	R	S			
roed)/Enthusi	(A) 2	2 1	2	3			
ta VEE(Adva	(B) 1	. 1	2	3			
\B0AI-B0\Kc	(C) 1	. 4	2	3			
node0 6	(D) I	. 1	3	2			
E			•			——• 67	

5. Match the List-I with List-II: List-II List-I (P) Ferrocene $(Q) Mn_{2}(CO)_{10}$ (2) Cobalt (R) Vitamine B₁₂ (S) Haemoglobin Code : Р R S 0 2 4 3 1 (A) **(B)** 1 3 1 2 (C) 1,4 3 2 1 2 (D) 1 3 4 6. Match the List-I with List-II: List-I List-II (P) EDTA⁴⁻ (Q) en (R) gly-(S) amide Code : Р Q R S (A) 4 2 1 3 3 4 (B) 2 1 2 3 4 1 (C)

- (1) Iron present
- (3) Metal-Metal bonding
- (4) Sandwich structure

- (1) N-donor atom
- (2) Chelate ligand with same donor site
- (3) Bidentate with different donor atom
- (4) Hexadentate

Assertion Reason :

(D) 4

- **Statement-1**: Complexes containing three bidentate groups such as $[Cr(ox)_3]^{3-}$ and $[Co(en)_3]^{3+}$ 7. do not show optical activity.
 - **Statement-2**: Octahedral complex, $[Co(NH_2)_4Cl_2]Cl$ shows geometrical isomerism.

1

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

2

3

(D) Statement-1 is false, statement-2 is true.

8. Statement-1: After splitting of d-orbitals during complex formation, the orbitals form two sets of orbitals $t_{2\sigma}$ and e_{σ} in an octahedral field.

Statement-2: Splitting of d-orbitals occur only in the case of strong field ligands such as CN⁻.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

ALLEN

9. Statement-1: $[Ti(H_2O)_6]^{3+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless.

Statement-2: d–d transition is not possible in $[Sc(H_2O)_6]^{3+}$ because no d-electron is present while possible for Ti³⁺ having d¹ system.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Comprehension (10 to 12)

Ligands are neutral or ionic species capable of donating at least one electron pair to central metal. Hence ligands can be of different denticities.

10. For a given metal M³⁺ coordination number is six, then for which set of ligands, complex will be most stable-

(A) $6H_2O$ (B) $6F^-$ (C) $EDTA^{4-}$ (D) $2H_2O$ and $2C_2O_4^{2-}$

(B) Reduction of itself

- 11. [Mn(CO)₅] can attain more stability by :(A) Oxidation of itself
 - (C) Dimerization (D) Both (B) and (C)

12. The metal cation that has least tendency to accept electron pair from NH_3 is

(A) Fe^{3+} (B) Rh^{3+} (C) Zn^{2+} (D) Ba^{++}

Comprehension (13 to 15)

Complex compounds are molecular compounds which retain their identities even when dissolved in water. They do not give all the simple ions in solution but instead furnish complex ions with complicated structures. The complex compounds are often called coordination compounds because certain groups called ligands are attached to the central metal ion by coordinate or dative bonds. Coordination compounds exhibit isomerism, both structural and stereoisomerism. The structure, magnetic property, colour and electrical properties of complexes are explained by various theories.

- **13.** Arrange the following compounds in order of their Molar conductance:

14. The oxidation number and coordination number of chromium in the following complex is $[Cr(C_2O_4)_2(NH_3)_2]^{1-}$

(A) O.N. = +4, C.N. = 4(B) O.N. = +3, C.N. = 4(C) O.N. = -1, C.N. = 4(D) O.N. = +3, C.N. = 6

15. In which of the following pairs, both the complexes have the same geometry but different hybridisation

(A) $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$ (B) $[CoF_6]^{3-}$, $[Co(NH_3)_6]^{3+}$ (C) $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$ (D) $[Cu(NH_3)_4]^{2+}$, $[Ni(NH_3)_6]^{2+}$

Е

Matching list type 1 × 3Q. (Three list type Question)

The following column I, II, III represent the different type of observations based on CFT in complex compounds.

Answer the questions that follow

Column-I - Crystal field stablization energy (CFSE) (neglecting PE in all cases)

Column-II - Electronic configuration

Column-III - Type of complex

Column - I CFSE (neglecting PE in all cases	Column - II Electronic Configuration	Column - III Type of Complex
(I) $-0.4 \Delta_0$	(i) t_{2g}^{5}, e_{g}^{0}	(P) High spin & Paramagnetic
(II) $-2.0 \Delta_0$	(ii) t_{2g}^{4}, e_{g}^{0}	(Q) Low spin & Paramagnetic
(III) $-2.4 \Delta_0$	(iii) t_{2g}^{6}, e_{g}^{0}	(R) High spin & Diamagnetic
$(IV) - 1.2 \Delta_0$	(iv) t_{2g}^{4} , e_{g}^{2}	(S) Low spin & Diamagnetic

16. For sodium nitroprusside complex the only **CORRECT** combination is

	(A) (III), (iv), (Q)	(B) (III), (iii), (S)	(C) (III), (iii), (R)	(D) (II), (iii), (Q)			
17.	For $[Co(H_2O)_3F_3]$ complex the only CORRECT combination is.						
	(A) (I), (iv), (Q)	(B) (II), (iv), (S)	(C) (III), (ii), (R)	(D) (I), (iv), (P)			
18.	For $[Mn(CN)_6]^{4-}$ complex the only CORRECT combination is.						

(A) (IV), (i), (S) (B) (II), (i), (R) (C) (I), (i), (S) (D) (II), (i), (Q)

ALLEN
ALLEN .

		EXERCIS	E # JEE-MAIN		
1.	In $[Cr(C_2O_4)_3]^{3-}$, th	e isomerism shown is -			[AIEEE-2002]
	(1) Ligand	(2) Optical	(3) Geometrical	(4) Ioniz	ation
2.	In the complexes []	$Fe(H_2O)_6]^{3+}$, [Fe(SCN)_6]	$]^{3-}$, $[Fe(C_2O_4)_3]^{3-}$ and $[F$	eCl ₆] ³⁻ , more	stability is shown
	by -				[AIEEE-2002]
	(1) $[Fe(H_2O)_6]^{3+}$	(2) $[Fe(SCN)_6]^{-3}$	(3) $[Fe(C_2O_4)_3]^{3-1}$	(4) [FeC	$[1_6]^{3-}$
3.	One mole of the co	omplex compound Co(N	$(H_3)_5 Cl_3$, gives 3 moles	of ions on di	ssolution in water
	One mole of the saturation $\Delta q C_1(q)$. The struct	ime complex reacts with	h two moles of $AgNO_3$	solution to y	reld two moles of
	AgCI(s). The struct (1) [C ₂ (NH) Cl 1]		(2) $[C_{2}(N H), C_{1}]$	NI NILI	[AIEEE-2005]
	(1) $[Co(NH_3)_3CI_3]$.	1 NH	(2) $[Co(NH_3)_4CI_2]$	1	
1	(5) $[CO(NII_3)_4CI]C$	compound K [Ni(CN)]	(4) $[CO(NII_3)_5CI]C$	nickel is	[AIFEE 2003]
4.	(1) 0	(2) +1	(3) + 2	(4) -1	
5	(1) 0	(2) + 1	(3) + 2 e^{2+} (At no. of Fe = 26) i	$(4)^{-1}$	[AIFFF_2003]
J •	(1) Λ	(2) 5	(3) 6	(1) 3	
6	(1) 4	(2) J	(5) 0	(ד) J	and hut not in acidia
0.	solution. What is th	te reason for it :-		Kallife Solutio	[AIEEE-2003]
	(1) In acidic solutio	ons hydration protects co	opper ions		[]
	(2) In acidic soluti	ons protons coordinate	with ammonia molecul	es forming	$_{\rm ot}$ ⁺ ions and NH.
	molecules are r	not available		0	- t _ 3
	(3) In alkaline solu	tions insoluble Cu(OH)	is precipitated which is	s soluble in e	xcess of any alkali
	(4) Copper hydroxi	de is an amphoteric sub	stance		
7.	Among the properti	ies (a) reducing (b) oxidi	sing (c) complexing, the	set of proper	ties shown by CN-
	ion towards metal s	species is :-		1 1	[AIEEE-2004]
	(1) c, a	(2) b, c	(3) a, b	(4) a, b,	с
8.	The coordination m	umber of a central metal	atom in a complex is de	etermined by	:- [AIEEE-2004]
	(1) The number of	ligands around a metal	ion bonded by sigma ar	nd pi-bonds b	ooth
	(2) The number of	ligands around a metal	ion bonded by pi-bonds		
	(3) The number of	ligands around a metal	ion bonded by sigma bo	onds	
	(4) The number of	only anionic ligands bo	nded to the metal ion		
9.	Which one of the f	ollowing complexes is a	n outer orbital complex	:-	[AIEEE-2004]
	(1) $[Co(NH_3)_6]^{3+}$		(2) $[Mn(CN)_6]^{4-}$		
	(3) $[Fe(CN)_6]^{4-}$		(4) $[Ni(NH_3)_6]^{2+}$		
	(Atomic nos.:Mn=2	25 ; Fe=26 ; Co=27 ; N	i = 28)		
		•			71

JEE-Chemistry

- 10. Coordination compounds have great importance in biological systems. In this contect which of the following statements is INCORRECT ?
 [AIEEE-2004]
 - (1) Cyanocobalamin is vitamin B_{12} and contains cobalt
 - (2) Haemoglobin is the red pigment of blood and contains iron
 - (3) Chlorophylls are green pigments in plants and contain calcium
 - (4) Carboxypeptidase A is an enzyme and contains zinc
- 11. The CORRECT order of magnetic moments (spin only values in B.M.) among is :- [AIEEE-2004]
 - (1) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ (3) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$ (4) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
 - (Atomic nos. : Mn = 25, Fe = 26, Co = 27)
- For octahedral complex, the value of the 'spin only' magnetic moment for one of the following configurations is 2.84 BM. The CORRECT one is [AIEEE-2005]
 - (1) d^4 (in strong ligand field) (2) d^4 (in weak ligand field)
 - (3) d^3 (in weak as well as in strong field) (4) d^5 (in strong ligand field)
- **13.** The IUPAC name for the complex $[Co(NO_2) (NH_3)_5]Cl_2$ is -
 - (1) pentaammine nitrito-N- cobalt (II) chloride
 - (2) pentaammine nitrito-N- cobalt (III) chloride
 - (3) nitrito-N- pentaamminecobalt (III) chloride
 - (4) nitrito-N- pentaamminecobalt (II) chloride
- Nickel (Z=28) combines with a uninegative monodentate ligand X⁻ to form a paramagnetic complex [NiX₄]²⁻. The number of unpaired electrons in the nickel and geometry of this complex ion are, respectively. [AIEEE-2006]

(1) one, square planar (2) two, square planar (3) one, tetrahedral (4) two, tetrahedral

- **15.** In Fe (CO)₅, the Fe–C bond possesses [AIEEE–2006] (1) ionic character (2) σ – character only (3) π –character only (4) both σ and π character
- How many EDTA (ethylenediaminetetraacetate) molecules are required to make an octahedral complex with a Ca²⁺ ion ? [AIEEE-2006]
 (1) One (2) Two (3) Six (4) Three
- 17. The "spin-only" magnetic moment [in units of Bohr magneton, (μ_B)] of Ni²⁺ in aqueous solution would be (At. No. Ni= 28) [AIEEE-2006]
 - (1) 0 (2) 1.73 (3) 2.84 (4) 4.90

[AIEEE-2006]

18.	Which one of the follo	owing has a square plan	ar geometry :-	
	(Co = 27, Ni = 28, Fe	e=26, Pt = 78)		[AIEEE-2007]
	(1) $[CoCl_4]^{2-}$	(2) $[FeCl_4]^{2-}$	(3) $[NiCl_4]^{2-}$	(4) $[PtCl_4]^{2-}$
19.	The coordination n	umber and the oxida	tion state of the element	ment 'E' in the complex
	$[E(en)_{2}(C_{2}O_{4}^{-2})] NO_{2}^{\circ}(e^{-2})$	where (en) is ethylene di	amine) are, respectively	- [AIEEE-2008]
	(1) 6 and 2	(2) 4 and 2	(3) 4 and 3	(4) 6 and 3
20.	In which of the follow	ing octahedral complexe	es of Co (at. no. 27), wil	I the magnitude of Δ_d be the
	highest ?	c 1		[AIEEE-2008]
	(1) $[Co(CN)_{-}]^{3-}$	(2) $[Co(C_0, O_1)_2]^{3-1}$	$(3) [Co(H_{2}O)_{2}]^{3+}$	(4) $[Co(NH_{2})_{c}]^{3+}$
21.	Which of the followin	g pairs represent linkag	e isomers ?	[AIEEE-2009]
	(1) $[Co(NH_3)_5NO_3]Southernoise (NH_3)_5NO_3]Southernoise (NH_3)_5N$	O_4 and $[Co(NH_3)_5SO_4]$	NO ₃	
	(2) $[PtCl_2(NH_3)_4]Br_2$	and $[PtBr_2(NH_3)_4]Cl_2$	5	
	(3) $[Cu(NH_3)_4][PtCl_4]$] and [Pt(NH ₃) ₄][CuCl ₄]		
	(4) [Pd (PPh ₃) ₂ (NCS)	2] and [Pd(PPh ₃) ₂ (SCN	$[)_{2}]$	
22.	Which of the followin	g has an optical isomer	?	[AIEEE-2009]
	(1) $[Co(H_2O)_4(en)]^{3+}$		(2) $[Co(en)_2(NH_3)_2]^{3+}$	
	(3) $[Co(NH_3)_3Cl]^+$		(4) $[Co(en)(NH_3)_2]^{2+}$	
23.	Which one of the follo	owing has an optical iso $\frac{1}{2+}$	mer ?	[AIEEE-2010]
	(1) $[Zn(en)_2]^{2^+}$	(2) $[Zn(en)(NH_3)_2]^{2^+}$	(3) $[Co(en)_3]^{3+1}$	(4) $[Co(H_2O)_4(en)]^{3+1}$
•	(en = ethylenediamine)			
24.	A solution containing 2	2.6/5 g of CoCl ₃ .6NH ₃ (r	notar mass = $26/.5$ g mol	r^{-1}) is passed through a cation
	exchanger. The chior $4.78 \text{ g of } \text{AgCl} \text{ (mola})$	r mass = $1/3.5$ g mol-1)	The formula of the equilation	malax is : $[AIFFF 2010]$
	4.78 g 01 AgC1 (mola (Δt mass of $\Delta g = 10$	$1 \text{ mass} = 143.5 \text{ g mor } ^{-1}$		
	$(1) [C_0C](NH_a)_2]Cl_a$	$(2) [Co(NH_a)_1]Cl_a$	(3) [CoCl ₂ (NH ₂).]Cl	(4) [CoCl ₂ (NH ₂) ₂]
25.	Which of the followin	g facts about the compl	ex $[Cr(NH_2)_2]Cl_2$ is wr	ong ? $[AIEEE-2011]$
201	(1) The complex is an	outer orbital complex		
	(2) The complex gives	s white precipitate with	silver nitrate solution	
	(3) The complex invo	lves d^2sp^3 hybridisation	and is octahedral in sha	ipe
	(4) The complex is pa	ramagnetic		•
26.	The magnetic moment	t (spin only) of $[NiCl_4]^2$	_ is ∶-	[AIEEE-2011]
	(1) 2.82 BM	(2) 1.41 BM	(3) 1.82 BM	(4) 5.46 BM
27.	Among the ligands NI	H ₃ ,en, CN ⁻ and CO the	CORRECT order of th	eir increasing field strength,
	is :-			[AIEEE-2011]
	(1) $\rm CO < NH_3 < en < 0$	< CN-	(2) $NH_3 < en < CN^-$	< CO
	$(3) CN^{-} < NH_{3} < CC$) < en	(4) en $<$ CN $^ <$ NH $_3$ \cdot	< CO
28.	Which one of the follo	owing complex ions has	s geometrical isomers ?	[AIEEE-2011]
	(1) $[Co (en)_3]^{3+}$	2.4.50 000 . 4.52	(2) $[N_1 (NH_3)_5 Br]^+$	
20	(3) [Co (NH ₃) ₂ (en) ₂]	$(4) [Cr (NH_3)_4(en)]^{3+}$	a diharan: 1-1: (1 1	na diamina) -h (III)
<i>2</i> 9.	which among the fol	lowing will be named a	is aldromidobis (ethylei	ne diamine) chromium (III)
	(1) [Cr(en)Rr]Rr	(2) [Cr(en),]Rr	(3) [Cr(en), Rr]Rr	[AIEEE-2012] (4) [Cr(en)Br] ⁻
		$(2) [Ci(Cii)_3]Di_3$		
		•		/3

ALLEN .

