1. Real number system

Exercise 1.1

1 A. Question

Identify which of the following are surds and which are not with reasons

$$\sqrt{8} \times \sqrt{6}$$

Answer

Given, $\sqrt{8} \times \sqrt{6}$

Need to find $\sqrt{8} \times \sqrt{6}$ is surd or not

 \Rightarrow we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

 $\Rightarrow \sqrt{8} \times \sqrt{6}$ can be written as $\sqrt{8 \times 6}$

 $\Rightarrow \sqrt{2 \times 2 \times 2 \times 2 \times 3}$

= $4\sqrt{3}$, which is irrational number

 \Rightarrow since, $4\sqrt{3}$ cannot be expressed as squares or cubes of any rational numbers

 \Rightarrow Hence, $\sqrt{8} \times \sqrt{6}$ is surd

1 B. Question

Identify which of the following are surds and which are not with reasons

$$\sqrt{90}$$

Answer

Given, $\sqrt{90}$

Need to find $\sqrt{90}$ is surd or not

 \Rightarrow we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

 $\Rightarrow \sqrt{90}$ can be written as $\sqrt{9 \times 10}$

 $\Rightarrow \sqrt{3 \times 3 \times 2 \times 5}$

 $\Rightarrow 3\sqrt{10}$, which is irrational numbers

since, $3\sqrt{10}$ cannot be expressed as squares or cubes of any rational numbers

 \Rightarrow Hence, it is surd.

1 C. Question

Identify which of the following are surds and which are not with reasons

$$\sqrt{180} \times \sqrt{5}$$

Answer

Given,
$$\sqrt{180} \times \sqrt{5}$$

Need to find $\sqrt{180} \times \sqrt{5}$ is surd or not

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$\Rightarrow \sqrt{180} \times \sqrt{5}$$
 can be written as $\sqrt{180 \times 5}$

$$\Rightarrow \sqrt{2 \times 90 \times 5}$$

$$\Rightarrow \sqrt{2 \times 3 \times 3 \times 2 \times 5 \times 5}$$

$$\Rightarrow \sqrt{2 \times 2 \times 3 \times 3 \times 5 \times 5}$$

= $2 \times 3 \times 5 = 30$ which is not a irrational number as it can be expressed in squares form

Hence, it is not a surd

1 D. Question

Identify which of the following are surds and which are not with reasons

$$4\sqrt{5} \div \sqrt{8}$$

Answer

Given,
$$4\sqrt{5} \div \sqrt{8}$$

Need to find $4\sqrt{5} \div \sqrt{8}$ is surd or not

$$\Rightarrow$$
 we know $\sqrt{a} \div \sqrt{b} = \frac{\sqrt{a}}{\sqrt{b}}$

$$\Rightarrow 4\sqrt{5} \div \sqrt{8}$$
 can be written as $\frac{4\sqrt{5}}{\sqrt{8}}$

$$\Rightarrow \frac{\sqrt{2 \times 2 \times 2 \times 2 \times 5}}{\sqrt{8}}$$

$$=\frac{\sqrt{80}}{\sqrt{8}}$$

$$=\frac{\sqrt{8}\times\sqrt{10}}{\sqrt{8}}$$

= $\sqrt{10}$ is irrational number

since, $\sqrt{10}$ cannot be expressed as squares or cubes of any rational numbers \Rightarrow Hence, it is surd.

1 E. Question

Identify which of the following are surds and which are not with reasons

$$\sqrt[3]{4} \times \sqrt[3]{16}$$

Answer

Given,
$$\sqrt[3]{4} \times \sqrt[3]{16}$$

Need to find $\sqrt[3]{4} \times \sqrt[3]{16}$ is surd or not

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$\Rightarrow \sqrt[3]{4} \times \sqrt[3]{16}$$
 can be written as $\sqrt[3]{4 \times 16}$

$$\Rightarrow \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

= $2 \times 2 \times 2 = 8$ is not irrational number as it can be expressed in cubes form

 \Rightarrow Hence, it is not a surd

2 A. Question

Simplify(10+
$$\sqrt{3}$$
)(2 + $\sqrt{5}$)

Answer

Given,
$$(10+\sqrt{3})(2+\sqrt{5})$$

Need to simplify it

⇒ the given expression can be written in expanded form

$$\Rightarrow$$
 20+10 $\sqrt{5}$ + 2 $\sqrt{3}$ +($\sqrt{3}$ × $\sqrt{5}$)

⇒ We know
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$=20+10\sqrt{5}+2\sqrt{3}+\sqrt{15}$$

Hence, $(10+\sqrt{3})(2+\sqrt{5})$ is simplified into $20+10\sqrt{5}+2\sqrt{3}+\sqrt{15}$

2 B. Question

Simplify

$$\left(\sqrt{5}+\sqrt{3}\right)^2$$

Answer

Given, $(\sqrt{5}+\sqrt{3})^2$

Need to simplify it

- \Rightarrow we know that $(a+b)^2 = a^2+2ab+b^2$
- \Rightarrow simplifying the given expression we get

$$\Rightarrow (\sqrt{5})^2 + 2(\sqrt{5})(\sqrt{3}) + (\sqrt{3})^2$$

$$=5+2\sqrt{15}+3$$

$$= 8 + 2\sqrt{15}$$

Hence, $(\sqrt{5}+\sqrt{3})^2$ is simplified into $8+2\sqrt{15}$

2 C. Question

Simplify

$$\left(\sqrt{13}-\sqrt{2}\right)\left(\sqrt{13}+\sqrt{2}\right)$$

Answer

Given,
$$(\sqrt{13} - \sqrt{2})(\sqrt{13} + \sqrt{2})$$

Need to simplify it

- \Rightarrow we know that $(a-b)(a+b) = a^2 b^2$
- ⇒ the given expression can be written in this form

$$\Rightarrow (\sqrt{13})^2 - (\sqrt{2})^2$$

$$= 13 - 2$$

Hence, $(\sqrt{13} - \sqrt{2})(\sqrt{13} + \sqrt{2})$ is simplified into 11

2 D. Question

Simplify

$$(8+\sqrt{3})(8-\sqrt{3})$$

Answer

Given,
$$(8+\sqrt{3})(8-\sqrt{3})$$

Need to simplify it

- \Rightarrow we know that $(a-b)(a+b) = a^2 b^2$
- ⇒ the given expression can be written in this form

$$\Rightarrow$$
 (8)² -($\sqrt{3}$)²

- = 64-3
- = 61

Hence, $(8+\sqrt{3})$ $(8-\sqrt{3})$ is simplified into 61

3 A. Question

Simplify the following.