30. The complex ion $[Pt(NO_2) (Py) (NH_3) (NH_2OH)]^+$ will give :-[J-MAIN-2012, Online] (1) 4 isomers (Geometrical) (2) 2 isomers (Geometrical) (3) 3 isomers (Geometrical) (4) 6 isomers (Geometrical) Which of the following complex ions will exhibit optical isomerism? [J-MAIN-2012, Online] 31. (en = 1, 2-diamine ethane) (1) $[Co(en)_2Cl_2]^+$ (2) $[Zn(en)_2]^{2+}$ (3) $[Co(NH_3)_4Cl_2]^+$ (4) $[Cr(NH_3)_2Cl_2]^+$ 32. Which of the following complex species is NOT expected to exhibit optical isomerism ? (1) $[Co(en)_3]^{3+}$ (2) $[Co(en)_2 Cl_2]^+$ [J-MAIN-2013] (3) [Co(NH₃)₃ Cl₃] (4) $[Co(en) (NH_3)_2Cl_2]^+$ Type of isomerism which exists between $[Pd(C_{c}H_{s})_{2}(SCN)_{2}]$ and 33. [J-MAIN-2013, Online] $[Pd(C_{e}H_{s}), (NCS)]$ is : (1) Solvate isomerism (2) Ionisation isomerism (3) Linkage isomerism (4) Coordination isomerism Which of the following is diamagnetic? 34. [J-MAIN-2013, Online] (3) $[Fe(CN)_6]^{3-}$ (1) $[CoF_6]^{3-}$ (2) $[FeF_6]^{3-}$ (4) $[Co(Ox)_2]^{3-}$ The magnetic moment of the complex anion $[C_{r}^{I}(NO) (NH_{3}) (CN)_{4}]^{2-}$ is :[J-MAIN–2013, Online] 35. (3) 1.73 BM (1) 2.82 BM (2) 5.91 BM (4) 3.87 BM The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_1 , L_2 , L_3 and L_4 absorb 36. wavelength in the region of red, green, yellow and blue, respectively. The increasing order of ligand Wavelength ... strength of the four ligands is: (1) $L_3 < L_2 < L_4 < L_1$ (2) $L_1 < L_2 < L_4 < ...$, (3) $L_4 < L_3 < L_2 < L_1$ (4) $L_1 < L_3 < L_2 < L_4$ The equation which is balanced and represents the **CORRECT** product (s) is : [J-MAIN-2014] $\xrightarrow{\sim} \circ \circ ^{12+} + (EDTA)^{4-} \xrightarrow{= excess NaOH} [Mg(EDTA)]^{2+} + 6H_2O$ $\xrightarrow{\vee} \circ \circ ^{12+} + (EDTA)^{4-} \xrightarrow{= excess NaOH} [Mg(EDTA)]^{2+} + 6H_2O$ 37. (4) $[CoCl (NH_2)_5]^+ + 5H^+ \rightarrow Co^{2+} + 5NH_4^+ + Cl^-$ The **CORRECT** statement about the magnetic properties of $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ is : (Z = 26). 38. (1) $[Fe(CN)_6]^{3-}$ is paramagnetic, $[FeF_6]^{3-}$ is diamagnetic. [J-MAIN-2014, Online] (2) both are diamagnetic. (3) $[Fe(CN)_6]^{3-}$ is diamagnetic, $[FeF_6]^{3-}$ is paramagnetic. (4) both are paramagnetic An octahedral complex of Co³⁺ is diamagnetic. The hybridisation involved in the formation of the 39. [J-MAIN-2014] complex is : (1) d^2sp^3 $(3) dsp^2$ (2) dsp^3d (4) $sp^{3}d^{2}$

ALLEN

(4) $[Co(NH_3)_6]^{2+}$

40.Which of the following name formula combinations is NOT CORRECT? [J-MAIN-2014, Online]FormulaName $(1) K[Cr(NH_3)_2Cl_4]$ Potassium diammine Tetrachlorochromate (III) $(2) [Co(NH_3)_4(H_2O)I]SO_4$ Tetraammine aquaiodo cobalt (III) sulphate $(3) [Mn(CN)_5]^{2-}$ Pentacyanomagnate (II) ion $(4) K_2[Pt(CN)_4]$ Potassium tetracyanoplatinate(II)

41. Consider the coordination compound, $[Co(NH_3)_6]Cl_3$. In the formation of this complex, the species which acts as the Lewis acid is :[J-MAIN-2014, Online](1) $[Co(NH_3)_6]^{3+}$ (2) NH_3(3) Co³⁺(4) Cl⁻

42. Among the following species the one which causes the highest CFSE, Δ₀ as a ligand is :- [J-MAIN-2014, Online]
(1) CN⁻
(2) NH₂
(3) CO
(4) F⁻

43. Which one of the following complexes will most likely absorb visible light ? [J-MAIN–2014, Online] (At nos. Sc = 21, Ti = 22, V = 23, Zn = 30) :-(1) $[Ti (NH_3)_6]^{4+}$ (2) $[V(NH_3)_6]^{3+}$ (3) $[Zn (NH_3)_6]^{2+}$ (4) $[Sc (H_2O)_6]^{3+}$

44. Nickel(Z = 28) combines with a uninegative monodentate ligand to form a diamagnetic complex [NiL₄]²⁻. The hybridisation involved and the number of unpaired electrons present in the complex are respectively : [J-MAIN-2014, Online]

(1) sp³, zero (2) sp³. two (3) dsp² one (4) dsp², zero

45. The number of geometrical isomers that can exist for square planar [Pt (Cl) (py) (NH₃) (NH₂OH)]⁺ is (py = pyridine) : [J-MAIN-2015]

- (1) 4 (2) 6 (3) 2 (4) 3 46. The color of KMnO₄ is due to : [J-MAIN-2015] (1) L \rightarrow M charge transfer transition (2) $\sigma - \sigma^*$ transition
 - (1) $L \rightarrow M$ charge transfer transition (2) d d transition (3) $M \rightarrow L$ charge transfer transition (4) d - d transition
- 47. Which of the following complex ions has electrons that are symmetrically filled in both t_{2g} and e_g orbitals ? [J-MAIN-2015, Online]

(1) $[CoF_6]^{3-}$ (2) $[Mn(CN)_6]^{4-}$ (3) $[FeF_6]^{3-}$ **48.** When concentrated HCl is added to an aqueous solution of CoC

8. When concentrated HCl is added to an aqueous solution of CoCl₂, its colour changes from reddish pink to deep blue. Which complex ion gives blue colour in this reaction ?: (1) [Co(H₂O)₆]²⁺
 (2) [CoCl₆]³⁻
 [J-MAIN-2015, Online]

(3) $[CoCl_4]^{2-}$ (4) $[CoCl_6]^{4-}$

49. The CORRECT statement on the isomerism associated with the following complex ions,
 (a) [Ni(H₂O)₅NH₃]²⁺ [J-MAIN-2015, Online]

- (b) $[Ni(H_2O)_4(NH_3)_2]^{2+}$ and
- (c) $[Ni(H_2O)_3(NH_3)_3]^{2+}$ is :

(1) (a) and (b) show geometrical and optical isomerism

(2) (b) and (c) show geometrical and optical isomerism

(3) (a) and (b) show only geometrical Isomerism

(4) (b) and (c) show only geometrical Isomerism

node06/B0Ai-B0/Kota/JEE(Advanced)/Enthusicar)/Chem/Sheet/Waclule#Chemical Bonding, Coordina

chemistry & Metallurgy\02-C.C.\Eng\Theory+Ex.p65

JEE-Chemistry

50.	Which one of the following complexes shows	s optical isomerism :-	[J-MAIN-2016]
	(1) $[Co(NH_3)_4Cl_2]Cl$	(2) $[Co(NH_3)_3Cl_3]$	
	(3) $cis[Co(en)_2Cl_2]Cl$	(4) trans[Co(en) ₂ Cl ₂]	CI
	(en = ethylenediamine)		
51.	The pair having the same magnetic moment is	s:-	[J-MAIN-2016]
	[At. No.: $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 2$	27]	
	(1) $[CoCl_4]^{2-}$ and $[Fe(H_2O)_6]^{2+}$	(2) $[Cr(H_2O)_6]^{2+}$ and	$[\text{CoCl}_4]^{2-}$
	(3) $[Cr(H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$	(4) $[Mn(H_2O)_6]^{2+}$ and	$[Cr(H_2O)_6]^{2+}$
52.	Which one of the following complexes will $Ag(NO_3)$?	consume more equiva	lents of aqueous solution of [J-MAIN-2016, Online]
	(1) $[Cr(H_2O)_6]Cl_3$ (2) $Na_2[CrCl_5(H_2O)]$	(3) $Na_3[CrCl_6]$	(4) $[Cr(H_2O)_5Cl]Cl_2$
53.	Identify the CORRECT trend given below :		[J-MAIN-2016, Online]
	(Atomic No.= Ti : 22, Cr : 24 and Mo : 42)		
	(1) Δ_0 of $[Cr(H_2O)_6]^{2+} < [Mo(H_2O)_6]^{2+}$ are	nd Δ_0 of $[Ti(H_2O)_6]^{3+1}$	$- < [Ti(H_2O)_6]^{2+}$
	(2) Δ_0 of $[Cr(H_2O)_6]^{2+} < [Mo(H_2O)_6]^{2+}$ and	d Δ_0 of $[Ti(H_2O)_6]^{3+}$	$> [Ti(H_2O)_6]^{2+}$
	(3) Δ_0 of $[Cr(H_2O)_6]^{2+} > [Mo(H_2O)_6]^{2+}$ and	d Δ_0 of $[Ti(H_2O)_6]^{3+}$	$> [Ti(H_2O)_6]^{2+}$
	(4) Δ_0 of $[Cr(H_2O)_6]^{2+} > [Mo(H_2O)_6]^{2+}$ and	d Δ_0 of $[Ti(H_2O)_6]^{3+}$	$< [Ti(H_2O)_6]^{2+}$
54.	$[Co_2(CO)_8]$ displays:-		[J-MAIN-2017, Online]
	(1) no Co-Co bond, four terminal CO and fo	ur bridging CO	
	(2) one Co-Co bond, six terminal CO and tw	o bridging CO	
	(2) one Co-Co bond, six terminal CO and two(3) no Co-Co bond, six terminal CO and two	o bridging CO o bridging CO	
	(2) one Co-Co bond, six terminal CO and two(3) no Co-Co bond, six terminal CO and two(4) one Co-Co bond, four terminal CO and for	o bridging CO o bridging CO our bridging CO	
55.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for On treatment of 100 mL of 0.1 M solution of 0.1 M 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce	ss AgNO ₃ ; 1.2×10^{22} ions are
55.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for On treatment of 100 mL of 0.1 M solution of 0 precipitated. The complex is :- 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce	ss AgNO ₃ ; 1.2 × 10 ²² ions are [J-MAIN–2017, Offline]
55.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for (4) one Co-Co bond, four terminal CO and for (5) On treatment of 100 mL of 0.1 M solution of 0 (6) precipitated. The complex is :- (1) [Co(H₂O)₄ Cl₂]Cl.2H₂O 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂	ess AgNO ₃ ; 1.2 × 10 ²² ions are [J-MAIN–2017, Offline] 20
55.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for (4) one Co-Co bond, four terminal CO and for (5) On treatment of 100 mL of 0.1 M solution of 0 (6) precipitated. The complex is :- (1) [Co(H₂O)₄ Cl₂]Cl.2H₂O (3) [Co(H₂O)₆]Cl₃ 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H	The provided as 1.2×10^{22} ions are [J-MAIN–2017, Offline] $_{2}O$
55. 56.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for (4) one Co-Co bond, four terminal CO and for (5) On treatment of 100 mL of 0.1 M solution of 0 (6) Precipitated. The complex is :- (1) [Co(H₂O)₄ Cl₂]Cl.2H₂O (3) [Co(H₂O)₆]Cl₃ (3) The pair of compounds having metal in their h 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ighest oxidation state is	 ass AgNO₃; 1.2 × 10²² ions are [J-MAIN–2017, Offline] a₂O i₂O : [J-MAIN–2017, Online]
55. 56.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for (4) one Co-Co bond, four terminal CO and for (5) On treatment of 100 mL of 0.1 M solution of 0 (6) On treatment of 100 mL of 0.1 M solution of 0 (7) precipitated. The complex is :- (1) [Co(H₂O)₄ Cl₂]Cl.2H₂O (3) [Co(H₂O)₆]Cl₃ (1) [NiCl₄]²⁻ and [CoCl₄]²⁻ 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ighest oxidation state is (2) [Fe(CN) ₆] ³⁻ and [C	The set of
55. 56.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for On treatment of 100 mL of 0.1 M solution of 0 precipitated. The complex is :- (1) [Co(H₂O)₄ Cl₂]Cl.2H₂O (3) [Co(H₂O)₆]Cl₃ The pair of compounds having metal in their h (1) [NiCl₄]²⁻ and [CoCl₄]²⁻ (3) [FeCl₄]⁻ and Co₂O₃ 	to bridging CO to bridging CO tour bridging CO CoCl ₃ . 6H ₂ O with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ighest oxidation state is (2) [Fe(CN) ₆] ^{3–} and [C (4) MnO ₂ and CrO ₂ Cl	$SS AgNO_3; 1.2 \times 10^{22} \text{ ions are} \\ [J-MAIN-2017, Offline] \\ QO \\ I_2O \\ : [J-MAIN-2017, Online] \\ Cu(CN)_4]^{2-} \\ 2$
55. 56. 57.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for the complex of 0.1 M solution of	to bridging CO to bridging CO to bridging CO tour bridging CO CoCl ₃ . $6H_2O$ with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ₃ ighest oxidation state is (2) [Fe(CN) ₆] ^{3–} and [C (4) MnO ₂ and CrO ₂ Cl Cl ₃ ,[Cr(C ₆ H ₆) ₂], and H	The set of
55. 56. 57.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for the complex of 0.1 M solution of 0.1 [Co(H₂O)₄ Cl₂]Cl.2H₂O (3) [Co(H₂O)₆]Cl₃ The pair of compounds having metal in their h (1) [NiCl₄]²⁻ and [CoCl₄]²⁻ (3) [FeCl₄]⁻ and Co₂O₃ The oxidation states of Cr in [Cr(H₂O)₆]C respectively are : (1) +3, +2, and +4 	to bridging CO to bridging CO to bridging CO tour bridging CO CoCl ₃ . $6H_2O$ with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ighest oxidation state is (2) [Fe(CN) ₆] ^{3–} and [C (4) MnO ₂ and CrO ₂ Cl Cl ₃ ,[Cr(C ₆ H ₆) ₂], and H (2) +3, 0, and +6	$Sigma = \frac{IJ-MAIN-2017, Offline}{IJ-MAIN-2017, Offline}$ $Sigma = \frac{IJ-MAIN-2017, Online}{I_2O}$ $Sigma = \frac{IJ-MAIN-2017, Online}{I_2O}$ $Sigma = \frac{IJ-MAIN-2017, Online}{IJ-MAIN-2018, Offine}$
55. 56. 57.	 (2) one Co-Co bond, six terminal CO and two (3) no Co-Co bond, six terminal CO and two (4) one Co-Co bond, four terminal CO and for the complex of 0.1 M solution of	to bridging CO to bridging CO bour bridging CO coCl ₃ . $6H_2O$ with exce (2) [Co(H ₂ O) ₃ Cl ₃].3H ₂ (4) [Co(H ₂ O) ₅ Cl]Cl ₂ .H ighest oxidation state is (2) [Fe(CN) ₆] ³⁻ and [C (4) MnO ₂ and CrO ₂ Cl Cl ₃ ,[Cr(C ₆ H ₆) ₂], and H (2) +3, 0, and +6 (4) +3, +4, and +6	Provide the set of th

ALLEN

ALLEN

node0 6/B0A+B0 \ Kota \ UEF Advanced \ Enthusics \\ Chem\ Sheet \ Mad Ue#Chemical Bonding, Coordination chemistry & Metal lurgy \ \ 02-C.C. \ Eng \ Theory+Ex \ 165

58. Consider the following reaction and statements : [J-MAIN-2018, Offine] $[Co(NH_3)_4Br_2]^+ + Br^- \rightarrow [Co(NH_3)_3Br_3] + NH_3$ (I) Two isomers are produced if the reactant complex ion is a *cis*-isomer. (II) Two isomers are produced if the reactant complex ion is a *trans*-isomer. (III) Only one isomer is produced if the reactant complex ion is a *trans*-isomer. (IV) Only one isomer is produced if the reactant complex ion is a *cis*-isomer. The correct statements are : (1) (I) and (III)(2) (III) and (IV) (3) (II) and (IV) (4) (I) and (II) 59. For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point? [J-MAIN-2018, Offine] (1) [Co(H₂O)₅Cl]Cl₂.H₂O (2) $[Co(H_2O)_4Cl_2]Cl_2H_2O$ (3) [Co(H₂O)₃Cl₃].3H₂O (4) $[Co(H_2O)_6]Cl_3$ **60.** The total number of possible isomers for square-planar $[Pt(Cl)(NO_2)(NO_3)(SCN)]^{2-}$ [J-MAIN-2018, Onine] is :-(1) 16(2) 8(3) 24(4) 12The correct order of spin-only magnetic moments among the following is : [J-MAIN-2018, Onine] 61. (Atomic number : Mn = 25, Co = 27, Ni = 28, Zn = 30) (1) $[ZnCl_{4}]^{2-} > [NiCl_{4}]^{2-} > [CoCl_{4}]^{2-} > [MnCl_{4}]^{2-}$ (2) $[CoCl_4]^{2-} > [MnCl_4]^{2-} > [NiCl_4]^{2-} > [ZnCl_4]^{2-}$ (3) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [NiCl_4]^{2-} > [ZnCl_4]^{2-}$ (4) $[NiCl_{4}]^{2-} > [CoCl_{4}]^{2-} > [MnCl_{4}]^{2-} > [ZnCl_{4}]^{2-}$ The correct combination is 62. [J-MAIN-2018, Onine] (1) $[Ni(CN)_{4}]^{2-}$ – tetrahedral; $[Ni(CO)_4]$ – paramagnetic (2) $[NiCl_4]^{2-}$ – paramagnetic; $[Ni(CO)_4]$ – tetrahedral (3) $[NiCl_4]^{2-}$ – diamagnetic; $[Ni(CO)_4]$ – square-planar (4) $[NiCl_4]^{2-}$ - square-planar; $[Ni(CN)_4]^{2-}$ – paramagnetic Е 77