$$5\sqrt{75} + 8\sqrt{108} - \frac{1}{2}\sqrt{48}$$

Answer

Given,
$$5\sqrt{75} + 8\sqrt{108} - \frac{1}{2}\sqrt{48}$$

Need to simplify it

 \Rightarrow the given expression is written as follows

$$\Rightarrow 5\sqrt{5 \times 5 \times 3} + 8\sqrt{2 \times 2 \times 3 \times 3 \times 3} - \frac{1}{2}\sqrt{2 \times 2 \times 2 \times 2 \times 3}$$

$$= 25\sqrt{3} + 48\sqrt{3} - 2\sqrt{3}$$

$$=(25 + 48 - 2)\sqrt{3}$$

$$= 71\sqrt{3}$$

Hence, $5\sqrt{75} + 8\sqrt{108} - \frac{1}{2}\sqrt{48}$ is simplified into $71\sqrt{3}$

3 B. Question

Simplify the following.

$$7\sqrt{2} + 6\sqrt[3]{16} - \sqrt[3]{54}$$

Answer

Given,
$$7\sqrt[3]{2} + 6\sqrt[3]{16} - \sqrt[3]{54}$$

Need to simplify it

⇒ the given expression is written as follows

$$\Rightarrow 7\sqrt[3]{2} + 6\sqrt[3]{2 \times 2 \times 2 \times 2} - \sqrt[3]{2 \times 3 \times 3 \times 3}$$

$$= 7\sqrt[3]{2} + 12\sqrt[3]{2} - 3\sqrt[3]{2}$$

$$=16\sqrt[3]{2}$$

Hence, $7\sqrt[3]{2} + 6\sqrt[3]{16} - \sqrt[3]{54}$ is simplified into $16\sqrt[3]{2}$

3 C. Question

Simplify the following.

$$4\sqrt{72} + 8\sqrt{50} - 7\sqrt{128}$$

Answer

Given,
$$4\sqrt{72} - \sqrt{50} - 7\sqrt{128}$$

Need to simplify it

 \Rightarrow the given expression is written as follows

$$\Rightarrow 4\sqrt{2 \times 2 \times 2 \times 3 \times 3} - \sqrt{5 \times 2 \times 5} - 7\sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

$$= 24\sqrt{2} - 5\sqrt{2} - 56\sqrt{2}$$

$$=(24-5-56)\sqrt{2}$$

$$= -37\sqrt{2}$$

Hence, $4\sqrt{72} - \sqrt{50} - 7\sqrt{128}$ is simplified into $-37\sqrt{2}$

3 D. Question

Simplify the following.

$$2\sqrt[3]{40} + 3\sqrt[3]{625} - 4\sqrt[3]{320}$$

Answer

Given,
$$2\sqrt[3]{40} + 3\sqrt[3]{625} - 4\sqrt[3]{320}$$

Need to simplify it

 \Rightarrow the given expression is written as follows

$$\Rightarrow 2\sqrt[3]{2 \times 2 \times 2 \times 5} + 3\sqrt[3]{5 \times 5 \times 5 \times 5} - 4\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5}$$

$$\Rightarrow 4\sqrt[3]{5} + 15\sqrt[3]{5} - 16\sqrt[3]{5}$$

$$= (4 + 15 - 16)\sqrt[3]{5}$$

$$=3\sqrt[3]{5}$$

Hence, $2\sqrt[3]{40} + 3\sqrt[3]{625} - 4\sqrt[3]{320}$ is simplified into $3\sqrt[3]{5}$

4 A. Question

Express the following surds in its simplest form.

$$\sqrt[3]{108}$$

Answer

Given, ³√108

Need to simplify it

⇒ the given number can be written as follows

$$\Rightarrow \sqrt[3]{2 \times 2 \times 3 \times 3 \times 3}$$

$$=3\sqrt[3]{4}$$

Hence, $\sqrt[3]{108}$ is simplified into $3\sqrt[3]{4}$

4 B. Question

Express the following surds in its simplest form.

$$\sqrt{98}$$

Answer

Given, √98

Need to simplify it

 \Rightarrow the given number can be written as follows

$$\Rightarrow \sqrt{2 \times 7 \times 7}$$

$$= 7\sqrt{2}$$

Hence, $\sqrt{98}$ is simplified into $7\sqrt{2}$

4 C. Question

Express the following surds in its simplest form.

$$\sqrt{192}$$

Answer

Given, $\sqrt{192}$

Need to simplify it

 \Rightarrow the given number can be written as follows

$$\Rightarrow \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3}$$

$$= 8\sqrt{3}$$

Hence, $\sqrt{192}$ is simplified into $8\sqrt{3}$

4 D. Question

Express the following surds in its simplest form.

Answer

Given, ₹625

Need to simplify it

⇒ the given number can be written as follows

$$\Rightarrow \sqrt[3]{5 \times 5 \times 5 \times 5}$$

Hence, $\sqrt[3]{625}$ is simplified into $5\sqrt[3]{5}$

5 A. Question

Express the following as pure surds.

$$6\sqrt{5}$$

Answer

Given, $6\sqrt{5}$

Need to express it as pure surd

 \Rightarrow 6 $\sqrt{5}$ can be expressed as $(\sqrt{6})^2 . \sqrt{5}$

$$\Rightarrow \sqrt{6^2.5}$$

$$=\sqrt{36.5}$$

$$=\sqrt{180}$$

$$\therefore \sqrt{180}$$
 is pure surd

: a surd with rational coefficient as unity is pure surd

Hence, $6\sqrt{5}$ is expressed as pure surd

5 B. Question

Express the following as pure surds.

$$5\sqrt[3]{4}$$

Answer

Given, $5\sqrt[3]{4}$

Need to express it as pure surd

 $\Rightarrow 5\sqrt[3]{4}$ can be expressed as $(\sqrt[3]{5})^3.\sqrt[3]{4}$

$$\Rightarrow \sqrt[3]{(5)^3.4}$$

 $\boldsymbol{\cdot}$ a surd with rational coefficient as unity is pure surd

∴
$$\sqrt[3]{500}$$
 is a pure surd

Hence, $5\sqrt[3]{4}$ is expressed as pure surd

5 C. Question

Express the following as pure surds.

$$3\sqrt[4]{5}$$

Answer

Given, 3∜5

Need to express it as pure surd

 $\Rightarrow 3\sqrt[4]{5}$ can be written as $(\sqrt[4]{3})^4$. $\sqrt[4]{5}$

$$\Rightarrow \sqrt[4]{(3)^4 \times 5}$$

: a surd with rational coefficient as unity is pure surd

$$∴ \sqrt[4]{405}$$
 is a pure surd

Hence, $3\sqrt[4]{5}$ is expressed as pure surd

5 D. Question

Express the following as pure surds.

$$\frac{3}{4}\sqrt{8}$$

Answer

Given,
$$\frac{3}{4}\sqrt{8}$$

Need to express it as pure surd

$$\Rightarrow \frac{3}{4}\sqrt{8}$$
 can be expressed as follows

$$\Rightarrow \left(\sqrt{\frac{3}{4}}\right)^2 \sqrt{8}$$

$$\Rightarrow \sqrt{\left(\frac{3}{4}\right)^2 \cdot 8} = \sqrt{\left(\frac{9}{16}\right) \cdot 8}$$

$$=\sqrt{\frac{9}{2}}$$

 $\boldsymbol{\cdot}$ a surd with rational coefficient as unity is pure surd

$$\therefore \sqrt{\frac{9}{2}} \text{ is pure surd}$$

Hence, $\frac{3}{4}\sqrt{8}$ is expressed as pure surd

6 A. Question

Simplify the following.

$$\sqrt{5} \times \sqrt{18}$$

Answer

Given,
$$\sqrt{5} \times \sqrt{18}$$

Need to simplify it

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$\Rightarrow \sqrt{5} \times \sqrt{18}$$
 can be written as $\sqrt{5} \times 18$

$$\Rightarrow \sqrt{90}$$

$$=\sqrt{9.10}$$

$$=3\sqrt{10}$$

Hence, $\sqrt{5} \times \sqrt{18}$ is simplified into $3\sqrt{10}$

6 B. Question

Simplify the following.

$$\sqrt[3]{7} \times \sqrt[3]{8}$$

Answer

Given, $\sqrt[3]{7} \times \sqrt[3]{8}$

Need to simplify it

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

⇒
$$\sqrt[3]{7} \times \sqrt[3]{8}$$
 can be expressed as $\sqrt[3]{7.8}$

$$\Rightarrow \sqrt[3]{7.(2)^3}$$

$$=2\sqrt[3]{7}$$

Hence, $\sqrt[3]{7} \times \sqrt[3]{8}$ is simplified into $2\sqrt[3]{7}$

6 C. Question

Simplify the following.

$$\sqrt[4]{8} \times \sqrt[4]{12}$$

Answer

Given,
$$\sqrt[4]{8} \times \sqrt[4]{12}$$

Need to simplify it

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

 $\Rightarrow \sqrt[4]{8} \times \sqrt[4]{12}$ can be expressed as $\sqrt[4]{8.12}$

$$\Rightarrow \sqrt[4]{(2 \times 2 \times 2).(2 \times 2 \times 3)}$$

$$\Rightarrow \sqrt[4]{2 \times 2 \times 2 \times 2 \times 2 \times 3}$$

$$=\sqrt[4]{(2)^4 \times 6}$$

$$=2\sqrt[4]{6}$$

Hence, $\sqrt[4]{8} \times \sqrt[4]{12}$ is simplified into $2\sqrt[4]{6}$

6 D. Question

Simplify the following.

$$\sqrt[3]{3} \times \sqrt[6]{5}$$

Answer

Given,
$$\sqrt[3]{3} \times \sqrt[8]{5}$$

Need to simplify it

$$\Rightarrow$$
 we know $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$

$$\Rightarrow \sqrt[3]{3} \times \sqrt[6]{5}$$
 can be expressed as $\sqrt[6]{\left(\sqrt[3]{3}\right)^6 \times 5}$

$$\Rightarrow \sqrt[6]{\left((3)^{\frac{1}{3}}\right)^6 \times 5}$$

$$=\sqrt[6]{(3)^{\frac{6}{2}} \times 5}$$

$$=\sqrt[6]{(3)^2 \times 5}$$

$$= \sqrt[8]{9 \times 5}$$

Hence, $\sqrt[3]{3} \times \sqrt[6]{5}$ is simplified into $\sqrt[6]{45}$

7 A. Question

Which is greater?

$$\sqrt{2}$$
 or $\sqrt[3]{3}$

Answer

Need to find the greater number

 \Rightarrow The order of the given irrational number is 2 and 3

 \Rightarrow now, we have to convert each irrational number into irrational number with same order

- ⇒ First we need to do the LCM of 2 and 3 is 6
- ⇒ now, each irrational number is converted into order of 6

$$\Rightarrow \sqrt{2} = \left(\sqrt[6]{(2)^{\frac{1}{2}}}\right)^6$$

$$= \sqrt[6]{\left(2^{\frac{6}{2}}\right)}$$

$$=\sqrt[6]{2^3}$$

=
$$\sqrt[6]{8}$$

and

$$\Rightarrow \sqrt[3]{3} = \left(\sqrt[6]{\left(\sqrt[3]{3}\right)}\right)^6 = \sqrt[6]{\left(\sqrt[3]{3}\right)^6}$$

$$=\sqrt[6]{(3)^{\frac{6}{3}}}$$

 $\Rightarrow \sqrt[6]{9}$ is greater than $\sqrt[6]{8}$

$$\therefore \sqrt[3]{3} > \sqrt{2}$$

Hence, $\sqrt[3]{3}$ is greater than $\sqrt{2}$

7 B. Question

Which is greater?

$$\sqrt[3]{3}$$
 or $\sqrt[4]{4}$

Answer

Given, $\sqrt[3]{3}$ or $\sqrt[4]{4}$

Need to find the greater number

⇒ The order of the given irrational number is 3 and 4

 \Rightarrow now, we have to convert each irrational number into irrational number with same order

- ⇒ First we need to do the LCM of 3 and 4 is 12
- ⇒ now, each irrational number is converted into order of 12

$$\Rightarrow \sqrt[3]{3} = \left(\sqrt[12]{(3)^{\frac{1}{3}}}\right)^{12}$$

$$=\sqrt[12]{\left(3^{\frac{12}{3}}\right)}$$

$$=\sqrt[12]{(3^4)}$$

And

$$\Rightarrow \sqrt[4]{4} = \left(\sqrt[12]{(4)^{\frac{1}{4}}}\right)^{12}$$

$$=\sqrt[12]{\left(4^{\frac{1}{4}}\right)^{12}}$$

$$=\sqrt[12]{\left(4^{\frac{12}{4}}\right)}$$

$$=\sqrt[12]{(4^3)}$$

$$= \sqrt[12]{64}$$

$$\therefore \sqrt[12]{81}$$
 is greater than $\sqrt[12]{64}$

$$\Rightarrow \sqrt[3]{3}$$
 is greater than $\sqrt[4]{4}$

∴
$$\sqrt[3]{3} > \sqrt[4]{4}$$

Hence, $\sqrt[3]{3}$ is greater than $\sqrt[4]{4}$

7 C. Question

Which is greater?

$$\sqrt{3}$$
 or $\sqrt[4]{10}$

Answer

Given, $\sqrt{3}$ or $\sqrt[4]{10}$

Need to find the greater number

- \Rightarrow The order of the given irrational number is 2 and 4
- \Rightarrow now, we have to convert each irrational number into irrational number with same order
- ⇒ First we need to do the LCM of 2 and 4 is 4
- ⇒ now, each irrational number is converted into order of 4

$$\Rightarrow \sqrt{3} = \left(\sqrt[4]{(3)^{\frac{1}{2}}}\right)^4$$

$$=\sqrt[4]{(3)^{\frac{4}{2}}}$$

$$= \sqrt[4]{3^2}$$

And

 \therefore the greater number between $\sqrt[4]{9}$ and $\sqrt[4]{10}$ is $\sqrt[4]{10}$

$$\Rightarrow \sqrt[4]{10} > \sqrt[4]{9}$$

∴
$$\sqrt[4]{10} > \sqrt{3}$$

Hence, $\sqrt[4]{10}$ is greater than $\sqrt{3}$

8 A. Question

Arrange in descending and ascending order.

$$\sqrt[4]{5}$$
, $\sqrt{3}$ $\sqrt[3]{4}$

Answer

Given,
$$\sqrt[4]{5}$$
, $\sqrt{3}$, $\sqrt[3]{4}$

Need to arrange the given numbers in ascending and descending order

 \Rightarrow The order of the given irrational number is 4, 2 and 3 respectively.