- 63. Which of the following complexes will show geometrical isomerism ?[J-MAIN-2018, Onine]
 - (1) Potassium amminetrichloroplatinate(II)
 - (2) Aquachlorobis (ethylenediamine) cobalt(II) chloride
 - (3) Potassium tris(oxalato) chromate(III)
 - (4) Pentaaquachlorochromium(III) chloride
- 64. In a complexometric titration of metal ion with ligand M(Metal ion) + L(Ligand) → C(Complex) end point is estimated spectrophotometrically (through light absorption). If 'M' and 'C' do not absorb light and only 'L' absorbs, then the titration plot between absorbed light (A) versus volume of ligand 'L' (v)would look like :- [J-MAIN-2018, Onine]

- 65. In Wilkinson's catalyst, the hybridization of central metal ion and its shape are respectively
 - (1) dsp², square planar

[J-MAIN-2018, Onine]

- (2) sp³d, trigonal bipyramidal
- (3) sp³, tetrahedral
- (4) d²sp³, octahedral

EXERCISE # JEE-ADVANCED

1.	The complex ion v	which has no 'd' electrons i	n the central metal atom	is :	[JEE 2001]
	[At No. Cr = 24, 1	Mn = 25, Fe = 26, Co = 2	27]		
	(A) $[MnO_4]^-$	(B) $[Co (NH_3)_6]^{3+}$	(C) $[Fe(CN)_6]^{3-}$	(D) [Cr(H ₂ 0	$(D)_{6}]^{3+}$
2.	The CORRECT	order of hybridisation of t	the central atom in the f	following specie	es. [JEE 2001]
	NH ₃ , [PtCl ₄] ^{2–} , PC	Cl_5 and BCl_3 is [At No. F	t = 78]		
	(A) dsp^2 , sp^3d , sp^2	and sp ³	(B) sp^3 , dsp^2 , sp^3d ,	sp^2	
	(C) dsp^2, sp^2, sp^3 and	nd sp ³ d	(D) dsp^2 , sp^3 , sp^2 and	d sp ³ d	
3.	The species having	g tetrahedral shape is :			[JEE 2004]
	(A) $[PdCl_4]^{2-}$	(B) $[Ni(CN)_4]^{2-}$	(C) $[Pd(CN)_4]^{2-}$	(D) $[NiCl_4]$	2–
4.	The pair of compo	ounds having metals in the	eir highest oxidation sta	te is	[JEE 2004]
	(A) MnO_2 , $FeCl_3$		(B) $[MnO_4]$, CrO_2	Cl ₂	
	(C) $[Fe(CN)_6]^{3-}$, [Co(CN) ₃]	$(D)[NiCl_4]^{2-}, [CoC$	21 ₄]	
5.	Spin only magneti	c moment of the compou	nd Hg $[Co(SCN)_4]$ is		[JEE 2004]
	(A) $\sqrt{3}$	(B) $\sqrt{15}$	$(C)\sqrt{24}$	(D) $\sqrt{8}$	
6.	Which of the follo	wing pair is expected to a	exhibit same colour in s	olution?	[JEE 2005]
	(A) VOCl ₂ ; FeCl	$_2$ (B) CuCl ₂ ; VOCl ₂	(C) MnCl ₂ ; FeCl ₂	(D) FeCl ₂ ;	CuCl ₂
7.	Which type of iso	merism is shown by Co(1	$NH_3)_4Br_2Cl?$		[JEE 2005]
	(A) Geometrical a	nd Ionisation	(B) Optical and Ioni	isation	
	(C) Geometrical a	nd Optical	(D) Geometrical on	ly	
	Question No. 8 to	0 10 (3 questions)			[JEE 2006]
	The coordination	number of Ni^{2+} is 4.			
5	$NiCl_2 + KCN$ (exc	cess) \rightarrow A (cyano comple	ex)		
sory+Ex.pó.	$NiCl_2 + KCl$ (exce	ess) \rightarrow B (chloro complex	x)		
C:/Eug/Iltr	The IUPAC name	of A and B are			
lurgy\02-C	(A) Potassium tetra	acyanidonickelate (II), pot	tassium tetrachloridonic	kelate (II)	
stry & Metall	(B) Tetracyanidop	otassiumnickelate (II), tete	erachloridopotassiumnic	kelate (II)	
ation chemis	(C) Tetracyanidor	nickel (II), tetrachloridonie	ckel (II)		
ng, Coordin	(D) Potassium tetr	acyanidonickel (II), potas	sium tetrachloridonickel	(II)	
9.	Predict the magne	tic nature of A and B.			
Aad ule#Che	(A) Both are diam	agnetic.			
em\Sheet V	(B) A is diamagne	tic and B is paramagnetic	with one unpaired elec	etron.	
husicat∖Ch	(C) A is diamagne	tic and B is paramagnetic	with two unpaired elec	etrons.	
vanced)\En	(D) Both are para	nagnetic.			
^{10.}	The hybridization	of A and B are			
60 6/ B0AI- B0 \	(A) dsp^2 , sp^3	(B) sp^3 , sp^3	(C) dsp^2 , dsp^2	(D) $sp^{3}d^{2}$, c	l ² sp ³
E		•			79

	· · · · · · · · · · · · · · · · · · ·				ALLER
11.	If the bond length of length in Fe(CO) _c ?	CO bond in carbon mo	pnoxide is 1.128Å, then	what is the va	lue of CO bond [JEE 2006]
	(A) 1.15Å	(B) 1.128Å	(C) 1.72Å	(D) 1.118Å	
12.	Among the following	g metal carbonyls, the C	C–O bond order is lowe	st in	[JEE 2007]
	(A) $[Mn(CO)_{\ell}]^+$	(B) [Fe(CO) _c]	$(C) [Cr(CO)_{\ell}]$	(D) [V(CO),]-
13.	Match the complexes	s in Column I with their	properties listed in Colu	mn II. Indicate	your answer by
	darkening the approp	priate bubbles of the 4 >	< 4 matrix given in the	ORS.	5
	Column I		Column II		[JEE 2007]
	(A) $[Co(NH_3)_4(H_2O)]$),]Cl ₂	(P) Geometrical ison	ners	
	(B) $[Pt(NH_3)_2Cl_2]$		(Q) Paramagnetic		
	(C) $[Co(H_2O)_5Cl]Cl$		(R) Diamagnetic		
	(D) $[Ni(H_2O)_6]Cl_2$		(S) Metal ion with 2	2+ oxidation sta	ate
14.	Among the following	g, the coloured compour	nd is		[JEE 2008]
	(A) CuCl	(B) K ₃ [Cu (CN) ₄]	(C) CuF ₂	(D) [Cu(Cl	$H_3CN)_4] BF_4$
15.	The IUPAC name of	f [Ni(NH ₃) ₄] [NiCl ₄] is			[JEE 2008]
	(A) Tetrachloronicke	el (II)-tetraamminenickel	(II)		
	(B) Tetraamminenick	tel (II)-tetrachloronickel	(II)		
	(C) Tetraamminenick	el (II)-tetrachloronickel	ate (II)		
	(D) Tetrachloronicke	el (II)-tetraamminenickel	ate (0)		
16.	Both $[Ni(CO)_4]$ and	$[Ni(CN)_4]^{2-}$ are diamag	netic. The hybridisation	s of nickel in th	nese complexes,
	respectively, are				[JEE 2008]
	(A) sp^3 , sp^3	(B) sp^3 , dsp^2	(C) dsp^2 , sp^3	(D) dsp^2 , d	sp ²
17.	Statement-1 : The g	eometrical isomers of th	ne complex [M(NH ₃) ₄ C	l ₂] are opticall	y inactive.
	Statement-2 : Both g	geometrical isomers of the	he complex $[M(NH_3)_4C]$	[2] possess axi	s of symmetry.
	(A) Statement-1 is Tr	rue, Statement-2 is True	; Statement-2 is a corre	ect explanation	for Statement-1
	(B) Statement-1 is Tru	ie, Statement-2 is True ; S	tatement-2 is NOT a corr	rect explanation	for Statement-1
	(C) Statement-1 is T	rue, Statement-2 is False	2		
	(D) Statement-1 is Fa	alse, Statement-2 is True	e		[JEE 2008]
18.	Statement-1 : [Fe(H	$_{2}O)_{5}NO]SO_{4}$ is parama	gnetic		[JEE 2008]
	Statement-2 : The Fe	e in $[Fe(H_2O)_5NO]SO_4$	has three unpaired elec	trons.	
	(A) Statement-1 is The	rue, Statement-2 is True	; Statement-2 is a corre	ect explanation	for Statement-1
	(B) Statement-1 is 1 ft	ie, Statement-2 is True; S	tatement-2 is NOT a corr	rect explanation	for Statement-1
	(D) Statement-1 is F	alse Statement-2 is True	e		
19.	The spin only magnet	tic moment value (in B	~ ohr magneton units) of	Cr(CO), is	[JEE 20091
	(A) 0	(B) 2.84	(C) 4.90	(D) 5.92	

-

Coordination Chemistry

emistry & Metallurgy\02-C.C.\Eng\Theory+Ex.p65

node06\80Ai-B0\Kota\EE(Advanced)\Enthusicst\Chen\Sheet\Wadule#ChemicalBonding, Coardir

Е

31.	Cons	sider t	he fol	lowin	g compl	ex ions P,	Q and	łR,							
	P =	[FeF ₆] ³⁻ , Q	e = [V	$(\mathrm{H_2O})_6]$	$^{2+}$ and R	= [Fe((H ₂ O)	$_{6}]^{2+}$						
	The	COR	RECI	Г orde	er of the	complex i	ons, a	ccord	ing to	their	spin-o	only ma	agnetic mo	ment values	;
	(in E	B.M.)	is -											[JEE 2013]	
	(A)]	R < Q	9 < P		(B) Q	Q < R < P		(C)	R < I	P < Q		(D)	Q < P < F	R	
32.	EDT	A^{4-} i	s ethy	leneo	liamine	tetraaceta	te ion	. The	e tota	al nun	nber o	of N–C	Co-O bor	id angles in	l
	$[Co(EDTA)]^{-1}$ complex ion is													[JEE 2013]	
33.	The	pair(s)) of co	ordin	ation co	mplex/ion	exhibit	ting th	he sar	ne kin	d of is	omeris	m is(are) -	[JEE 2013]	
	(A)	[Cr(N	$H_3)_5C$	l]Cl ₂ a	and [Cr($[NH_3)_4Cl_2]$	C1	(B)	[Co(1	NH ₃) ₄ 0	$[l_2]^+$ a	nd [Pt	$(\mathrm{NH}_3)_2(\mathrm{H}_2)$	$O)Cl]^+$	
	(C)	CoBr	$[{}_{2}Cl_{2}]^{2}$	and	[PtBr ₂ C	$[l_2]^{2-}$		(D)	[Pt(N	(IH ₃) ₃ (I	NO ₃)]	Cl and	l [Pt(NH ₃)	₃ Cl] Br	
34.	Mate	ch eac	h cooi	dinati	ion com	oound in L	ist-I w	ith ar	n appr	opriat	e pair	of char	acteristics	from List-Il	
	and	select	the co	orrect	answer	using the o	code g	iven	below	the li	ists.		[JEE	Adv. 2014]	
	{en =	$= H_2 N$	ICH ₂ C	CH ₂ NH	H_2 ' atom	nic number	rs ; Ti	= 22	; Cr	= 24	; Co =	= 27 ;]	Pt = 78		
]	List-I							List-l	Ι					
	(P)	Cr(N	$H_3)_4C$	l ₂]Cl				(1) Paramagnetic and exhibits ionisation isomerism					l		
	(Q)	Ti(H ₂	O) ₅ Cl](NO	$_{3})_{2}$			(2)	Dima	gnetic	and e	xhibits	cis-trans	isomerism	
	(R)	Pt(en)(NH ₃)Cl]N	O ₃			(3)	Paran	nagnet	tic and	l exhibi	its <i>cis-trar</i>	as isomerism	l
	(S)	Co(N	(H ₃) ₄ (1	$NO_3)_2$]NO ₃			(4)	Dima	gnetic	and e	exhibits	ionisation	n isomerism	
	Cod	e :													
		Р	Q	R	S				Р	Q	R	S			
	(A)	4	2	3	1			(B)	3	1	4	2			
	(C)	2	1	3	4			(D)	1	3	4	2			
35.	A lis	t of s	pecies	havir	ng the fo	ormula XZ	4 is giv	ven b	elow	:			[JEE	Adv. 2014]	

XeF₄, SF₄, SiF₄, BF₄⁻, BrF₄⁻, [Cu(NH₃)₄]²⁺, [FeCl₄]²⁻, [CoCl₄]²⁻ and [PtCl₄]²⁻. Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is

Subjective

- **36.** Draw the structures of $[Co(NH_3)_6]^{3+}$, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$. Write the hybridisation of atomic orbitals of the transition metal in each case. [JEE 2000]
- **37.** A metal complex having composition $Cr(NH_3)_4 Cl_2Br$ has been isolated in two forms A and B. The form A reacts with AgNO₃ to give a white precipitate readily soluble in dilute aqueous ammonia, whereas B gives a pale yellow precipitate soluble in concentrated ammonia. Write the formula of A and B and state the hybridisation of chromium in each. Calculate their magnetic moments (spin-only value). [JEE 2001]
- 38. Deduce the structures of [NiCl₄]²⁻ and [Ni(CN)₄]²⁻ considering the hybridisation of the metal ion.
 Calculate the magnetic moment (spin only) of the species. [JEE 2002]

[JEE 2003]

[JEE 2004]

- Among $[Ni(CO)_4]$, $[NiCl_4]^{2-}$, $[Co(NH_3)_4Cl_2]Cl$, $Na_3[CoF_6]$, Na_2O_2 and CsO_2 , the total number of
 - [JEE Ad. 2016]

[JEE Ad. 2016]

[JEE Ad. 2015]

[JEE Ad. 2015]

[JEE Ad. 2015]

(A) 2 (B) 3 (C) 4 (D) 5

45. The number of geometric isomers possible for the complex $[CoL_2Cl_2]^-$ (L = H₂NCH₂CH₂O⁻) is [JEE Ad. 2016]

Write the IUPAC name of the compound $K_2[Cr(NO)(CN)_4(NH_3)]$. Spin magnetic moment of the

NiCl₂ in the presence of dimethyl glyoxime (DMG) gives a complex which precipitates in the presence

For the octahedral complexes of Fe³⁺ in SCN⁻ (thiocyanato-S) and in CN⁻ ligand environments,

the difference between the spin only magnetic moments in Bohr magnetons (when approximated

In the complex acetylbromidodicarbonylbis(triethylphosphine)iron(II), the number of Fe-C bond(s)

Among the complex ions, $[Co(NH_2-CH_2-CH_2-NH_2), Cl_2]^+$, $[CrCl_2(C_2O_4),]^{3-}$, $[Fe(H_2O_4(OH),]^+$,

 $[Fe(NH_3)_2(CN)_4]^-$, $[Co(NH_2-CH_2-CH_2-NH_2)_2(NH_3)Cl]^{2+}$ and $[Co(NH_3)_4(H_2O)Cl]^{2+}$, the number of

- 46. The geometries of the ammonia complexes of Ni^{2+} , Pt^{2+} and Zn^{2+} , respectively are :
 - (A) octahedral, square planar and tetrahederal

paramagnetic compounds is -

(B) square planar, octahederal and tetrahederal

complex $\mu = 1.73$ BM. Give the structure of anion.

(b) Give oxidation state of Ni and its hybridisation

(c) Predict whether it is paramagnetic or diamagnetic

to the nearest integer) is : [Atomic number of Fe = 26]

complex ion(s) that show(s) cis-trans isomerism is -

of NH₄OH, giving a bright red colour.

(a) Draw its structure and show H-bonding

- (C) tetrahederal, square planar and octahederal
- (D) octahederal, tetrahederal and square planar
- 47. Addition of excess aqueous ammonia to a pink coloured aqueous solution of MCl₂. 6H₂O (X) and NH₄Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1 : 3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y.
 - Among the following options, which statements is(are) CORRECT ?
 - (A) The hybridization of the central metal ion in Y is d^2sp^3
 - (B) Z is tetrahedral complex
 - (C) Addition of silver nitrate to Y gives only two equivalents of silver chloride
 - (D) When X and Z are in equilibrium at 0°C, the colour of the solution is pink

39.

40.

41.

42.

43.

44.

is-

Ε

			ALLER								
48.	The correct statement(s) regarding t	the binary transition metal carbonyl	compounds is (are)								
	(Atomic numbers : $Fe = 26$, $Ni = 2$	28)	[JEE Ad. 2018]								
	(A) Lotal number of valence shell electrons at metal centre in $Fe(CO)_5$ or $Ni(CO)_4$ is 16 (B) These are predominantly law onin in nature										
	(C) Metal - carbon bond strengthens when the oxidation state of the metal is lowered										
	(C) Metal - carbon bond strengthen (D) The carbonyl C. O bond weaks	(D) The carbonyl C–O bond weakens when the oxidation state of the metal is increased									
40	The correct option(a) recording the	α approximation state of the α									
49.	The contect option(s) regarding the	$\operatorname{complex}\left[\operatorname{Co}(\operatorname{en})\left(\operatorname{Nn}_{3}\right)_{3}\left(\operatorname{n}_{2}\operatorname{O}\right)\right] .$	- [JEE Au. 2018]								
	$(en = H_2NCH_2CH_2NH_2) \text{ is (are)}$										
	(A) It has two geometrical isomers										
	(B) It will have three geometrical is	somers if bidentate 'en' is replaced l	by two cyanide ligands								
	(C) It is paramagnetic										
	(D) It absorbs light at longer wavelength as compared to $[Co(en) (NH_3)_4]^{3+}$										
50.	Match each set of hybrid orbitals from LIST-I with complex (es) given in LIST-II.										
	LIST-I	LIST-II	[JEE Ad. 2018]								
	P. dsp^2	1. $[FeF_6]^{4-}$									
	Q. sp ³	2. [Ti(H ₂ O) ₃ Cl ₃]									
	R. sp^3d^2	3. $[Cr(NH_3)_2]^{3+}$									
	S. d^2sp^3	4. $[FeC1.]^{2-}$									
	1	5 Ni(CO)									
		6. $[Ni(CN)]^{2^{-}}$									
	The correct option is	$0. \left[I \Pi (C \Pi)_4 \right]$									
	(A) $P \rightarrow 5$; $Q \rightarrow 4,6$; $R \rightarrow 2,3$; S	$\rightarrow 1$									
	(B) $P \rightarrow 5,6$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 1,2$										
	(C) $P \rightarrow 6$; $Q \rightarrow 4,5$; $R \rightarrow 1$; $S \rightarrow 1$	→ 2,3									
		~ •									

- (D) $P \rightarrow 4,6$; $Q \rightarrow 5,6$; $R \rightarrow 1,2$; $S \rightarrow 3$
- Among the species given below, the total number of diamagnetic species is_ 51. . H atom, NO_2 monomer, O_2^- (superoxide), dimeric sulphur in vapour phase, [JEE Ad. 2018] $Mn_{3}O_{4}$, $(NH_{4})_{2}[FeCl_{4}]$, $(NH_{4})_{2}[NiCl_{4}]$, $K_{2}MnO_{4}$, $K_{2}CrO_{4}$

ALLEN -

ANSWERS KEY

	EXERCISE # O-1										
Que	e.	1	2	3	4	5	6	7	8	9	10
Ans	5.	А	С	В	С	С	С	D	В	D	В
Que	e.	11	12	13	14	15	16	17	18	19	20
Ans	5.	D	В	А	В	А	С	С	D	Α	D
Que	e.	21	22	23	24	25	26	27	28	29	30
Ans	5.	D	С	В	С	В	В	Α	D	А	В
Que	e.	31	32	33	34	35	36	37	38	39	40
Ans	5.	D	D	В	С	D	С	С	В	С	С
Que	e.	41	42	43	44	45	46	47	48	49	50
Ans	5.	В	С	D	D	D	D	С	В	D	В
Que	e.	51	52	53	54	55	56	57	58	59	60
Ans	5.	A	В	A	D	В	D	A	C	В	D
Que	e.	61	62	63	64	65	66	67	68	69	-
Ans	5.	В	С	С	A	C	C	A	D	A	
EXERCISE # O-2											
Que	e.	1	2	3	4	5	6	7	8	9	10
Ans	s.	A,B	A,B,D	A,B,C,D	A,B,D	A,B	B,C,D	A,B,C,D	A,B,C	B,C,D	A,B,C,D
Que	e.	11	12	13	14						-
Ans	s.	B,D	C,D	C,D	B,D						
					EXE	RCISE	# S-1				
1.	(3)			2. (2)	3.	(9)		4. (36)	
5.	(9)			6. (2)	7.	(2)		8. (52	2)	
9.	(5)			10. (2	2)				,		
					EXE	RCISE	# S-2				
Oı	ne.			1					2		
	ns.	(A)-F	2 (B)	-R ((- Р	(D)-O	(A)-P O S	(B)-0 R)_P_(D)-P ()
01	ue.			3	<i>.</i>) .		(11) 1, 2,5		(0	<u>, </u>	2)1,2
A	ns.	(A)-P	,S (B))-T (C)-	Q,R,T	(D)-P,S					
Que	e.	4	5	6	7	8	9	10	11	12	13
Ans	s.	В	С	D	D	С	Α	С	D	D	Α
Que	e.	14	15	16	17	18					
Ans	s.	D	В	В	D	D					

EXERCISE # J-MAIN

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	3	4	1	3	2	1	3	4	3
Que.	11	12	13	14	15	16	17	18	19	20
	3	1	2	4	4	1	3	4	4	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	3	2	1	1	2	3	3	3
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	1	3	3	4	3	4	4	4	1	3
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	3	3	2	4	4	1	3	3	4	3
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	3	1	2	2	1	2	2	1	3	4
Que.	61	62	63	64	65					
Ans.	3	2	2	4	1					

EXERCISE # J-ADVANCED

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	А	В	D	В	В	В	А	А	С	А
Que.	11	12		1	3		14	15	16	17
Ans.	А	D	(A)-P,Q,	S ; (B)-PR,S	S;(C)-Q,S;	; (D)-Q,S	С	С	В	В
Que.	18	19	20							
Ans.	А	А	C, D							

Que.	22	23	24	25	26	27	28	29	30	31
Ans.	В	3	С	В	С	6	D	А	С	В
Que.	32	33	34	35		-				
Ans.	8	B, D	В	4						

- **36.** d^2sp^3 , dsp^2 and sp^3
- **37.** A \rightarrow [Cr(NH₃)₄ClBr]Cl

 $B \rightarrow [Cr(NH_3)_4Cl_2]Br$

In both Cr is $d^2 sp^3$ hybridised and magnetic moment is $\sqrt{15}$ BM

38.
$$[\text{NiCl}_4]^{2-} \rightarrow \text{sp}^3$$
, $\sqrt{8}$ BM
 $[\text{Ni}(\text{CN})_4]^{2-} \rightarrow \text{dsp}^2$, 0

node0618044801664 VEE Advareed Steffusian/Chen/Sheet Wad Left Chemical Bording, Coordination chemistry & Meet Inrgy/102-CC.) Eng Vitreory+Ex.pd5

39. Potassium amminetetracyanidonitrosoniumchromate(I) $\rightarrow d^2sp^3$, octahedral

LLEN

INTRODUCTION:

The compound of a metal found in nature is called a **mineral**.

The minerals from which metal can be economically and conveniently extracted are called ores.

An ore is usually contaminated with earthy or undesired materials known as gangue.

Note : All minerals are not ores but all ores are minerals.

Ores may be classified mainly into following two classes.

- (a) *Native ores* : Silver, gold, platinum etc, occur as native ores.
- **(b)** *Combined ores* : They contain the metal in combined form.
 - *(i)* Oxidised ores : Oxide ores , Carbonate ores, Sulphate ores, Phosphate ores, Silicate ores.
 - *(ii)* Sulphurised ores: These ores consist of sulphides of metals like iron, lead, zinc, mercury etc.
 - (iii) Halide ores : These ores consist of halides of metals

METALLURGY:

The scientific and technological process used for the extraction/isolation of the metal from its ore is called as metallurgy.

The isolation and extraction of metals from their ores involve the following major steps:

- (A) Crushing of the ore.
- (B) Dressing or concentration of the ore.
- (C) Isolation of the crude metal from its ore
- (D) Purification or refining of the metal.
- (A) Crushing and Grinding : The ore is first crushed by crushers and ground to a powder.

⁽B) Concentration of the ore : The removal of unwanted, useless impurities from the ore is called dressing, concentration or benefaction of ore.

There are several steps for the concentration of Ores.

- (I) By physical separation
 - (a) Gravity separation (Levigation)
 - (b) Froth Floatation method
 - (c) Magnetic separation
- (i) Gravity separation or Levigation method :

It is based on the difference in the densities of the gangue and ore particles. This method is generally used for the concentration of oxide and native ores.

(ii) Electromagnetic separation :

It is based on differences in magnetic properties of the ore components.

It is used when either the ore or the impurities associated with it are magnetic in nature.

Examples :

Chromite ore(FeO.Cr₂O₃) is separated from non–magnetic silicious impurities and cassiterite ore(SnO₂) is separated from magnetic Wolframite (FeWO₄ + MnWO₄).

(*iii*) *Froth floatation process* : This process is based on differential wetting of the ore by oil and gangue by water.

Examples: Galena, PbS (ore of Pb); copper pyrites $Cu_2S.Fe_2S_3$ or $CuFeS_2$ (ore of copper); zinc blende, ZnS (ore of zinc) etc.

- (a) Frothers : Oil like pine oil, camphor oil etc., are used as frothers.
- (b) Frothers stablizer : Aneline & Cressol
- (c) Collectors : Potassium or sodium ethyl xanthate is used as a collector.
- (d) Activating and depressing agents : For example galena (PbS) usually contains the minerals namely zinc blende (ZnS) and pyrites (FeS₂) as impurities. Floatation is carried out by using potassium ethyl xanthate (used as a collector) along with NaCN and Na₂CO₃ (used as depressing agent).

(II) By Chemical separation

Some of the ores are concentrated by means of chemical treatment.

Leaching : It involves the treatment of the ore with a suitable reagent. as to make it soluble while impurity remain insoluble. The ore is recovered from the solution by suitable chemical method.

- (i) Bayer's process
- (ii) Cyanide process

CALCINATION

Calcination is a process in which ore is heated, generally in the **absence of air**, to expel water from a hydrated oxide or carbon dioxide from a carbonate at temperature below their melting points.

For Example

(i) $CaCO_3 \longrightarrow CaO + CO_2$

(ii) Al_2O_3 . $2H_2O \longrightarrow Al_2O_3 + 2H_2O$

The removal of the excess sulphur contained in sulphide ores by heating **in an excess of air** is called roasting.

(Metal sulphides \longrightarrow Metal oxide + SO₂) (iii) 2Cu₂S + 3O₂ \longrightarrow 2Cu₂O + SO₂ \uparrow

REDUCTION OF ORE TO THE METAL

The calcined or roasted ore is then reduced to the metallic state in either of the following ways.

- (i) Reduction by Carbon (Smelting)
- Concentrate ore (ore + gangue) + R.A. (carbon) + Flux $[:: \mathbb{R} : \mathbb{A} : \Rightarrow \text{Reducing agent}]$

```
Metal + Slag + gases
PbO + C \longrightarrow Pb + CO
```

 $Fe_2O_3 + 3C \longrightarrow Fe + 3CO$

Acidic impurity + Flux \longrightarrow slag

 $\begin{array}{l} P_2O_5 + 3CaO \longrightarrow Ca_3 \ (PO_4)_2 \\ Basic impurity + Flux \longrightarrow slag \\ MgCO_3 + SiO_2 \longrightarrow MgSiO_3 + CO_2 \uparrow \end{array}$

$$\text{FeO} + \text{SiO}_2 \longrightarrow \text{FeSiO}_3$$

(ii) Self Reduction

Sulphides of certain metals are reduced to metal without using any additional reducing agent. ores of Cu, Pb, Hg etc.

Self Reduction for Pb

 $2PbS + 3O_2 \xrightarrow{Roasting} 2PbO + 2SO_2 \uparrow$

(Galena) (air)

 $\begin{array}{cccc} PbS & + & 2PbO & \xrightarrow{High temp} & 3Pb + SO_2 \uparrow \\ (unroasted ore) & (roasted ore) & (Self reduction) \end{array}$

(iii) Metal Displacement Method

 $2Na[Au(CN)_{2}] + Zn \longrightarrow Na_{2}[Zn(CN)_{4}] + 2Au$ $2Na[Ag(CN)_{2}] + Zn \rightarrow Na_{2}[Zn(CN)_{4}] + 2Ag$ Sodium tetra cyanozincate

(iv) Electrolytic Reduction

This process is mainly used for the extraction of **highly electropositive metals.** Ex. Na, K, Mg, Ca, Al, etc.

(v) Thermite Reduction or Thermite Process

Al is used as reducing agent in this process. This process is employed in the case of those metals which have very high melting points and are to be extracted from their oxides

$$Cr_2O_3 + 2Al \longrightarrow 2Cr + Al_2O_3$$
$$3Mn_3O_4 + 8Al \longrightarrow 9Mn + 4Al_2O_3$$

ALLEN

REFINING OF METALS

EXTRACTION OF SOME INDIVIDUAL METALS

EXTRACTION OF COPPER

Main Ore : Copper Pyrite (CuFeS₂)

Extraction from pyrites by pyrometallurgical process (Smelting Process) Some following steps are involved :

(i) Crushing & Grinding

(ii) Concentration

- (vi) Refining of copper :
- (a) Poling (b) Electrolytic refining

Uses :

Copper is the second most useful metal (the first being Iron) because of its stability in air and water and excellent conductivity.

It is used :

- (i) Copper is used for making wires used in electrical industry and for water and steam pipes.
- (ii) For electroplating.
- (iii)As a coinage alloy (with nickel) and in ornaments and jewellery.
- (iv)For the manufacture of alloys like brass (Cu + Zn), bronze (Cu + Sn) German silver (Cu + Zn + Ni) bell metal (Cu + Sn) gun metal (Cu + Sn + Zn), copper coins (Cu + Zn + Sn) etc.

EXTRACTION OF LEAD

Main Ore : Galena (PbS) - There are mainly two types of process used in the extraction of Lead.

→ (a) Carbon reduction process

Ore - Galena PbS

→ (b) Self reduction process

- (a) Carbon reduction process (When impurity content is high)
 - (i) Crushing & Grinding
 - (ii) Concentration by Froth floatation method
 - (iii) Roasting process with Lime stone (CaCO₃)
 - (iv) Smelting (Carbon reduction method with coke + Fe_2O_3)
 - (b) Self reduction process :- (When the impurity content is less)
 - (i) Crushing & Grinding
 - (ii) Concentration by Froth floatation method
 - (iii) Self reduction process

Reaction involved in self reduction :-

 $\mathsf{PbS} + \mathsf{O}_2 \longrightarrow \mathsf{PbO} + \mathsf{SO}_2$

$$PbS + 2PbO \longrightarrow 3Pb + SO_{2}$$

Parallel reaction

$$PbS + 2O_2 \longrightarrow PbSO_4$$
$$PbS + PbSO_4 \longrightarrow 2Pb + 2SO_2$$

- (c) Refining process :
 - (a) Liquation
 - (b) Bett's electrorefining

Anode \rightarrow Impure Pb

Cathode \rightarrow Pure Pb

Electrolyte \rightarrow Pb[SiF₆] + H₂SiF₆ + Gelatin (to adjust viscosity)

on the electrolysis Pb is deposited at cathode which give 99.95% pure metal.

EXTRACTION OF ZINC

Occurrence :

Its important minerals are :

(i)	Zinc blende or black jack	ZnS
(ii)	Zincite	ZnO

(iii) Calamine ZnCO₃

Some following steps are involved :

- (i) Concentration by froth floatation method
- (ii) Roasting/calcination
- (iii) Smelting using carbon reduction

chemistry & Metallurgy\03-Meta\Eng\Theory+Ex.p65

node06\B0A1-B0\Kota\JEE[Advanced]\Enthusiast\Chem\Sheet\Weddle#Chemical Bonding

Е

(iv) Electrolytic refining

Anode \rightarrow	Impure Zn
Cathode \rightarrow	Thin Al-rod
Electrolyte \rightarrow	Solution of $ZnSO_4 + H_2SO_4$ (dil.)
	on the electrolysis zinc is deposited at cathode. The metal is scrapped off and
	melted to give 99.95% pure metal.

Uses :

- (i) In making alloys e.g. brass, german silver, elektron (Alloy of Mg with smaller amount of Al, Y, Ag, Gd, Zn) etc.
- (ii) In the extraction of silver and gold by cyanide process.
- (iii) It is also used in large quantities in batteries and dry cells for making cathode container.
- (iv) Zn–Cu couple, Zn- Hg, zinc dust etc. are used as reducing agent in organic reactions.
- (v) large amount of zinc is used for galvanizing iron. Zinc is deposited on the surface of iron articles. This process is called galvanization.
- (vi) It is also used in large quantities in batteries, as a constituent of many alloys, e.g., brass, (Cu 60%, Zn 40%) and german silver (Cu 25-30%, Zn 25-30%, Ni 40–50%).
- (vii) Zinc dust is used as a reducing agent in the manufacture of dye-stuffs, paints, etc.