 \Rightarrow now, we have to convert each irrational number into irrational number with same order

- \Rightarrow First we need to do the LCM of 4,2 and 3 is 12
- ⇒ now, each irrational number is converted into order of 12

$$\Rightarrow \sqrt[4]{5} = \left(\sqrt[12]{\sqrt[4]{5}}\right)^{12}$$

$$= \left(\sqrt[12]{\left(5^{\frac{1}{4}}\right)}\right)^{12}$$

$$=\sqrt[12]{5^{\frac{12}{4}}}$$

$$=\sqrt[12]{5^3}$$

And

$$\Rightarrow \sqrt{3} = \left(\sqrt[12]{(3)^{\frac{1}{2}}}\right)^{12}$$

$$=\sqrt[12]{\left(3^{\frac{12}{2}}\right)}$$

$$= \sqrt[12]{36}$$

And

$$\Rightarrow \sqrt[3]{4} = \left(\sqrt[12]{\left(4^{\frac{1}{3}}\right)}\right)^{12}$$

$$= \sqrt[12]{\left(4^{\frac{12}{3}}\right)}$$

$$=\sqrt[12]{4^4}$$

- \therefore Ascending order is $\sqrt[4]{5}$, $\sqrt[3]{4}$, $\sqrt{3}$
- ∴ Descending order is $\sqrt{3}$, $\sqrt[3]{4}$, $\sqrt[4]{5}$

8 B. Question

Arrange in descending and ascending order.

$$\sqrt[3]{2}, \sqrt[3]{4}, \sqrt[4]{4}$$

Answer

Given, $\sqrt[3]{2}$, $\sqrt[3]{4}$, $\sqrt[4]{4}$

Need to arrange the given numbers in ascending and descending order

 \Rightarrow The order of the given irrational number is 3, 3 and 4 respectively.

 \Rightarrow now, we have to convert each irrational number into irrational number with same order

- \Rightarrow First we need to do the LCM of 3,3 and 4 is 12
- \Rightarrow now, each irrational number is converted into order of 12

$$\Rightarrow \sqrt[3]{2} = \left(\sqrt[12]{\left(\sqrt[3]{2}\right)}\right)^{12}$$

$$= \left(\sqrt[12]{\left(2^{\frac{1}{2}}\right)}\right)^{12}$$

$$=\sqrt[12]{\left(2^{\frac{12}{3}}\right)}$$

$$= \sqrt[12]{2^4}$$

And

$$\Rightarrow \sqrt[3]{4} = \sqrt[12]{\left(4^{\frac{1}{2}}\right)^{12}}$$

$$= \sqrt[12]{\left(4^{\frac{12}{3}}\right)}$$

$$= \sqrt[12]{4^4}$$

And

$$\Rightarrow \sqrt[4]{4} = \left(\sqrt[12]{\left(4^{\frac{1}{4}}\right)}\right)^{12}$$

$$=\sqrt[12]{\left(4^{\frac{12}{4}}\right)}$$

$$=\sqrt[12]{(4^3)}$$

$$= \sqrt[12]{64}$$

- \therefore Ascending order is $\sqrt[3]{2}$, $\sqrt[4]{4}$, $\sqrt[3]{4}$
- ∴ Descending order is $\sqrt[3]{4}$, $\sqrt[4]{4}$, $\sqrt[3]{2}$

8 C. Question

Arrange in descending and ascending order.

$$\sqrt[3]{2}, \sqrt[9]{4}, \sqrt[9]{3}$$

Answer

Given,
$$\sqrt[3]{2}$$
, $\sqrt[3]{4}$, $\sqrt[6]{3}$

Need to arrange the given numbers in ascending and descending order

- \Rightarrow The order of the given irrational number is 3, 9 and 6 respectively.
- \Rightarrow now, we have to convert each irrational number into irrational number with same order
- ⇒ First we need to do the LCM of 3, 9 and 6 is 18
- \Rightarrow now, each irrational number is converted into order of 18

$$\Rightarrow \sqrt[3]{2} = \left(\sqrt[18]{\left(2^{\frac{1}{2}}\right)}\right)^{18}$$

$$= \sqrt[18]{\left(2^{\frac{18}{3}}\right)}$$

$$=\sqrt[18]{(2^6)}$$

And

$$\Rightarrow \sqrt[9]{4} = \left(\sqrt[18]{\left(4^{\frac{1}{9}}\right)}\right)^{18}$$

$$= \sqrt[18]{\left(4^{\frac{18}{9}}\right)}$$

$$= \sqrt[18]{4^2}$$

And

$$\Rightarrow \sqrt[6]{3} = \left(\sqrt[18]{\left(3^{\frac{1}{6}}\right)}\right)^{18}$$

$$=\sqrt[18]{3^{\frac{18}{6}}}$$

- \therefore Ascending order is $\sqrt[8]{4}$, $\sqrt[8]{3}$, $\sqrt[8]{2}$
- \therefore Descending order is $\sqrt[3]{2}$, $\sqrt[6]{3}$, $\sqrt[6]{4}$,

Exercise 1.2

1 A. Question

Write the rationalizing factor of the following.

$$3\sqrt{2}$$

Answer

Given, $3\sqrt{2}$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow 3\sqrt{2} \times \sqrt{2} = (3)(\sqrt{2})^2 = 6$$
 is rational number

Hence, rationalizing factor of $3\sqrt{2}$ is $\sqrt{2}$

1 B. Question

Write the rationalizing factor of the following.

$$\sqrt{7}$$

Answer

Given, $\sqrt{7}$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow \sqrt{7} \times \sqrt{7} = 7$$

∴ $\sqrt{7}$ is rationalizing factor

1 C. Question

Write the rationalizing factor of the following.

$$\sqrt{75}$$

Answer

Given, $\sqrt{75}$

Need to find the rationalizing factor

⇒ We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow \sqrt{75}$$
 can be written as $\sqrt{3 \times 5 \times 5}$

$$\Rightarrow 5\sqrt{3}$$

$$\therefore 5\sqrt{3} \times \sqrt{3}$$

$$\Rightarrow$$
 (5)(3) = 15

Hence, $\sqrt{3}$ is rationalizing factor

1 D. Question

Write the rationalizing factor of the following.