EXTRACTION OF TIN

Main Ore :

Cassiterite or Tinstone (SnO_2) + Major impurities [(i) SiO₂, (ii) Sulphides of Fe & Cu, (iii) FeWO₄ + MnWO₄] Some following steps are involved :

- (i) Crushing & Grinding :
- (ii) Concentration : By gravity separation method.
- (iii) Roasting : Followed by washing
- (iv) Electromagnetic separation : Thus obtained ore contains 60 - 70% SnO₂ and is called as black tin.
- (vi) Carbon reduction method : Coke & Lime stone (flux) is used.
- (vii) Refining method : (a) Poling (b) Electrorefining
 - Anode \rightarrow Impure Sn
 - Cathode \rightarrow Pure Sn

Electrolyte \rightarrow (SnSO₄ solution + dil. H₂SO₄)

EXTRACTION OF IRON

Main Ore : Haematite (Fe_2O_3)

Some following steps are involved :

- (i) Crushing & Grinding :
- (ii) Concentration : By gravity separation method.
- (iii) Roasting :
- (iv) Carbon reduction (Blast furnace) : Pig iron is obtained from this process
- (v) **Refining :** Purification of Fe can be done by different method which are as follows :
 - (a) Puddling Process
- (b) Bessemerisation Process(d) L. D. Process
- (c) Open hearth Process
- 94

Thus we got pure iron.

Types of Iron

Cast iron or pig iron

It is most impure form of Iron and contains the highest proportion of carbon (2.5 - 4%) along with traces of S, P, Mn and Si. Cast iron contain 2.5 to 4.3 & pig iron contain 2.5 to 5%.

Wrought iron (Fibrous iron) or malleable iron

It is the purest form of iron and contains minimum amount of carbon (0.12 - 0.25%) and less than 0.5% of other impurities.

Steel

It is the most important form of iron and finds extensive applications. As far as carbon content (impurity) is concerned it is mid-way between cast iron and wrought iron, it contains 0.25- 2% carbon.

Thus all the three forms of iron differ in their carbon contents, both iron and steel are obtained from cast iron. Order of M \mathbf{P} Wrought Iron > Steel > Cost Iron or Dig Iron

Ore, limestone and coke

Blast Furnace

Manufacture of Steel: The addition of different desired impurities into molten pure iron is known as steel making

JEE-Chemistry

Heat Treatment of Steel

- *Quenching or hardening :* Steel is heated to red hot temperature (700 to 800°C) and is then cooled suddenly by plunging into either cold water or oil. It makes steel hard and brittle.
- (*ii*) *Annealing*: The steel is heated to red hot temperature (700 to 800°C) and then cooled slowly. It makes steel soft.
- (iii) **Tempering :** If quenched steel is heated to temperature between 500 to 575 K and then cooled slowly, it becomes quite hard but brittleness disappears. The process is called tempering.

Surface treatment of steel

- (i) Nitriding : Process of heating steel at 1000 K in an atmosphere of NH₃. This gives hard coating of iron nitride on the surface.
- (*ii*) *Case hardening* : Process of giving a thin coating of hardened steel, by heating steel in contact with charcoal followed quenching in oil.

- It is used for axles of railway wagons.

Uses

- (*i*) *Cast iron*: It is the most important form of iron, is used for casting stoves, railway sleepers, gutter pipes, toys, etc.
- (*ii*) It is used in the manufacture of wrought iron and steel.
- (iii) Wrought iron : It is used in making anchors, wires, bolts, chains and agricultural implements.
- (iv) Steel finds a number of uses : Alloy steel is obtained when other metals are added to it. Nickel steel is used for making cables, automobiles and aeroplane parts, pendulum, measuring tapes, chrome steel for cutting tools and crushing machines, and stainless steel for cycles, automobiles, utensils, pens, etc.

EXTRACTION OF SILVER & GOLD

Extraction of silver :

Occurrence :

Ag found in free and combined state in nature.

Its main ore is Argentite Ag_2S .

Other ores are		
Copper silver glance	-	Cu_2S . Ag_2S
Horn silver	_	AgCl
Argentiferrous lead	_	PbS(0.01 – 0.1% Ag)

Some steps are involved in the extraction of Silver metal.

(i) Crushing & Grinding :

(*ii*) *Leaching process* : Silver are extracted by the cyanide process (Mc Arthur - Forest process). *Reaction involved* :

(a) $Ag_2S + 4NaCN \implies 2Na[Ag(CN)_2] + Na_2S \xrightarrow{+O_2+H_2O} Na_2SO_4 + 'S' + 2NaOH$

[:: O_2 is used to make reaction irreversible which remove Na_2S as $Na_2SO_4 + S$]

(b) $2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)4] + Ag \downarrow$ (*iii*) Refining Process :

Anode	\rightarrow	Impure Ag
Cathode	\rightarrow	Pure Ag
Electrolyte	\rightarrow	$(AgNO_3 solution + dil. HNO_3)$

ALLEN

Metallurgy

Uses :

- *(i)* It is used in silver plating.
- Silver foils are used in medicine *(ii)*
- (iii) Silver amalgam is used for dental filling.
- Compounds of silver are used in silvering of mirrors (AgNO₃ + HCHO + Red Pb), in (iv) photography, as laboratory reagents etc.
- Silver is easily alloyed with copper, so it is used in making coins, ornaments, silver ware etc. (v)
- (vi) It gives black spot on skin due to decomposition so it is also used as hair dye and ink.

Extraction of Gold :

Occurrence : Au found in free (native) state in nature.

Same steps as are involved in the extraction of Silver metal.

(i) Crushing & Grinding :

(ii) Leaching process : Gold are extracted by the cyanide process (Mc Arthur - Forest process). **Reaction involved** :

 $4Au + 8NaCN + O_2 + 2H_2O \implies 4Na[Au(CN)_2] + 4NaOH$

 $2Na[Au(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Au$

(iii) Refining Process :

Anode	\rightarrow	Impure Au
Cathode	\rightarrow	Pure Au
Electrolyte	\rightarrow	$(AuCl_{3} solution + dil. HCl$

EXTRACTION OF ALUMINIUM:

Ore - Bauxite $AlO_{x}(OH)_{3-2x}$ (where O < x < 1)

Flow chart of Al from $Al_2O_3.2H_2O$ (Bauxite)

Uses

- (i) Aluminium foils are used as wrappers for chocolates.
- (ii) The fine dust of the metal is used in paints and lacquers.
- (iii)Aluminium, being highly reactive, is also used in the extraction of chromium and manganese from their oxides.
- (iv)Wires of aluminium are used as electricity conductors.
- (v) Alloys containing aluminium, being light, are very useful.

Е

EXTRACTION OF MAGNESIUM :

(i) From Carnallite :

The ore is dehydrated in a current of hydrogen chloride and the mixture of fused chlorides is electrolysed.

(ii) From Magnesite :

The concentrated ore is calcined at higher temperature

$$MgCO_3 \xrightarrow{Heated} MgO + CO_2$$

The calcined ore is heated with coke in a current of dry chlorine gas.

 $MgO + C + Cl_2 \xrightarrow{\Delta} MgCl_2 + CO$

The magnesium chloride is fused and then electrolysed.

MgO + C (Other reducing agents like Si, Al can be used) $\xrightarrow{2000^{\circ}C}$ Mg + CO

(iii) From Sea water (Dow's process) :

Sea water contains 0.13% magnesium as chloride and sulphate. It involves following steps.

- (a) Precipitation of magnesium as magnesium hydroxide by slaked lime : $MgCl_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + CaCl_2$
- (b) Preparation of hexahydrated magnesium chloride $Mg(OH)_2 + 2HCl(aq) \longrightarrow MgCl_2 + 2H_2O$ The solution on concentration and crystallisation gives the crystals of MgCl_2.6H_2O
- (c) Preparation of anhydrous magnesium chloride

MgCl₂. $6H_2O \xrightarrow{\Delta(calcination)}{Dry \ HCl(g)} MgCl_2 + 6H_2O$ It is not made anhydrous by simple heating because it gets hydrolysed MgCl₂. $6H_2O \xrightarrow{\Delta} MgO + 5H_2O + 2HCl$

(d) Electrolysis of fused anhydrous MgCl₂

(i) Electrolyte : Molten MgCl₂ + NaCl + CaCl₂

(ii) Anode : Graphite electrode

(iii) Cathode : Iron cell (steel container)

Reaction occurs :

The molten mixture is electrolysed. Magnesium is liberated at the cathode (iron pot) and chlorine is evolved at graphite anode.

 $\begin{array}{l} \mathrm{MgCl}_{2} & \longrightarrow \mathrm{Mg}^{2^{+}} + 2\mathrm{Cl}^{-} \\ At \ cathode: \ \mathrm{Mg}^{2^{+}} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Mg}(99\% \ \mathrm{pure}); \\ At \ anode: \ 2\mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2} + 2\mathrm{e}^{-} \end{array}$

(iv) From Dolomite : In the Pidgeon Process Mg is Produced.

The concentrated ore is calcined at higher temperature

 $CaCO_3$. MgCO_3 \longrightarrow CaO. MgO + 2CO₂

It is then reduced by ferrosilicon at 1273 K under reduced pressure.

2CaO. MgO + Fe–Si $\xrightarrow{1150^{\circ}\text{C}}$ 2Mg⁺ + Fe + Ca₂SiO₄

THERMODYNAMICS OF REDUCTION PROCESSES (ELLINGHAM DIAGRAM)

The extraction of metals from their oxides using carbon or other metals, and by thermal decomposition, involves a number of points which merit detailed discussion.

For a spontaneous reaction, the free energy change ΔG must be negative.

 $\Delta G = \Delta H - T \Delta S$

ALLEN

 Δ H is the enthalpy change during the reaction, T is the absolute temperature, and Δ S is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide:

 $M + O_2 \rightarrow MO$

Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquids or solids. Consequently gases have a higher entropy than liquids or solids. In this reaction S the entropy or randomness decreases, the hence ΔS is negative. Thus if the temperature is raised then T ΔS becomes more negative. Since T ΔS is subtracted in the equation, then ΔG becomes less negative. Thus the free energy changed increases with an increase of temperature.

The free energy changes that occur when one gram molecule of a common reactant (in this case dioxygen) is used may be plotted graphically against temperature for a number of reactions of metals of their oxides. This graph is shown in figure and is called an Ellingham diagram (for oxides). Similar diagrams can be produced for one gram molecule of sulphur, giving an Ellingham diagram for sulphides, and similarly for halides.

The Ellingham diagram for oxides shows several important features:

- (i) The graph for metal oxide all slope upwards, because the free energy change increases with an increase of temperature as discussed above.
- (ii) The free energy changes all follows a straight line unless the materials metal or vaporize.
- (iii) When the temperature is raised, a point will be reached where the graph crosses the $\Delta G = 0$ line. Below this temperature the free energy of formation of the oxide is negative, so the oxide is stable. Above this temperature the free of formation of the oxide is positive, and the oxide becomes unstable, and should decompose into the metal and dioxygen.
- (iv) Any metal will reduce the oxide of other metals which lie above it in the Ellingham diagram because the free energy will become more negative by an amount equal to the different between the two graphs at that particular temperature.

Limitations of Ellingham Diagram

- (i) The graph simply indicates whether a reaction is possible or not i.e., the tendency of reduction with a reducing agent is indicated. This is so because it is based only on the thermodynamic concepts. It does not say about the kinetics of the reduction process (Cannot answer questions like how fast it could be ?).
- (ii) The interpretation of ΔG^{Θ} is based on K($\Delta G^{\Theta} = -RT \ln K$). Thus it is presumed that the reactants of products are in equilibrium.

Aluminium	1. Bauxite, Al ₂ O ₃ . x H ₂ O 2. Cryolite, Na ₃ AlF ₆	Electrolysis of Al_2O_3 dissolved in molten Na_3AlF_6	For the extraction, a good source of electricity is required.
Iron	1. Haematite, Fe ₂ O ₃ 2. Magnetite, Fe ₃ O ₄	Reduction of the oxide with CO and coke in Blast furnace	Temperature approaching 2170 K is required.
Copper	 Copper pyrites, CuFeS₂ Copper glance, Cu₂S Malachite, CuCO₃.Cu(OH)₂ Cuprite, Cu₂O 	Roasting of sulphide partially and reduction	It is self reduction in a specially designed converter. The reduction takes place easily. Sulphuric acid leaching is also used in hydrometallurgy from low grade ores.
Zinc	 Zinc blende or Sphalerite, ZnS Calamine, ZnCO₃ Zincite, ZnO 	Roasting followed by reduction with coke	The metal may be purified by fractional distillation.

GENERAL PRINCIPLES & PROCESSES OF ISOLATION OF ELEMENTS

EXERCISE # O-I

ONLY ONE OPTION IS CORRECT.

ORES

1.	Which of the following does not contain Mg:			
	(A) magnetite	(B) magnesite	(C) asbestos	(D) carnallite
2.	Which of the following is not an ore:			
	(A) malachite	(B) calamine	(C) stellite	(D) cerussite
3.	Carnallite does not c	ontain		
	(A) K	(B) Ca	(C) Mg	(D) Cl
4.	Among the following	g statements, the incorr	ect one is	
	(A) calamine and sid	erite are carbonate ores	(B) argentite and cup	orite are oxide ores
	(C) zinc blende and	pyrites are sulphide ore	s (D) malachite and az	urite are ores of copper
5.	Select the correct sta	tement :		
	(A) Magnetite is an o	ore of manganese	(B) Pyrolusite is an o	ore of lead
	(C) Siderite is carbon	nate ore of iron	(D) FeS_2 is rolled go	ld
6.	"Fool's gold" is			
	(A) iron pyrites	(B) horn silver	(C) copper pyrites	(D) bronze
7.	Assertion : Platinum and gold occur in native state in nature.			
	Reason : Platinum and gold are noble metals.(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.			
pó.5	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1			prrect explanation for statement-1.
√Theory+Ex.	(C) Statement-1 is true, statement-2 is false.			
-Meta/Eng	(D) Statement-1 is false, statement-2 is true.			
≇allurgy∖03		CONCENTRAT	TION METHODS	
smistry & Me 8.	$Ag_2S + NaCN + Zn$	\longrightarrow Ag		1 1 11 1
dination dre	This method of extra	iction of Ag by complex	(\mathbf{D}) Medarthur Equation	s displacement is called:
nding, Cool	(A) Parke's method		(B) McArthur-Forest	tmethod
Chemical Bo	Which one of the fol	lowing is not a method	of concentration of ore	29
er/Module#	(A) gravity separation (B) froth floating process			cess
(Chem \She	(C) electromagnetic	separation	(D) smelting	
10.	Chemical leaching is	useful in the concentra	tion of:	
(Advanced)	(A) copper pyrites	(B) bauxite	(C) galena	(D) cassiterite
11.	In froth-floatation pr	ocess, pine oil function	s as	
06\B0AI-B	(A) activator	(B) frother	(C) collector	(D) agitator
pou				

JEE-Chemistry

12.	Collectors are the substances which help in a popular collector used industrially is	attachment of an ore particle to air bubble in froth. A
	(A) sodium ethyl xanthate	(B) sodium xenate
	(C) sodium pyrophosphate	(D) sodium nitroprusside
13.	In the cyanide process involving extraction of	of silver, zinc is used industrially as a(an)
	(A) oxidising agent	(B) reducing agent
	(C) solvent	(D) solvating agent
14.	During initial treatment, preferential wetting	of ore by oil and gangue by water takes place in
	(A) Levigation (gravity separation)	(B) Froth floatation
	(C) Leaching	(D) Bessemerisation
15.	An non-magnetic ore containing the impurity	y of $FeCr_2O_4$ is concentrated by
	(A) magnetic-separation	(B) gravity separation
	(C) froth-floatation method	(D) electrostatic method
16.	The beneficiation of the sulphide ores is usual	ally done by
	(A) Electrolysis	(B) Smelting process
. –	(C) Metal displacement method	(D) Froth flotation method
17.	The process of the isolation of a metal by disso reagent followed by precipitation of the meta	olving the ore in aqueous solution of suitable chemical I by a more electropositive metal is called:
	(A) hydrometallurgy	(B) electrometallurgy
	(C) zone refining	(D) electrorefining
18.	Froth floatation process for concentration of	ores is an illustration of the practical application of:
	(A) Adsorption	(B) Absorption
	(C) Coagulation	(D) Sedimentation
19.	Assertion : Sulphide ores are concentrated	by froth floatation process.
	Reason : Pine oil acts as a frothing agent in f	roth floatation process.
	(A) Statement-1 is true, statement-2 is true and	d statement-2 is correct explanation for statement-1.
	(B) Statement-1 is true, statement-2 is true and st	atement-2 is NOT the correct explanation for statement-1.
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	
20.	Assertion : Wolframite impurities are separa	ated from cassiterite by electromagnetic separation.
	Reason : Cassiterite being magnetic is attrac	ted by the magnet and forms a separate heap.
	(A) Statement-1 is true, statement-2 is true and	d statement-2 is correct explanation for statement-1.
	(B) Statement-1 is true, statement-2 is true and st	atement-2 is NOT the correct explanation for statement-1.
	(C) Statement-1 is true, statement-2 is false.	
	(D) Statement-1 is false, statement-2 is true.	
102	•	