$$2\sqrt[3]{5}$$

Answer

Given, $2\sqrt[3]{5}$

Need to find the rationalizing factor

⇒ We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow 2\sqrt[3]{5} \times \sqrt[3]{25}$$

$$= 2(\sqrt[3]{5 \times 25})$$

$$= 2 (\sqrt[3]{125})$$

= 2 (5) = 10 is rational number

Hence, $\sqrt[3]{25}$ is rationalizing factor

1 E. Question

Write the rationalizing factor of the following.

$$5 - 4\sqrt{3}$$

Answer

Given, $5-4\sqrt{3}$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow (5-4\sqrt{3})(5+4\sqrt{3})$$

$$\Rightarrow 25+20\sqrt{3}-20\sqrt{3}-(16)(3)$$

= -23 is rational number

∴ Rationalizing factor of $(5-4\sqrt{3})$ is $(5 + 4\sqrt{3})$

1 F. Question

Write the rationalizing factor of the following.

$$\sqrt{2} + \sqrt{3}$$

Answer

Given,
$$\sqrt{2} + \sqrt{3}$$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow (\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})$$

$$=4-\sqrt{6}+\sqrt{6}-3$$

= 1 is a rational number

$$\therefore$$
 Rationalizing factor of $(\sqrt{2} + \sqrt{3})$ is $(\sqrt{2} - \sqrt{3})$

1 G. Question

Write the rationalizing factor of the following.

$$\sqrt{5}-\sqrt{2}$$

Answer

Given,
$$\sqrt{5}$$
 – $\sqrt{2}$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow (\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$$

$$=25+\sqrt{10}-\sqrt{10}-2$$

- = 23 is a rational number
- \therefore Rationalizing factor of $(\sqrt{5} \sqrt{2})$ is $(\sqrt{5} + \sqrt{2})$

1 H. Question

Write the rationalizing factor of the following.

$$2 + \sqrt{3}$$

Answer

Given,
$$2 + \sqrt{3}$$

Need to find the rationalizing factor

 \Rightarrow We know that if the product of two surds is rational then each is called a rationalizing factor of each other

$$\Rightarrow (2 + \sqrt{3})(2 - \sqrt{3})$$

$$= 4 + 2\sqrt{3} - 2\sqrt{3} - 3$$

- = 1 is a rational number
- \therefore Rationalizing factor of $(2+\sqrt{3})$ is $(2-\sqrt{3})$

2 A. Question

Rationalize the denominator of the following

$$\frac{3}{\sqrt{5}}$$

Answer

Given,
$$\frac{3}{\sqrt{5}}$$

Need to rationalize the denominator

 \Rightarrow To rationalize the denominator of $\frac{3}{\sqrt{5}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

$$=\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^2}$$

$$=\frac{3\sqrt{5}}{5}$$

Hence, rationalizing the denominator of $\frac{3}{\sqrt{5}}$ we get $\frac{3\sqrt{5}}{5}$

2 B. Question

Rationalize the denominator of the following

$$\frac{2}{3\sqrt{3}}$$

Answer

Given,
$$\frac{2}{3\sqrt{3}}$$

Need to rationalize the denominator

 \Rightarrow To rationalize the denominator of $\frac{2}{3\sqrt{3}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{2}{3\sqrt{3}} \times \frac{3\sqrt{3}}{3\sqrt{3}}$$

$$=\frac{2\times3\sqrt{3}}{\left(3\sqrt{3}\right)^2}$$

$$=\frac{6\sqrt{3}}{27}$$

$$=\frac{2\sqrt{3}}{9}$$

Hence, rationalizing the denominator of $\frac{2}{3\sqrt{3}}$ we get $\frac{2\sqrt{3}}{9}$

2 C. Question

Rationalize the denominator of the following

$$\frac{1}{\sqrt{12}}$$

Answer

Given,
$$\frac{1}{\sqrt{12}}$$

Need to rationalize the denominator

- \Rightarrow To rationalize the denominator of $\frac{1}{\sqrt{12}}$ we must multiply the number with its denominator as follows
- \Rightarrow here, $\sqrt{12}$ can be written as $2\sqrt{3}$

$$\Rightarrow \frac{1}{2\sqrt{3}} \times \frac{2\sqrt{3}}{2\sqrt{3}}$$

$$=\frac{2\sqrt{3}}{\left(2\sqrt{3}\right)^2}$$

$$=\frac{2\sqrt{3}}{12}$$

$$=\frac{\sqrt{3}}{6}$$

Hence, rationalizing the denominator of $\frac{1}{\sqrt{12}}$ we get $\frac{\sqrt{3}}{6}$

2 D. Question

Rationalize the denominator of the following

$$\frac{2\sqrt{7}}{\sqrt{11}}$$

Answer

Given,
$$\frac{2\sqrt{7}}{\sqrt{11}}$$

Need to rationalize the denominator

 \Rightarrow To rationalize the denominator of $\frac{2\sqrt{7}}{\sqrt{11}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{2\sqrt{7}}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$$

$$=\frac{\left(2\sqrt{7}\right)\left(\sqrt{11}\right)}{\left(\sqrt{11}\right)^2}$$

$$=\frac{2\sqrt{77}}{11}$$

Hence, rationalizing the denominator of $\frac{2\sqrt{7}}{\sqrt{11}}$ we get $\frac{2\sqrt{77}}{11}$

2 E. Question

Rationalize the denominator of the following

Answer

Given,
$$\frac{3\sqrt[3]{5}}{\sqrt[3]{9}}$$

Need to rationalize the denominator

 \Rightarrow To rationalize the denominator of $\frac{3\sqrt[3]{5}}{\sqrt[3]{9}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{3\sqrt[3]{5}}{\sqrt[3]{9}} \times \frac{\sqrt[3]{9}}{\sqrt[3]{9}}$$

$$= \frac{3\sqrt[3]{45}}{(\sqrt[3]{9})^2}$$

 \Rightarrow Now, we can write 3 as $(\sqrt[3]{3})^3 = \sqrt[3]{27}$

$$\frac{\sqrt[3]{27} \times \sqrt[3]{45}}{\sqrt[3]{9} \times \sqrt[3]{9}}$$

$$= \frac{\sqrt[3]{27 \times 45}}{\sqrt[3]{81}}$$

$$\because \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\left(\frac{a}{b}\right)}$$

$$=\sqrt[3]{\frac{(27\times45)}{81}}$$

Hence, rationalizing the denominator of $\frac{3\sqrt[3]{5}}{\sqrt[3]{9}}$ we get $\sqrt[3]{15}$

3 A. Question

Simplify by rationalizing the denominator.

$$\frac{1}{11+\sqrt{3}}$$

Answer

Given,
$$\frac{1}{11+\sqrt{3}}$$

Need to simplify by rationalizing denominator

 \Rightarrow To rationalize the denominator of $\frac{1}{11+\sqrt{3}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{1}{11+\sqrt{3}} \times \frac{11-\sqrt{3}}{11-\sqrt{3}}$$

$$=\frac{11-\sqrt{3}}{(11)^2-\left(\sqrt{3}\right)^2}$$

 \Rightarrow we know the denominator is in the form of $a^2-b^2=(a+b)(a-b)$

$$=\frac{11-\sqrt{3}}{121-3}$$

$$=\frac{11-\sqrt{3}}{118}$$

Hence, $\frac{1}{11+\sqrt{3}}$ is simplified by rationalizing denominator as $\frac{11-\sqrt{3}}{118}$

3 B. Question

Simplify by rationalizing the denominator.

$$\frac{1}{9+3\sqrt{3}}$$

Answer

Given,
$$\frac{1}{9+3\sqrt{5}}$$

Need to simplify by rationalizing denominator

 \Rightarrow To rationalize the denominator of $\frac{1}{9+3\sqrt{5}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{1}{9+3\sqrt{5}} \times \frac{9-3\sqrt{5}}{9-3\sqrt{5}}$$

$$=\frac{9-3\sqrt{5}}{(9)^2-\left(3\sqrt{5}\right)^2}$$

 \Rightarrow we know the denominator is in the form of $a^2-b^2=(a+b)(a-b)$

$$=\frac{3(3-\sqrt{5})}{81-45}$$

$$=\frac{3(3-\sqrt{5})}{36}$$

$$=\frac{(3-\sqrt{5})}{12}$$

Hence, $\frac{1}{9+3\sqrt{5}}$ is simplified by rationalizing denominator as $\frac{(3-\sqrt{5})}{12}$

3 C. Question

Simplify by rationalizing the denominator.

$$\frac{1}{\sqrt{11} + \sqrt{13}}$$

Answer

Given,
$$\frac{1}{\sqrt{11} + \sqrt{13}}$$

Need to simplify by rationalizing denominator

 \Rightarrow To rationalize the denominator of $\frac{1}{\sqrt{11} + \sqrt{13}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{1}{\sqrt{11} + \sqrt{13}}$$
 can be written as $\frac{1}{\sqrt{13} + \sqrt{11}}$

$$\Rightarrow \frac{1}{\sqrt{13+\sqrt{11}}} \times \frac{\sqrt{13}-\sqrt{11}}{\sqrt{13}-\sqrt{11}}$$

$$=\frac{\sqrt{13}-\sqrt{11}}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{11}\right)^{2}}$$

 \Rightarrow we know the denominator is in the form of $a^2-b^2=(a+b)(a-b)$

$$=\frac{\sqrt{13}-\sqrt{11}}{13-11}$$

$$=\frac{\sqrt{13}-\sqrt{11}}{2}$$

Hence, $\frac{1}{\sqrt{11} + \sqrt{13}}$ is simplified by rationalizing denominator as $\frac{\sqrt{13} - \sqrt{11}}{2}$

3 D. Question

Simplify by rationalizing the denominator.

$$\frac{\sqrt{5}+1}{\sqrt{5}-1}$$

Answer

Given,
$$\frac{\sqrt{5}+1}{\sqrt{5}-1}$$

Need to simplify by rationalizing denominator

 \Rightarrow To rationalize the denominator of $\frac{\sqrt{5}+1}{\sqrt{5}-1}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$$

$$=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}\right)^2-1}$$

 \Rightarrow we know that numerator is in the form of $(a+b)^2 = a^2+2ab+b^2$

 \Rightarrow we know the denominator is in the form of $a^2-b^2=(a+b)(a-b)$

$$=\frac{5+2\sqrt{5}+1}{4}$$

$$=\frac{6+2\sqrt{5}}{4}$$

$$=\frac{2(3+\sqrt{5})}{4}$$

$$=\frac{3+\sqrt{5}}{2}$$

Hence, $\frac{\sqrt{5}+1}{\sqrt{5}-1}$ is simplified by rationalizing denominator as $\frac{3+\sqrt{5}}{2}$

3 E. Question

Simplify by rationalizing the denominator.

$$\frac{3-\sqrt{3}}{2+5\sqrt{3}}$$

Answer

Given,
$$\frac{3-\sqrt{3}}{2+5\sqrt{3}}$$

Need to simplify by rationalizing denominator

 \Rightarrow To rationalize the denominator of $\frac{3-\sqrt{3}}{2+5\sqrt{3}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{3-\sqrt{3}}{2+5\sqrt{3}} \times \frac{2-5\sqrt{3}}{2-5\sqrt{3}}$$

 \Rightarrow we know the denominator is in the form of $a^2-b^2=(a+b)(a-b)$

$$=\frac{(3-\sqrt{3})(2-5\sqrt{3})}{2^2-(5\sqrt{3})^2}$$

$$=\frac{6-15\sqrt{3}-2\sqrt{3}+5(3)}{4-25(3)}$$

$$=\frac{21-17\sqrt{3}}{4-75}$$

$$=\frac{-(17\sqrt{3}-21)}{-(75-4)}$$

$$=\frac{17\sqrt{3}-21}{71}$$

Hence, $\frac{3-\sqrt{3}}{2+5\sqrt{3}}$ is simplified by rationalizing denominator as $\frac{17\sqrt{3}-21}{71}$

4 A. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{1}{\sqrt{2}}$$

Answer

Given,
$$\frac{1}{\sqrt{2}}$$

Need to find the values upto 3 decimal places

 \Rightarrow substitute the value of $\sqrt{2} \approx 1.414$

$$\Rightarrow \frac{1}{1.414}$$

$$= 0.707$$

Hence, the value of $\frac{1}{\sqrt{2}}$ is 0.707

4 B. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{6}{\sqrt{3}}$$

Answer

Given,
$$\frac{6}{\sqrt{3}}$$

Need to find the values upto 3 decimal places

 \Rightarrow substitute the value of $\sqrt{3} \approx 1.732$

$$\Rightarrow \frac{6}{1.732}$$

$$= 3.46$$

Hence, the value of $\frac{6}{\sqrt{3}}$ is 3.46

4 C. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{5-\sqrt{3}}{\sqrt{3}}$$

Answer

Given,
$$\frac{5-\sqrt{3}}{\sqrt{3}}$$

Need to find the values upto 3 decimal places

 \Rightarrow substitute the value of $\sqrt{3} \approx 1.732$

$$\Rightarrow \frac{5-1.732}{1.732}$$

$$= 1.887$$

Hence, the value of $\frac{5-\sqrt{3}}{\sqrt{3}}$ is 1.887

4 D. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2}\approx 1.414$, $\sqrt{3}\approx 1.732$, $\sqrt{5}\approx 2.236$, $\sqrt{10}\approx 3.162$.

$$\frac{\sqrt{10} - \sqrt{5}}{\sqrt{2}}$$

Answer

Given,
$$\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}$$

Need to find the values upto 3 decimal places

 \Rightarrow Substitute the value of $\sqrt{5} \approx 2.236, \sqrt{10} \approx 3.162$ and

$$\sqrt{2} \approx 1.414$$

$$\Rightarrow \frac{\sqrt{10} - \sqrt{5}}{\sqrt{2}}$$

$$=\frac{3.162-2.236}{1.414}$$

$$=\frac{0.926}{1.414}$$

$$= 0.655$$

Hence, the value of $\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}$ is 0.655