ALLEN

ALI	.EN	Metallurgy			
	CAL	CINATION/ROASTING			
21.	Calcination is the process of heating	ng the ore:			
	(A) in inert gas	(B) in the presence of air			
	(C) in the absence of air	(D) in the presence of CaO and MgO			
22.	When roasting is carried out :				
	(i) Sulphide ore is converted into a	oxide and sulphate			
	(ii) remove water of hydration				
	(iii) the ore melts	(iv) arsenic and sulphur impurities are removed			
	Of these statements:				
	(A) (i), (ii) and (iii) are correct	(B) (i) and (iv) are correct			
	(C) (i), (ii) and (iv) are correct	(D) (ii), (iii) and (iv) are correct			
	RE	EDUCTION PROCESS			
23.	In the alumino thermite process, A	l acts as			
	(A) An oxidising agent	(B) A flux			
	(C) A reducing agent	(D) A solder			
24.	Assertion : Al is used as a reduct	ing agent in aluminothermy.			
	Reason : Al has a lower melting p	Reason : Al has a lower melting point than Fe, Cr and Mn.			
	(A) Statement-1 is true, statement-2	2 is true and statement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2 i	s true and statement-2 is NOT the correct explanation for statement-1.			
	(C) Statement-1 is true, statement-	2 is false.			
	(D) Statement-1 is false, statement	-2 is true.			
25.	Formation of metallic copper from essentially involves which one of t	the sulphide ore in the commercial thermo-metallurgical process he following reaction:			
	(A) $Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + S$	O_2 ; $CuO + C \longrightarrow Cu + CO$			
	(B) $\operatorname{Cu}_2 \mathrm{S} + \frac{3}{2} \mathrm{O}_2 \longrightarrow \mathrm{Cu}_2 \mathrm{O} + \mathrm{S}_2 \mathrm{O}_2$	SO_2 ; $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$			
	(C) $Cu_2S + 2O_2 \longrightarrow CuSO_4$; $CuSO_4 + Cu_2S \longrightarrow 3Cu + 2SO_2$			
	(D) $\operatorname{Cu}_2 S + \frac{3}{2} O_2 \longrightarrow \operatorname{Cu}_2 O + S$	O_2 ; $Cu_2O + CO \longrightarrow 2Cu + CO_2$			
26.	The element which could be extr temperature melt is:	acted by electrolytic reduction of its oxide dissolved in a high			
	(A) sodium (B) magnes	sium (C) fluorine (D) aluminium			
27.	In which of the following isolation (Λ) iron from becometite	IS no reducing agent is required:			
	(A) non non nachathe	(D) zinc from zinc blende			
		103			

ALLEN

		PURIFICATI	ON METHODS	
28.	A metal has a high of	concentration into the	earth crust and whos	e oxides cannot be reduced by
	carbon. The most suitable method for the extraction of such metal is			
	(A) Alumino thermite	process	(B) Electrolysis proc	cess
	(C) Van-Arkel's proce	ess	(D) Cupellation	
29.	Assertion : Alkali m	etals can not be prepa	ared by the electrolysi	is of their chlorides in aqueous
	solution			
	Reason : Reduction p	potentials of alkali met	als cations is much low	ver than that of H_2O .
	(A) Statement-1 is true	e, statement-2 is true an	d statement-2 is correct	t explanation for statement-1.
	(B) Statement-1 is true,	statement-2 is true and s	tatement-2 is NOT the c	orrect explanation for statement-1.
	(C) Statement-1 is true	e, statement-2 is false.		
	(D) Statement-1 is fals	se, statement-2 is true.		
30.	Assertion : Magnesiu	um can be prepared by	the electrolysis of aq.	MgCl ₂ .
	Reason : The reduction	on potential of Mg ²⁺ is	s much lower than that	ofH ₂ O.
	(A) Statement-1 is true	e, statement-2 is true an	d statement-2 is correct	t explanation for statement-1.
	(B) Statement-1 is true,	statement-2 is true and s	tatement-2 is NOT the c	orrect explanation for statement-1.
	(C) Statement-1 is true	e, statement-2 is false.		
	(D) Statement-1 is fals	se, statement-2 is true.		
31.	Bessemerisation is can	rried out for		
	I : Fe,	II : Cu,	III : Al,	IV : silver
	(A) I, II	(B) II, III	(C) III, IV	(D) I, III
32.	In the extraction of ni	ckel by Mond process,	, the metal is obtained	by:
	(A) electrochemical re	eduction	(B) thermal decompo	osition
22	(C) chemical reductio	on by aluminium	(D) reduction by car	bon
33.	Formation of $Ni(CO)_4$ and subsequent its decomposition into Ni and CO (recycled) makes basis of Mond's process			
	$\mathbf{N} + \mathbf{A} \mathbf{C} \mathbf{C} = \begin{bmatrix} \mathbf{T}_1 & \mathbf{N}_1^{\prime} + \mathbf{A} \mathbf{C} \mathbf{C} \end{bmatrix}$			
	Ni + 4CO —	$\xrightarrow{I_1} \operatorname{Ni}(\operatorname{CO})_4 \xrightarrow{I_2} \operatorname{Ni}$	Ni + 4CO	ta King Ah
	T_1 and T_2 are:	(\mathbf{D}) 500C 1000C	(C) = 500C - 2200C	
3/	(A) 100°C, 50°C	(B) 50°C, 100°C	(C) 50°C, 230°C	$(D) 230^{\circ}C, 50^{\circ}C$
57.	(A) fractional distillati	ion	(B) fractional crystal	lisation
	(C) partition coefficient	nt	(D) chromatographic	c separation
35.	Si and Ge used for set	miconductors are requ	ired to be of high puri	ty and hence purified by
	(A) zone-refining		(B) electrorefining	ali Comi.
	(C) Van-Arkel's proce	ess	(D) cupellation proc	ess and the second seco
36.	Which process of pur	ification is represented	by the following equa	tion :
	Ti (Impure) +	$2I_2 \xrightarrow{250^{\circ}C} TiI_4 -$	$1400^{\circ}C$ \rightarrow Ti (Pure) +	2I ₂
	(A) Cupellation	(B) Poling	(C) Van-Arkel Proce	ess (D) Zone refining
37.	Which of the following employ(s) thermal decomposition of volatile iodide compounds?		ile iodide compounds?	
	(A) Thermite process	(B) Hall's process	(C) Van-Arkel's pro	cess (D) Mond's process
104				e A
104		•		

ALI	len			Metallurgy	
38.	The method of zon	e refining of metals is	based on the principle	of:	
	(A) Greater mobilit	ty of the pure metal th	an that of impurity.		
	(B) Higher melting	(B) Higher melting point of the impurity than that of the pure metal.			
	(C) Greater noble c	(C) Greater noble character of the solid metal than that of the impurity			
	(D) Greater solubil	ity of the impurity in	the molten state than in	the solid	
39.	Assertion : Titaniu	um is purified by Van-	-Arkel method.		
	Reason : Ti reacts with I_2 to form volatile TiI ₄ which decomposes at 1673 K to give pure Ti.				
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.				
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.				
	(C) Statement-1 is t	true, statement-2 is fa	lse.		
	(D) Statement-1 is	false, statement-2 is tr	rue.		
40.	Assertion : Nickel	is purified `by the the	ermal decomposition of	nickel tetracarbonyl.	
	Reason : Nickel is	a transition element.			
	(A) Statement-1 is t	rue, statement-2 is tru	e and statement-2 is corr	ect explanation for statement-1.	
	(B) Statement-1 is true	ue, statement-2 is true a	nd statement-2 is NOT the	e correct explanation for statement-1.	
	(C) Statement-1 is t	true, statement-2 is fa	lse.		
	(D) Statement-1 is	false, statement-2 is tr	rue.		
41.	Refining of silver is	s done by:			
	(A) liquation	(B) poling	(C) cupellation	(D) van Arkel method	
42.	Mercury is purified	by:			
	(A) Passing throug	h dilute HNO ₃	(B) Distillation		
	(C) Distribution		(D) Vapour phase	refining	
43.	Assertion : Lead,	Assertion : Lead, tin and bismuth are purified by liquation method.			
	Reason : Lead, tin	Reason : Lead, tin and bismuth have low m.p. as compared to impurities.			
	(A) Statement-1 is t	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.			
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.				
	(C) Statement-1 is true, statement-2 is false.				
4.4	(D) Statement-1 is	iaise, statement-2 is tr	ue.	d is more easily evidend they the	
44.	motal itself. Then, t	the metal is refined by	r anning for oxygen an	a is more easily oxidised than the	
	(A) cupellation	(B) zone-refining	(C) distillation	(D) electrolytic process	
	(A) eupenation	(D) ZOIC-Telling	TION OF METALS	(D) electrolytic process	
45	Which of the follow	ving process is not as	sociated with recovery	of the silver -	
-01	(Λ) As a side produ	(A) As a side product in electrolytic refining of copper			
	(R) Parko's process	(D) Derkela pro agas in which Zn is used to extra at silver here there there there there is a former with the local sector of the sector of th			
	(B) Farke's process in which Σh is used to extract silver by solvent extraction from molten lead				
	(C) By reaction of	silver sulphide with K	CN and then reaction (of soluble complex with Zn	
	(D) By boiling Na	$Ag(CN)_2$ aq.			
46.	Blister Cu is about:			(D) 1000/ C	
	(A) 60% Cu	(B) 90% Cu	(C) 98% Cu	(D) 100% Cu	

JEE-Chemistry

47.	Iron obtained from blast furance is:		
	(A) wrought iron (B) cast iron	(C) pig iron (D) steel	
48.	Which of the following term is not related to Al-extraction		
	(A) Serpek's process	(B) Hall-Heroult process	
	(C) Thermite process	(D) Hoop's process	
49.	Dow's process		
	(A) involves purification of copper	(B) involves extraction of magnesium	
	(C) gives metal chloride as product	(D) gives pure Na as product	
50.	Silica is added to roasted copper ores during	extraction in order to remove	
	(A) cuprous sulphide (B) ferrous oxide	(C) ferrous sulphide (D) cuprous oxide	
51.	Addition of high proportions of manganese manganese	nakes steel useful in making rails of railroads, because	
	(A) gives hardness to steel	(B) helps the formation of oxides of iron	
	(C) can remove oxygen and sulphur	(D) can show highest oxidation state of +7	
52.	In the commercial electrochemical process for	or aluminium extraction the electrolyte used is	
	(A) Al(OH) ₃ in NaOH solution	(B) an aqueous solution of $Al_2(SO_4)_3$	
	(C) a molten mixture of Al_2O_3 , Na_3AlF_6 & CaF_2	(D) a molten mixture of Al_2O_3 and $Al(OH)_3$	
53.	Blister copper is refined by stirring molten in	mpure metal with green logs of wood because such a	
	wood liberates hydrocarbon gases (like CH	4). This process X is called and the metal	
	contains impurities of Y is		
	(A) $X = cupellation, Y = CuO_2$	(B) $X = poling, Y = Cu_2O$	
	(C) $X = poling, Y = CuO$	(D) $X = cupellation, Y = CuO$	
54.	A piece of steel is heated until redness and then plunged into cold water or oil. This treatment of steel		
	makes it		
	(A) soft and malleable	(B) hard but not brittle	
	(C) more brittle	(D) hard and brittle	
55.	Modern method of steel manufacturing is		
	(A) open hearth process	(B) L.D. Process	
	(C) Bessemerisation	(D) Cupellation	
56.	During electrolytic reduction of alumina, two	b auxiliary electrolytes X and Y are added to increase	
	the electrical conductance and lower the temperature of melt in order to making fused mixt conducting. X and Y are		
	(A) cryolite and flourspar	(B) cryolite and alum	
	(C) alum and flourspar	(D) flourspar and bauxite	
57.	7. For extraction of sodium from NaCl, the electrolytic mixture $NaCl + KCl + CaCl_2$ is used		
	extraction process, only sodium is deposited on cathode but K and Ca do not because (A) Na is more reactive than K and Ca		
	(B) Na is less reactive than K and Ca		
	(C) NaCl is less stable than Na_3AlF_6 and Ca	Cl ₂	
	(D) the discharge potential of Na^+ is less than that of K^+ and Ca^{2+} ions.		
106			

ALLEN
LL	EN			Metallurgy			
•	Railway wagon axle	es are made by heating	g iron rods embedded in	charcoal powder. This process is			
	known as:						
	(A) Sherardising	(B) Annealing	(C) Tempering	(D) Case hardening			
	In the extraction of	copper from its sulph	ide ore the metal is forme	ed by the reduction of Cu_2O with:			
	(A) FeS	(B) CO	(C) Cu_2S	(D) SO ₂			
	Carnallite on electro	olysis gives:					
	(A) Ca and Cl_2	(B) Na and CO_2	(C) Al and Cl_2	(D) Mg and Cl_2			
		MISC	ELLANEOUS				
	Which of the follow	ing statement is corre	ect regarding Cu-extracti	on			
	(A) In the smelting	step carbon reduction	takes places				
	(B) During partial r	oasting Cu ₂ S remains	almost unaffected				
	(C) In Bessemer con	nverter, only self redu	ction occur, not slag for	mation			
	(D) Blister forms in	the blister Cu is due	to dissolved CO ₂				
	Refractory material	s are generally used i	n furnaces because				
	(A) they are chemic	ally inert	(B) they can withst	and high temperature			
	(C) they do not con	tain impurities	(D) they decrease n	nelting point of ore			
	Which of the follow	ing statements is corr	ect regarding the slag for	mation during the extraction of a			
	metal like copper or iron.						
	(A) The slag is lighter and has lower melting temperature than the metal						
	(B) The slag is heavier and has lower melting temperature than the metal						
	(C) The slag is light	er and has higher me	lting temperature than th	e metal			
	(D) The slag is heav	vier and has higher me	elting temperature than t	he metal			
	Assertion : Genera	lly in smelting, roaste	d/cacinated ore is heated	with powdered coke in presence			
	of a flux.						
	Reason : Oxides ar	e reduced to metals b	by C or CO. Impurities ar	e removed as slag.			
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.						
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.							
	(C) Statement-1 is true, statement-2 is false.						
	(D) Statement-1 is f	alse, statement-2 is tr	ue.				
	Assertion : Magne	sia and quick lime are	e used as basic flux.				
	Reason : MgO and	CaO can withstand	very high temperatures.				
	(A) Statement-1 is tr	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1					
	(B) Statement-1 is tru	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.					
	(C) Statement-1 is true, statement-2 is false.						
	(D) Statement-1 is f	alse, statement-2 is tr	ue.				
	Assertion : Wolfram	mite impurity is separ	rated from SnO ₂ by magr	netic separation			
	Reason : Tin stone	is ferromagnetic, the	refore attracted by magne	et.			
	(A) Statement-1 is the	rue, statement-2 is true	e and statement-2 is correct	ct explanation for statement-1.			
	(B) Statement-1 is tru	ie, statement-2 is true a	nd statement-2 is NOT the	correct explanation for statement-1.			
	(C) Statement-1 is t	rue, statement-2 is fal	se.				
	(D) statement-1 is I	aise, statement-2 is tr	นซ.				
				107			

EXERCISE # 0-2

	ON	NE OR MORE THAN	N ONE OPTION MAY	BE CORRECT			
1.	Which of the follo	wing is(are) sulphide of	ores?				
	(A) Argentite	(B) Galena	(C) Anglesite	(D) Copper glance			
2.	Which of the follo	wing is(are) regarded	as iron ores?				
	(A) Haematite	(B) Magnetite	(C) Limonite	(D) Copper pyrites			
		CONC	CENTRATION				
3.	Which of the follo	wing ores is(are) conc	entrated by froth floatat	ion?			
	(A) haematite	(B) galena	(C) copper pyrite	(D) azurite			
4.	Which of the follo	owing ores is (are) co	ncentrated industrially	by froth floatation?			
	(A) Copper pyrite	es (B) Galena	(C) Dolomite	(D) Carnallite			
5.	Leaching is used f	or the concentration of	f:				
	(A) Red bauxite	(B) Haematite	(C) Gold ore	(D) Silver ore			
		CALCINA	TION/ROASTING				
6.	Calcination and ro	asting processes of or	es to form their oxides a	re beneficial			
	(A) to convert ore	(A) to convert ores into porous form so that their reduction becomes easier					
	(B) as impurities l	(B) as impurities like S, As, Sb, are removed					
	(C) as organic imp	(C) as organic impurities are removed.					
	(D) as the ores are	(D) as the ores are converted into oxide form which makes the reduction easier					
7.	Which of the follo	wing reaction(s) occur	r during calcination?				
	(A) $CaCO_3 \rightarrow CaCO_3$	$aO + CO_2$	(B) $4\text{FeS}_2 + 11\text{O}_2$	$_2 \rightarrow 2 Fe_2 O_3 + 8 SO_2$			
	(C) $2Al(OH)_3 \rightarrow$	$Al_2O_3 + 3H_2O$	(D) $CuS + CuSO_4$	$\rightarrow 2Cu + 2SO_2$			
8.	Which of the follo	owing is true for calc	ination of a metal ore?	-			
	(A) It makes the o	(A) It makes the ore more porous					
	(B) The ore is hea	ated to a temperature	when fusion just begin	S			
	(C) Hydrated salt	s lose their water of c	rystallisation				
	(D) Impurities of	S, As and Sb are rem	noved in the form of the	eir volatile oxides.			
9.	Roasting can be p	erformed in					
	(A) blast furnace		(B) reverberatory f	furnace			
	(C) electric furnac	e	(D) None of these				
		RE	EDUCTION				
10.	Carbon reduction	method is employed fo	or commercial extraction	of metal from amongst these :			
	(A) haematite	(B) cassiterite	(C) iron pyrite	(D) corundum			
11.	Auto reduction pr	ocess is used in extract	tion of				
	(A) Cu	(B) Hg	(C) Al	(D) Fe			
12.	Which of the follow	ving reduction reaction	s are actually employed in	n commerical extraction of metals?			
	(A) $Fe_2O_3 + 2Al -$	$\rightarrow Al_2O_3 + 2Fe$					
	(B) $Cr_2O_3 + 2Al -$	$\rightarrow Al_2O_3 + 2Cr$					
	(C) 2Na[Au(CN),	$J + Zn \rightarrow Na_2 [Zn(CN)]$	$[)_4] + 2Au$				
	(D) $Cu_2S + Pb \rightarrow$	$Cu + PbS \downarrow$. 1-				
	× / 2						

ALLEN

		PURIFI	CATION			
13.	In the manufacturing amount of $CaCl_2$ that	of metallic sodium by f t added is known as aux	y fused salt-electrolysis method (Down's process), small auxiliary electrolyte and is used to			
	(A) improve the elec	trical conductance	(B) decrease the melti	ing point of electrolyte		
	(C) stabilise the meta	Illic sodium	(D) increase the temp	perature of electrolysis		
14.	Poling is employed in	n refining of				
	(A) iron	(B) copper	(C) tin	(D) lead		
15.	Zone refining is used	for purification of				
	(A) Ge	(B) Si	(C) Ga	(D) In		
16.	Metal(s) which does/	do not form amalgam is	/are			
	(A) Fe	(B) Pt	(C) Zn	(D) Au		
17.	Metals which can be	commercially extracted	by smelting process			
	(A) Pb	(B) Fe	(C) Zn	(D) Mg		
		EXTRACTIO	N OF METALS			
18.	Hoop's process of p It involves	purification of aluminiu	im involves formation	of layers during electrolysis.		
	(A) the three layers h	ave same densities but	different materials.			
	(B) the three layers h	ave different densities				
	(C) the upper layer is	s of pure aluminium whi	ch acts as a cathode			
	(D) the bottom layer cryolite and BaF	is of impure aluminium $\frac{1}{2}$.	which acts as an anode	e and middle layer consists of		
19.	Metallurgical proces zinc distills over as it obtained is called sp	s of zinc involves roast is volatile and impuritie elter, which may be put	res roasting of zinc sulphide followed by reduction. Metallic mpurities like Cu, Pb and Fe gets condensed. The crude metal y be purified by			
	(A) electrolysis proce	ess	(B) fractional distillati	ion		
	(C) polling		(D) heating with iodir	ne		
20.	Which of the followi	ng process (es) are used	for purification of Bau	xite ore?		
j/Theory+I	(A) Hall's process	(B) Serpeck's process	(C) Baeyer's process	(D) Mond's process		
ž 21.	Common impurities $(A) \in O$	present in Bauxite are				
	(A) CuO Calcium silicate slag	(B) ZnU formed in extraction of	(C) $\operatorname{Fe}_2 O_3$	$(D) SiO_2$		
stry & Mete	(A) prevents the reov	kidation of molten iron.	1011			
ation chemi	(B) catalyses the con	nbustion of carbon.				
g, Coordin	(C) reduces CO_2 to C	CO at the bottom of the	furnace.			
cal Bonding	(D) is used in cemen	t industry.	1. 1.1 0.1 0.1			
1 23.	Amphoteric nature o	of aluminium is employe	ed in which of the follow	wing process for extraction of		
SheetVMod	(A) Baever's process	3	(B) Hall's process			
st/Chem/S	(C) Serpec's process	,	(D) Dow's process			
24.	The chief reaction(s)	occuring in blast furnac	e during extraction of i	ron from haematite is(are)		
Advancex	(A) $Fe_2O_2 + 3CO \rightarrow$	• $2Fe + 3CO_2$	(B) $FeO + SiO_2 \rightarrow F$	FeSiO ₃		
∕Kola∖lEE	(C) $\operatorname{Fe}_2 O_2 + C \rightarrow 2$	$Fe + 3CO^{2}$	(D) CaO + SiO ₂ \rightarrow (CaSiO ₂		
6/BOAI-BC	×		2 Z	J		
nodeu						
E		•		109		

ALLEN -

JEE-Chemistry

- 25. Which of the following are true for electrolytic extraction of aluminium
 - (A) cathode material contains graphite
- (B) anode material contains graphite

ALLEN

(C) cathode reacts away forming CO_2 (D) anode reacts away forming CO_2

26. During extraction of copper, it is obtained in the form of molten *matte*. Which of the following is **not true**?

- (A) matte is further treated in Bessemer's coverter
- (B) molten *matte* is electrolysed
- (C) It is treated with a blast of air and sand
- (D) It is dissolved in $CuSiF_6$ and crystallised.
- 27. The major role of fluorspar (CaF₂) which is added in small quantities in the electrolytic reduction of alumina dissolved in fused cryolite (Na₃AlF₆) is
 - (A) as a catalyst
 - (B) to make the fused mixture very conducting
 - (C) to lower the melting temperature of the mixture
 - (D) to decrease the rate of oxidation of carbon at the anode.
- 28. Which of the following reaction does not occur in blast furance during extraction of iron :
 - (A) $\operatorname{CaO} + \operatorname{SiO}_2 \longrightarrow \operatorname{CaSiO}_3$ (B) $\operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}_2$
 - (C) FeO + SiO₂ \longrightarrow FeSiO₃ (D) FeO \longrightarrow Fe + $\frac{1}{2}$ O₂

MISCELLANEOUS

- 29. Which of the following employ downward movement of ore due to gravity?
 - (A) Gravity separation (B) Froth floatation
 - (C) Blast furnace (D) Bessemer's coverter
- **30.** The **CORRECT** statements are :
 - (A) generally the calcination and roasting is done in blast furance
 - (B) the sandy and rocky materials associated with ore are called matrix
 - (C) froth floatation process is suitable for sulphide ores
 - (D) substance that reacts with gangue to form fusible mass is called slag

ALLEN

EXERCISE # S-1

- 1. Find the number of ore which are concentrated by magnetic sepration method. Haemetite, Cassiterite, Copper Glance, Chromite, Cinnabar
- 2. Find the number of metals which are commercially extracted by carbon reduction method Pb, Fe, Zn, Mg, Al, Na, Au, Ag
- 3. The number of following pairs is correctly matched
 - (i) Van Arkel method Zirconium
 - (ii) Mond Process Titanium
 - (iii) Froth Floatation Method Cerussite
 - (iv) Distillation method Zinc
 - (v) Poling Process Copper
 - (vi) amalgamation Gold
- 4. Find the number of curves which are wrongly presented in the Ellingham diagram.

- How many of the following minerals containing Mg. Magnetite, Carnallite, Epsom salt, Siderite
- **6.** Find out the number of minerals given below contain iron as Fe(II). Haematite, Magnetite, Limonite, Siderite, Chromite, Wolframite
- Amongst the following ores, the total number of oxide ores are Siderite, Magnetite, Haematite, Malachite, Zincite, Cuprite
- Amongst the following, total number of sulphide ores are
 Calamine, Sphalertie, Copper pyrites, Copper glance, Iron pyrites, Bauxite
- How many of the following ores of silver ?
 Hornsilver, Cerrusite, Chalcopyrite, Galena, Anglesite, Argentite

Е

ALLEN

EXERCISE # S-2

COMPREHENSION AND MATCH THE COLUMN ELLINGHAM DIAGRAM

Temperature ——

1. Which of the above curve is wrongly presented -

(A)
$$C \rightarrow CO_2$$
 (B) $Pb \rightarrow PbO$ (C) $Zr \rightarrow ZrO_2$ (D) $Mg \rightarrow MgO$

- Which of the above metal oxide is having minimum thermal decomposition temperature.
 (A) CaO
 (B) FeO
 (C) ZrO₂
 (D) MgO
- Which of the following metal's oxide can be reduced by Fe as reducing agent at temperature (T₁)
 (A) Zr
 (B) Ca
 (C) Mg
 (D) None of these

PURIFICATION METHOD

Paragraph for 4 to 5

At high temperature carbon reacts with water to produce a mixture of carbon monoxide, CO and hydrogen, H_2 .

 $C + H_2O \xrightarrow{red heat} CO + H_2$

CO is separated from H_2 and then used to separate nickel from cobalt by forming a volatile compound, nickel tetracarbony, Ni (CO)₄.

 $Ni + 4CO \longrightarrow Ni(CO)_4$

How many moles of Ni(CO)₄ could be obtained from the CO produced by the reaction of 75.0g of carbon ? Assume 100% reaction and 100% recovery in both steps.
(A) 6.25 (B) 1.563 (C) 3.125 (D) 25.0

5. Formation of volatile Ni(CO)₄ and its subsequent heating gives pure Ni. Process is called - (A) Hall (B) Dow (C) Serpeck (D) Mond

MISCELLANEOUS

Match Column

6.	Matc	h Column-I with Column-II		
		Column-I (Metals)		Column-II (Method used for refining)
	(A)	Iron & copper	(P)	Poling
	(B)	Zirconium & Titanium	(Q)	Bessemerisation
	(C)	Lead & Tin	(R)	Van-Arkel
	(D)	Copper & Tin	(S)	Liquation
112)			

7.	Match the following choosing one item from column X and the appropriate item from column Y.				
		Column -X		Column-Y	
	(A)	Zinc from ZnCO ₃	(P)	Calcination	
	(B)	Lead from PbS	(Q)	Removal of iron	
	(C)	Cu from CuFeS ₂	(R)	Froth floatation process	
	(D)	Tin from cassiterite	(S)	Poling	
8.	Mate	h column (I) (process) with column (II)	(electro	olyte)	
		Column (I) (process)		Column (II) (electrolyte)	
	(A)	Downs cell	(P)	fused MgCl ₂	
	(B)	Dow's sea water process	(Q)	fused $(Al_2O_3 + Na_3AlF_6 + CaF_2)$	
	(C)	Hall-Heroult	(R)	fused (40% NaCl + 60% CaCl ₂)	
			(S)	$(A\ell N + C + N_2)$	
9.	Mate	h column - I with column - II		λ <i>Δ</i> [*]	
		Column - I (Property)		Column - II (Element/compound)	
	(A)	Explosive	(P)	Cu	
	(B)	Self-reduction	(Q)	Fe ₃ O ₄	
	(C)	Ferrimagnetic material	(R)	$Cu(CH_3COO)_2$. $Cu(OH)_2$	
	(D)	Verdigris	(S)	$Pb(NO_3)_2$	
10.	Mate	h column - I and column - II and select th	ne corre	ct answer using the codes given below the lists:	
		Column - I		Column - II	
	(A)	Cyanide process	(P)	Ultrapure Ge	
	(B)	Floatation process	(Q)	Dressing of HgS	
	(C)	Electrolytic reduction	(R)	Extraction of Al	
	(D)	Zone refining	(S)	Extraction of Au	
11.	Mate	h the items of Column I with items of C	Column	II and assign the correct code :	
	(P)	Blistered Cu	(1)	Aluminium	
	(Q)	Blast furnace	(2)	$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$	
	(R)	Reverberatory furnace	(3)	Iron	
	(S)	Hall-Heroult process	(4)	$\text{FeO} + \text{SiO}_2 \rightarrow \text{FeSiO}_3$	
			(5)	$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$	
Code	: (A) P	\rightarrow (2); Q \rightarrow (3); R \rightarrow (4); S \rightarrow (1)	(B) P	\rightarrow (1); Q \rightarrow (2); R \rightarrow (3); S \rightarrow (5)	
	(C) P	\rightarrow (5); Q \rightarrow (4); R \rightarrow (3); S \rightarrow (2)	(D) P	\rightarrow (4); Q \rightarrow (5); R \rightarrow (3); S \rightarrow (2)	
				113	
	7. 8. 9. 10.	7. Matci (A) (B) (C) (D) 8. Matci (A) (B) (C) 9. Matci (A) (B) (C) (D) 10. Matci (A) (B) (C) (D) 10. Matci (A) (B) (C) (D) 11. Matci (A) (B) (C) (D) 11. Matci	7. Match the following choosing one item from Column -X (A) Zinc from ZnCO ₃ (B) Lead from PbS (C) Cu from CuFeS ₂ (D) Tin from cassiterite 8. Match column (I) (process) with column (II) Column (I) (process) (A) Downs cell (B) Dow's sea water process (C) Hall-Heroult 9. Match column - I with column - II Column - I (Property) (A) Explosive (B) Self-reduction (C) Ferrimagnetic material (D) Verdigris 10. Match column - I and column - II and select th Column - I (A) Cyanide process (B) Floatation process (C) Electrolytic reduction (D) Zone refining 11. Match the items of Column I with items of C Column I (P) Blistered Cu (Q) Blast furnace (R) Reverberatory furnace (S) Hall-Heroult process Code : (A) P \rightarrow (2); Q \rightarrow (3); R \rightarrow (4); S \rightarrow (1) (C) P \rightarrow (5); Q \rightarrow (4); R \rightarrow (3); S \rightarrow (2)	7. Match the following choosing one item from colum Column -X (A) Zinc from ZnCO ₃ (P) (B) Lead from PbS (Q) (C) Cu from CuFeS ₂ (R) (D) Tin from cassiterite (S) 8. Match column (I) (process) with column (II) (electro Column (I) (process) (A) Downs cell (P) (B) Dow's sea water process (Q) (C) Hall-Heroult (R) (S) 9. Match column - I with column - II Column - I (Property) (A) Explosive (P) (B) Self-reduction (Q) (C) Ferrimagnetic material (R) (D) Verdigris (S) 10. Match column - I and column - II and select the correc Column - I (A) Cyanide process (Q) (C) Electrolytic reduction (R) (D) Zone refining (S) 11. Match the items of Column I with items of Column Column I Column I (P) Blistered Cu (1) (Q) Blast furnace (2) (R) Reverberatory furnace (3) (S) Hall-Heroult process (4) (C) P \rightarrow (5); Q \rightarrow (4); R \rightarrow (3); S \rightarrow (2) (D) P	

ALLEN -

JEE-Chemistry

Answer Q.12, Q.13 and Q.14 by appropriately matching the information given in the three columns of the following table.

Column - I Extraction of metal	Column - II Methods for Reduction	Column - III Refining Method	
(1) $SnO_2 \rightarrow Sn$	(i) Carbon Reduction	(P) Poling	
(2) $Al_2O_3 \rightarrow Al$	(ii) Hydrometallurgic Reduction	(Q)Electrolytic Refining	
(3) $Cu_2S \rightarrow Cu$	(iii) Electrolytic Reduction	(R) Distillation	
(4) $ZnS \rightarrow Zn$	(iv) Self-Reduction	(S) Puddling Process	

- 12. Which of the following is NOT correctly matched?
 (A) (1), (iv), (S)
 (B) (3), (iv), (P)
 (C) (4), (i), (R)
 (D) (2), (iii), (Q)
- 13. Which of the followong match is the CORRECT reduction and purification methods for Zn(A) (i), (R)(B) (iv), (S)(C) (iv), (P)(D) None of these
- **14.** Which of the following set of code shows the **CORRECT** similarity with the extraction processes for Pb?