4 E. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2}\approx 1.414$, $\sqrt{3}\approx 1.732$, $\sqrt{5}\approx 2.236$, $\sqrt{10}\approx 3.162$.

$$\frac{3-\sqrt{5}}{3+2\sqrt{5}}$$

Answer

Given,
$$\frac{3-\sqrt{5}}{3+2\sqrt{5}}$$

Need to find the values upto 3 decimal places

 \Rightarrow Substitute the value of $\sqrt{5} \approx 2.236$, $\sqrt{2} \approx 1.414$

$$\Rightarrow \frac{3-\sqrt{5}}{3+2\sqrt{5}}$$

$$=\frac{3-2.236}{3+2(2.236)}$$

$$=\frac{0.764}{3+4.472}$$

$$=\frac{0.764}{7.472}$$

$$= 0.1022$$

Hence, the value of $\frac{3-\sqrt{5}}{3+2\sqrt{5}}$ is 0.1022

4 F. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

Answer

Given,
$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

Need to find the values upto 3 decimal places

 \Rightarrow Substitute the value of $\sqrt{5} \approx 2.236$, $\sqrt{2} \approx 1.414$

$$\Rightarrow \frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$$

$$=\frac{2.236+1.414}{2.236-1.414}$$

$$=\frac{3.65}{0.822}$$

Hence, the value of $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}$ is 4.441

4 G. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

Answer

Given,
$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

Need to find the values upto 3 decimal places

⇒ Substitute the value of $\sqrt{3} \approx 1.732$

$$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1}$$

$$=\frac{1.732+1}{1.732-1}$$

$$=\frac{2.732}{0.732}$$

$$= 3.732$$

Hence, the value of $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ is 3.732

4 H. Question

Find the values of the following upto 3 decimal places. Given that $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$.

$$\frac{1}{\sqrt{10} + \sqrt{5}}$$

Answer

Given,
$$\frac{1}{\sqrt{10}+\sqrt{5}}$$

Need to find the values upto 3 decimal places

 \Rightarrow Substitute the value of $\sqrt{5} \approx 2.236$, $\sqrt{10} \approx 3.162$

$$\Rightarrow \frac{1}{\sqrt{10}+\sqrt{5}}$$

$$=\frac{1}{3.162+2.236}$$

$$=\frac{1}{5.392}$$

$$= 0.1854$$

Hence, the value of $\frac{1}{\sqrt{10}+\sqrt{5}}$ is 0.1854

5. Question

If
$$\frac{5+\sqrt{6}}{5-\sqrt{6}} = a + b\sqrt{6}$$
 find the values of a and b.

Answer

Given,
$$\frac{5+\sqrt{6}}{5-\sqrt{6}} = a+b\sqrt{6}$$

Need to find the value of a and b

⇒ Now, we can find by rationalizing the denominator

 \Rightarrow Since, we know to rationalize the denominator of $\frac{5+\sqrt{6}}{5-\sqrt{6}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{5+\sqrt{6}}{5-\sqrt{6}} \times \frac{5+\sqrt{6}}{5+\sqrt{6}}$$

$$=\frac{(5+\sqrt{6})^2}{5^2-\sqrt{6}^2}$$

 \because we know that numerator is in the form of $(a+b)^2 = a^2+2ab+b^2$

And denominator in the form of $a^2-b^2 = (a+b)(a-b)$

$$\Rightarrow \frac{25+2(5)(\sqrt{6})+6}{25-6}$$

$$=\frac{30+10\sqrt{6}}{19}$$

$$=\frac{30}{19}+\frac{10}{19}\sqrt{6}$$

$$a = \frac{30}{19}$$
 and $b = \frac{10}{19}\sqrt{6}$

6. Question

If
$$\frac{\left(\sqrt{3}+1\right)^2}{4-2\sqrt{3}} = a + b\sqrt{3}$$
 find the values of a and b.

Answer

Given,
$$\frac{(\sqrt{3}+1)^2}{4-2\sqrt{3}} = a+b\sqrt{3}$$

Need to find the value of a and b

- \Rightarrow Now, we can find by rationalizing the denominator
- \Rightarrow Since, we know to rationalize the denominator of $\frac{\left(\sqrt{3}+1\right)^2}{4-2\sqrt{3}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \frac{\left(\sqrt{3}+1\right)^2}{4-2\sqrt{3}} \times \frac{4+2\sqrt{3}}{4+2\sqrt{3}}$$

$$=\frac{(3+2\sqrt{3}+1)(4+2\sqrt{3})}{4^2-(2\sqrt{3})^2}$$

$$=\frac{(4+2\sqrt{3})(4+2\sqrt{3})}{16-12}$$

$$=\frac{\left(4+2\sqrt{3}\right)^2}{4}$$

$$=\frac{16+2(4)(2\sqrt{3})+4(3)}{4}$$

$$=\frac{16+16\sqrt{3}+12}{4}$$

$$=\frac{28+16\sqrt{3}}{4}$$

$$=\frac{4(7+4\sqrt{3})}{4}$$

$$= 7 + 4\sqrt{3}$$

$$\therefore 7 + 4\sqrt{3} = a + b\sqrt{3}$$

Hence, the value of a = 7 and b = 4

7. Question

If
$$\frac{\sqrt{5}+1}{\sqrt{3}-1} + \frac{\sqrt{5}-1}{\sqrt{5}+1} = a + b\sqrt{5}$$
, find the values of a and b.

Answer

Given,
$$\frac{\sqrt{5}+1}{\sqrt{5}-1} + \frac{\sqrt{5}-1}{\sqrt{5}+1} = a+b\sqrt{5}$$

Need to find the value of a and b

- \Rightarrow Now, we can find by rationalizing the denominator
- \Rightarrow Since, we know to rationalize the denominator of $\frac{\sqrt{5}+1}{\sqrt{5}-1} + \frac{\sqrt{5}-1}{\sqrt{5}+1}$ we must multiply the number with its denominator as follows

$$\Rightarrow \left(\frac{\sqrt{5}+1}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}\right) + \left(\frac{\sqrt{5}-1}{\sqrt{5}+1} \times \frac{\sqrt{5}-1}{\sqrt{5}-1}\right)$$

$$=\frac{\left(\sqrt{5}+1\right)^2}{5-1}+\frac{\left(\sqrt{5}-1\right)^2}{5-1}$$

$$=\frac{5+2\sqrt{5}+1}{4}+\frac{5-2(\sqrt{5})(1)+1}{4}$$

$$=\frac{6+2\sqrt{5}}{4}+\frac{6-2\sqrt{5}}{4}$$

$$=\frac{6+2\sqrt{5}+6-2\sqrt{5}}{4}$$

$$=\frac{12}{4}$$

$$a = 3b = 0$$

8. Question

If
$$\frac{4+\sqrt{5}}{4-\sqrt{3}} - \frac{4-\sqrt{5}}{4+\sqrt{5}} = a+b\sqrt{5}$$
, find the values of a and b.