(A) (1), (ii), (S) $(B) (4), (iii), (B) (4), (iii), (B) (4), (iii), (B) (4), (iii), (B) (4), (B) (B) (4), (B) (B) (B) (4), (B) (B) (B) (B) (B) ($	(P) (C) (2), (iii), (Q)	(D) (3), (iv), (Q)
--	--------------------------	--------------------

		EXERCISE	# JEE-MAINS		
1.	Aluminium is extra	cted by the electrolysis	of :-	[AIEEE-2002]	
	(1) Bauxite		(2) Alumina		
	(3) Alumina mixed	with molten cryolite	(4) Molten cryolite		
2.	Pyrolusite is a/an :-			[AIEEE-2002]	
	(1) Oxide ore	(2) Sulphide ore	(3) Carbide ore	(4) Not an ore	
3.	Which one of the	following ores is best co	oncentrated by froth-flo	otation method :	
				[AIEEE-2004]	
	(1) Galena	(2) Cassiterite	(3) Magnetite	(4) Malachite	
4.	Which of the follow	ing factors is of no signi	ficance for roasting sulp	ohide ores to the oxides and not	
	subjecting the sulph	ide ores to carbon reduct	ion directly?	[AIEEE-2008]	
	(1) Metal sulphides	are thermodynamically n	nore stable than CS_2		
	(2) CO_2 is thermody	mamically more stable th	nan CS ₂		
	(3) Metal sulphides	are less stable than the co	orresponding oxides		
	(4) CO_2 is more vol	atile than CS ₂			
5.	Which method of p	urification is represented	l by the following equa	tion : [AIEEE-2012]	
	$Ti(s) + 2I_2(g) $	\xrightarrow{K} TiI ₄ (g) $\xrightarrow{1700K}$ Ti($(s) + 2I_2(g)$		
	(1) Van Arkel	(2) Zone refining	(3) Cupellation	(4) Poling	
6.	The substance used	as froth stabilisers in fro	oth-floatation process is	[J-Mains-2012 (On line)]	
	(1) Copper sulphate	;	(2) Aniline		
	(3) Sodium cyanide	:	(4) Potassium ethyl	xanthate	
7.	Which of the oxide	groups among the follo	wing cannot be reduced	d by carbon :-	
				[J-Mains-2012 (On line)]	
	(1) $\operatorname{Fe_3O_4}$, ZnO	(2) PbO, Fe_3O_4	(3) Cu_2O , SnO_2	(4) CaO, K ₂ O	
8.	In Goldschmidt alu	mino thermic process wl	nich of the following re	ducing agents is used :	
)				[J-Mains-2013 (On line)]	
	(1) Calcium	(2) Coke	(3) Sodium	(4) Al-powder	
9.	Calcination is the pr	rocess in which :			
	(1) Ore is heated str	ongly below its melting p	point in the presence of	excess of air and is used for the	
	conversion of c	carbonates and hydrated	oxide ores to their resp	pective oxides.	
	(2) Ore is heated str	ongly below its melting	point in the absence or I	limited supply of air and is used	
	for conversion of sulphide ores to their respective oxides				
	(3) Ore is heated str	rongly below its melting	point either in the limit	ed supply or absence of air and	
	is used to conv	ert carbonates and hydra	ated oxide ores to their	respective oxides	
	(4) Ore is heated stre	ongly above its melting p	oint in the limited suppl	y of air to convert sulphide ores	
	to their respect	ive oxides.			
Ξ		•		115	

ALLEN

10.	The metal that cannot be obtained by electrolysis of an aqueous solution of its salts is :				
				[JEE-MAINS-2014]	
	(1) Cu	(2) Cr	(3) Ag	(4) Ca	
11.	The form of iron obta	ained from blast furnac	e is :	[J-Mains-2014 (On line)]	
	(1) Steel	(2) Wrought Iron	(3) Cast Iron	(4) Pig iron	
12.	In the context of the H is false ?	Hall-Heroult process for	the extraction of Al, w	hich of the following statements [JEE-MAINS-2015]	
	(1) Al^{3+} is reduced at the cathode to form Al				
	(2) Na_3AlF_6 serves as	s the electrolyte			
	(3) CO and CO_2 are	produced in this proces	SS		
	(4) Al_2O_3 is mixed with	ith CaF ₂ which lowers the	he melting point of the	mixture and brings conductivity	
13.	Galvanization is apply	ying a coating of :-		[JEE-MAINS-2016]	
	(1) Zn	(2) Pb	(3) Cr	(4) Cu	
14.	Which one of the foll	lowing ores is best con-	centrated by froth float	ation method ?	
				[JEE-MAINS-2016]	
	(1) Malachite	(2) Magnetite	(3) Siderite	(4) Galena	
15.	What will occur if a ZnSO ₄ ?	block of copper metal	is dropped into a beak	er containing a solution of 1M JEE-MAINS (Online) - 2016]	
	(1) The copper metal	will dissolve and zinc	metal will be deposite	d	
	(2) No reaction will o	occur			
	(3) The copper metal	l will dissolve with evo	lution of oxygen gas		
	(4) The copper metal	l will dissolve with evo	lution of hydrogen gas		
16.	The plot shows the v	ariation of – <i>ln</i> K _p versu	s temperature for the t	wo reactions ?	
	$M(s) + \frac{1}{2}O_2(g) \rightarrow MO(s)$ and				
	$C(s) + \frac{1}{2}O_2(g) \to C$	O(g)			
	$-lnK_p$ C -20	→ CO			

1200

T(K)

ALLEN _

Identify the correct statement :

- (1) At T > 1200 K, carbon will reduce MO(s) to M(s)
- (2) At T < 1200 K, oxidation of carbon is unfavourable.
- (3) Oxidation of carbon is favourable at all temperature
- (4) At T < 1200 K, the reaction

 $MO(s) + C(s) \rightarrow M(s) + CO(g)$ is spontaneous

- 17. In the leaching method, bauxite ore is digested with a concentrated solution of NaOH that produces 'X'. When CO₂ gas is passed through the aqueous solution of 'X', a hydrated compound 'Y' is precipitated. 'X' and 'Y' respectively are :- [JEE MAIN ONLINE. 2018]
 - (1) Na[Al(OH)₄] and Al₂O₃·x H₂O
 - (2) Al(OH)₃ and Al₂O₃·x H₂O
 - (3) Na[Al(OH)₄] and Al₂(CO₃)₃·x H₂O
 - (4) Na AlO₂ and Al₂(CO₃)₃·x H₂O
- 18. When metal 'M' is treated with NaOH, a white gelatinous precipitate 'X' is obtained, which is soluble in excess of NaOH. Compound 'X' when heated strongly gives an oxide which is used in chromatography as an adsorbent. The metal 'M' is [JEE MAIN OFFLINE. 2018]
 - (1) Ca (2) Al (3) Fe (4) Zn
- 19. In the extraction of copper from its sulphide ore, metal is finally obtained by the oxidation of cuprous sulphide with :- [JEE MAIN ONLINE. 2018]
 - (1) CO (2) Cu_2O (3) Fe_2O_3 (4) SO_2

EXERCISE # JEE-ADVANCED

- 1. Carnallite does not contain
- (A) K (B) Ca
- During initial treatment, preferential wetting of ore by oil and gangue by water takes place in 2. (A) Levigation (gravity separation) (B) Froth floatation

(C) Mg

- (C) Leaching (D) Bessemerisation
- 3. Which of the following is true for calcination of a metal ore?
 - (A) It makes the ore more porous
 - (B) The ore is heated to a temperature when fusion just begins
 - (C) Hydrated salts lose their water of crystallisation
 - (D) Sulphur in sulphides is oxidised to SO,
 - (E) Heating with carbon leads to better calcination
- 4. In the commercial electrochemical process for aluminium extraction, the electrolyte used as :

[JEE-1999]

[2000 Qualifying]

[2003 Qualifying]

- (A) $Al(OH)_3$ in NaOH solution (B) an aqueous solution of $Al_2(SO_4)_3$
- (C) a molten mixture of Al_2O_3 and Na_3AlF_6 (D) a molten mixture of AlO(OH) and Al(OH)₃

5. The chemical process in the production of steel from haematite ore involve: [2000 Qualifying] (A) reduction (B) oxidation

(C) reduction followed by oxidation (D) oxidation followed by reduction

6. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out:

- (A) in the presence of NaCl
- (B) in the presence of fluorite
- (C) in the presence of cryolite which forms a melt with lower melting temperature
- (D) in the presence of cryolite which forms a melt with higher melting temperature
- The chemical composition of "slag" formed during the smelting process in the extraction of copper 7. is : [2001 Qualifying]
 - (D) $Cu_2S + FeO$ (A) $Cu_2O + FeS$ (B) FeSiO₃ (C) CuFeS₂ Which of the following processes is used in extractive metallurgy of magnesium?[2002 Qualifying]
 - (A) Fused salt electrolysis (B) Self reduction
 - (C) Aqueous solution electrolysis (D) Thermite reduction
- 9. In the process of extraction of gold,

Roasted gold ore + CN^- + $H_2O \xrightarrow{O_2} [X] + OH^ [X] + Zn \longrightarrow [Y] + Au$

Identify the complexes [X] and [Y] :

(A)
$$X = [Au(CN)_2]^-$$
, $Y = [Zn(CN)_4]^{2-}$
(B) $X = [Au(CN)_4]^{3-}$, $Y = [Zn(CN)_4]^{2-}$
(D) $X = [Au(CN)_4]^-$, $Y = [Zn(CN)_4]^{2-}$

(C)
$$X = [Au(CN)_2]^-$$
, $Y = [Zn(CN)_6]^4$

10. The methods chiefly used for the extraction of lead and tin from their ores are respectively :

[JEE-2004]

- (A) self reduction and carbon reduction (C) carbon reduction and self reduction
- (B) self reduction and electrolytic reduction (D) cyanide process and carbon reduction

118

8.

(D) Cl

	LEN				Metallurgy
11.	Which ore contain	ns both iron and copper?	,		JEE-2004]
	(A) Cuprite	(B) Chalcocite	(C) Chalcopyrite	(D) Malach	nite
12.	Extraction for zin	c from zinc blende is ach	ieved by :		[JEE-2007]
	(A) electrolytic re	duction			
	(B) roasting follo	wed by reduction with car	rbon		
	(C) roasting follow	wed by reduction with an	other metal		
	(D) roasting follo	wed by self-reduction			
13.	Native silver meta	al forms a water soluble c	complex with a dilute aqu	ueous solution	of NaCN in the
	presence of :-				
	(A) nitrogen		(B) oxygen		
	(C) carbon dioxid	le	(D) argon		[JEE-2008]
		Paragraph for	r questions 14 to 16		
	countries. Ores of (Cu_2O) , copper gl production comes involves partial ro	f copper include chalcant lance (Cu ₂ S) and malachit from the ore chalcopyrite pasting, removal of iron ar	hite (CuSO ₄ . 5H ₂ O), at te (Cu ₂ (OH) ₂ CO ₃). Howe e (CuFeS ₂). The extraction and self-reduction.	acamite (Cu_2C ever, 80% of the copper fr	$l(OH)_3$, cuprite ne world copper om chalcopyrite [JEE-2010]
14.	Partial roasting of	chalconvrite produces ·-			[0]
	(A) Cu.S and Fe	(B) Cu.O and FeO	(C) CuS and Fe.O.	(D) Cu.O	and Fe.O.
15.	Iron is removed fi	rom chalcopyrite as \cdot -	(-)	(-)	
	(A) FeO	(B) FeS	(C) Fe ₂ O ₂	(D) FeSiO	
16.	In self-reduction.	the reducing species is :-			3
	(A) S	(B) O^{2-}	(C) S^{2-}	(D) SO ₂	
17.	Match the extract	ion processes listed in col	lumn I with metals listed	in column II.	[JEE-2006]
	Column I	1	Colum	ın II	Lo 1
	(A) Self reduction	1	(P) Lead		
	(B) Carbon reduc	tion	(Q) Silver		
	(C) Complex form	nation and displacement b	by metal (R) Copper	r	
	(D) Decomposition	on of iodide	(S) Boron		
18.	Match the convers answer by darken	sions in Column I with the ing the appropriate bubbl	e type(s) of reaction(s) gives of the 4×4 matrix g	ven in Column iven in the OR	II. Indicate your S.
	Column I		Column II		[JEE-2008]
	(A) $PbS \rightarrow PbO$		(P) Roasting		
	(B) $CaCO_3 \rightarrow Ca$	aO	(Q) Calcination		
	(C) $ZnS \rightarrow Zn$		(R) Carbon reduction	on	
	(D) $Cu_2 S \rightarrow Cu$		(S) Self reduction		
19.	In extractive meta the ore to the mole	allurgy of zinc partial fusion ten metal is called	on of ZnO with coke is c (smelting, calcining, ro	called a casting, sinterir	and reduction of ng). [JEE-1988]
					110

mode06 'BDAI-BON Kaev JEE Advanced' Enflusion' Chem 'Sheet Woodd #Chemical Bonding, Coordinaton chemiary & Matalurgs / 03-Meta VEng/Theory+Expd5

JEE-Chemistry ALLEN Extraction of metal from the ore cassiterite involves 20. [JEE-2011] (A) carbon reduction of an oxide ore (B) self-reduction of a sulphide ore (C) removal of copper impurity (D) removal of iron impurity 21. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are [JEE-2011] (A) II, III in haematite and III in magnetite (B) II, III in haematite and II in magnetite (C) II in haematite and II, III in magnetite (D) III in haematite and II, III in magnetite In the cyanide extraction process of silver from argentite ore, the oxidizing and reducing agents used 22. are : [JEE-2012] (A) O₂ and CO respectively. (B) O₂ and Zn dust respectively. (C) HNO₂ and Zn dust respectively. (D) HNO₂ and CO respectively. 23. Sulfide ores are common for the metals -[JEE-2013] (A) Ag, Cu and Pb (B) Ag, Cu and Sn (C) Ag, Mg and Pb (D) Al, Cu and Pb The carbon-based reduction method is NOT used for the extraction of [JEE-2013] 24. (A) tin from SnO₂ (B) Iron from Fe_2O_3 (D) magnesium from MgCO₃.CaCO₃ (C) aluminium from Al_2O_2 25. Upon heating with Cu₂S, the reagent(s) that give copper metal is/are [JEE Adv. 2014] (B) CuO $(C) Cu_2O$ (A) CuFeS, (D) CuSO₄ 26. Copper is purified by electrolytic refining of blister copper. The correct statement(s) about this process is (are) [JEE Adv. 2015] (A) Impure Cu strip is used as cathode (B) Acidified aqueuous $CuSO_{A}$ is used as electrolyte (C) Pure Cu deposits at cathode (D) Impurities settle as anode-mud 27. Match the anionic species given in Column-I that are present in the ore(s) given in Column-II Column-I **Column-II** [JEE Adv. 2015] (P) Siderite (A) Carbonate (B) Sulphide (Q) Malachite (C) Hydroxide (R) Bauxite (D) Oxide (S) Calamine (T) Argentite Extraction of copper from copper pyrite (CuFeS₂) involves 28. [JEE Adv. 2016] (A) crushing followed by concentration of the ore by froth-flotation (B) removal of iron as slag (C) self-reduction step to produce 'blister copper' following evolution of SO₂ (D) refining of 'blister copper' by carbon reduction 29. Galena (an ore) is partially oxidized by passing air through it at high temperature. After some time, the passage of air is stopped, but the heating is continued in a closed furnance such that the contents undergo self-reduction. The weight (in kg) of Pb produced per kg of O₂ consumed is

(Atomic weights in g mol⁻¹ : O = 16, S = 32, Pb = 207) [JEE ADV. 2018]

node06 \B0AI-B0\Kota\UEE[Achenced]\Enflusicar\Chem \Sheer\WockIe#Chenical Bordin

Е

ALLEN -

		ANSWE	R KEY		
		EXERCI	SE # 0-I		
1. (A)	2. (C)	3. (B)	4. (B)	5. (C)	6. (A)
7. (A)	8. (B)	9. (D)	10. (B)	11. (B)	12. (A)
13. (B)	14. (B)	15. (A)	16. (D)	17. (A)	18. (A)
19. (B)	20. (C)	21. (C)	22. (C)	23. (C)	24. (B)
25. (B)	26. (D)	27. (C)	28. (B)	29. (A)	30. (D)
31. (A)	32. (B)	33. (C)	34. (B)	35. (A)	36. (C)
37. (C)	38. (D)	39. (A)	40. (B)	41. (C)	42. (B)
43. (A)	44. (A)	45. (D)	46. (C)	47. (C)	48. (C)
49. (B)	50. (B)	51. (A)	52. (C)	53.(B)	54. (D)
55. (B)	56. (A)	57. (D)	58. (D)	59. (C)	60. (D)
61. (B)	62. (B)	63. (A)	64. (A)	65. (B)	66. (C)
		EXERCI	SE # O-II		
1. (A,B,D)	2. (A,B,C)	3. (B , C)	4. (A,B)	5. (A,C,D)	6. (A,B,C,D)
7. (A, C)	8. (A, C)	9. (A, B)	10. (A, B)	11. (A,B)	12. (B, C)
13. (A,B)	14. (B,C)	15. (A,B,C, D)	16. (A,B)	17. (A,B,C)	18. (B,C,D)
19. (A,B)	20. (A,B,C)	21. (C,D)	22. (A, D)	23. (A,B)	24. (A, D)
25. (A,B,D)	26. (B,D)	27. (B,C)	28. (C,D)	29. (A,C)	30. (B , C)
		EXERCI	SE # S-1		
1. (3)	2. (3)	3. (4)	4. (4)	5. (2)	6. (4)
7. (4)	8. (4)	9. (2)			
		EXERCI	SE # S-2		
1. (B)	2. (C)	3. (A)	4. (B)	5. (D)	
6. (A) Q; (B) H	R; (C) S; (D)P	7. (A) \rightarrow P, (B)	\rightarrow R; (C) \rightarrow Q	$Q, R, S(D) \rightarrow Q, S$	5
8. (A) R ; (B)	P; (C) Q	9. (A) S ; (B) P;	(C) Q; (D) R		
10. (A) S ; (B)	Q;(C)R;(D)P	11. (A)	12. (A)	13. (A)	14. (D)

JEE-Chem	istry				ALLEN
		EXERCISE	# JEE-MAIN	IS	
1. (3)	2. (1)	3. (1)	4. (3)	5. (1)	6. (2)
7. (4)	8. (4)	9. (3)	10. (4)	11. (4)	12. (2)
13. (1)	14. (4)	15. (2)	16. (3)	17. (1)	18. (2)
19. (2)					
	E	XERCISE #	JEE-ADVAN	CED	
1. (B)	2. (B)	3. (A , C)	4. (C)	5. (C)	6. (C)
7. (B)	8. (A)	9. (A)	10. (A)	11. (C)	12. (B)
13. (B)	14. (A)	15. (D)	16. (C)		
17. (A) – P,	R;(B) - P;(C)	C) - Q; (D) - S	18. (A) – P ; (B) – Q ; (C) -	-P, R; (D) - P, S
19. Sinterin	g , Smelting	20. (A, D) or	(A, C, D)	21. (D)	
22. (B)	23. (A)	24. (C, D)	25. (B, C, D)	26. (B, C, I))
27. (A) – P	, Q, S; (B) - T	; (C) – Q, R; (I	D) – R	28. (A, B, C	C)
29. Ans. (Sol. PbS + mol of	6.47) $O_{2} \longrightarrow P_{2}$ $\frac{1000}{32} \mod \frac{1}{32}$ $F P b = \mod of O_{2}$ $= \frac{1000}{32} \mod \frac{1000}{32}$ $\operatorname{ass of Pb} = \frac{1000}{32}$ $= \frac{207}{32} \operatorname{k}$	$Pb + SO_2$ $\frac{1000}{32} \times 207 \text{ gm}$ $\times 207g$ rg = 6.47 kg			