Answer

Given,
$$\frac{4+\sqrt{5}}{4-\sqrt{5}} - \frac{4-\sqrt{5}}{4+\sqrt{5}} = a+b\sqrt{5}$$

Need to find the value of a and b

- \Rightarrow Now, we can find by rationalizing the denominator
- \Rightarrow Since, we know to rationalize the denominator of $\frac{4+\sqrt{5}}{4-\sqrt{5}} \frac{4-\sqrt{5}}{4+\sqrt{5}}$ we must multiply the number with its denominator as follows

$$\Rightarrow \left(\frac{4+\sqrt{5}}{4-\sqrt{5}} \times \frac{4+\sqrt{5}}{4+\sqrt{5}}\right) - \left(\frac{4-\sqrt{5}}{4+\sqrt{5}} \times \frac{4-\sqrt{5}}{4-\sqrt{5}}\right)$$

$$=\frac{\left(4+\sqrt{5}\right)^2}{4^2-\sqrt{5}^2}-\frac{\left(4-\sqrt{5}\right)^2}{4^2-\sqrt{5}^2}$$

$$= \frac{16+2(4)(\sqrt{5})+25}{16-5} - \frac{16-2(4)(\sqrt{5})+25}{16-5}$$

$$=\frac{41+8\sqrt{5}}{11}-\frac{41-8\sqrt{5}}{11}$$

$$=\frac{41+8\sqrt{5}-41+8\sqrt{5}}{11}$$

$$=\frac{16\sqrt{5}}{11}$$

$$\Rightarrow \frac{16\sqrt{5}}{11} = a + b\sqrt{5}$$

Hence, the value of a = 0 and $b = \frac{16}{11}$

9. Question

If
$$x = 2 + \sqrt{3}$$
, find the values of $x^2 + \frac{1}{x^2}$

Answer

Given,
$$x = 2 + \sqrt{3}$$

Need to find the values of $X^2 + \frac{1}{x^2}$

 \Rightarrow By substituting the given values of x in the equation we get

$$\Rightarrow$$
 x² = (2+ $\sqrt{3}$)² = 4+2(2)($\sqrt{3}$)+(3) = 7+4 $\sqrt{3}$

$$\Rightarrow \frac{1}{x^2} = \frac{1}{\left(2 + \sqrt{3}\right)^2}$$

$$=\frac{1}{7+4\sqrt{3}}$$

⇒ By rationalizing method we can write as

$$\Rightarrow \frac{1}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$$

$$=\frac{7-4\sqrt{3}}{49-16(3)}$$

$$=\frac{7-4\sqrt{3}}{49-48}$$

$$=\frac{7-4\sqrt{3}}{1}$$

$$=7-4\sqrt{3}$$

$$\Rightarrow x^2 + \frac{1}{x^2} = 7 + 4\sqrt{3} + 7 - 4\sqrt{3}$$

Hence, the value of $x^2 + \frac{1}{x^2}$ is 14

10. Question

$$x = \sqrt{3} + 1$$
 , find the values of $\left(x - \frac{2}{x}\right)^2$

Answer

Given,
$$x = \sqrt{3} + 1$$

Need to find the value of $\left(x - \frac{2}{x}\right)^2$

$$\Rightarrow \frac{2}{x} = \frac{2}{\sqrt{3}+1}$$

$$= \frac{2}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$$

$$=\frac{2\left(\sqrt{3}-1\right)}{3-1}$$

$$=\frac{2\left(\sqrt{3}-1\right)}{2}$$

$$=\sqrt{3}-1$$

$$\Rightarrow \left(X - \frac{2}{x}\right)^2 = ((\sqrt{3} + 1) - (\sqrt{3} - 1))^2$$

$$=(\sqrt{3}+1-\sqrt{3}+1)^2$$

Hence, the value of $\left(x - \frac{2}{x}\right)^2$ is 4

Exercise 1.3

1. Question

Using division algorithm, find the quotient and remainder of the following pairs.

Answer

(i) 10,3

We write the given pair in the form a = bq + r, $0 \le r < b$ as follows.

10 = 3(3) + 1[3 divides 10 three time and leaves the remainder 1]quotient = 3; remainder = 1

(ii) 5,12

We write the given pair in the form a = bq + r, $0 \le r < b$ as follows.

5 = 12(0) + 5 [12 divides 5 Zero time and leaves the remainder 5] quotient = 0; remainder = 5

(iii) 27,3

We write the given pair in the form a = bq + r, $0 \le r < b$ as follows.

27 = 3(9) + 0 [3 divides 27 Nine time and leaves the remainder 1] quotient = 3; remainder = 0

Exercise 1.4

1. Question

Which one of the following is not a surd?

- A. ³√8
- B. $\sqrt[3]{30}$
- C. √√4
- D. $\sqrt[8]{3}$

Answer

As we know

surd is a number in which we cant remove its square root(cube root ...etc)

- $A.\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$ is not surd
- B. **₹30** cant be simplified hence surd
- $C.\sqrt[5]{4}$ cannot be simplified hence surd
- D. $\sqrt[8]{3}$ cannot be simplified hence surd

Hence A is the answer.

2. Question

The simplest form of $\sqrt{50}\,$ is

- A. $5\sqrt{10}$
- B. $5\sqrt{2}$
- C. $10\sqrt{5}$
- D. $25\sqrt{2}$

Answer

On simplification

$$\sqrt{50}$$

$$=\sqrt{5\times5\times2}$$

$$=5\sqrt{2}$$

Hence B is the answer

3. Question

$$\sqrt[4]{11}$$
 is equal to

A.
$$\sqrt[8]{11^2}$$

B.
$$\sqrt[8]{11^4}$$

C.
$$\sqrt[8]{11^8}$$

D.
$$\sqrt[8]{11^6}$$

Answer

On Simplification

$$=11\frac{1}{4}$$

Hence A is the answer

4. Question

$$\frac{2}{\sqrt{2}}$$
 is equal to

A.
$$2\sqrt{2}$$

B.
$$\sqrt{2}$$

c.
$$\frac{\sqrt{2}}{2}$$

Answer

On rationalizing
$$\frac{2}{\sqrt{2}}$$

$$= \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} \text{ (rationalizing)}$$

$$=\frac{2\sqrt{2}}{2}$$

$$=\sqrt{2}$$

Hence B is the answer

5. Question

The rationlizing factor of $\frac{5}{\sqrt[3]{3}}$ is

A.
$$\sqrt[3]{6}$$

B.
$$\sqrt[3]{3}$$

D.
$$\sqrt[3]{27}$$

Answer

As we know

Prime factorization of $27 = 3 \times 3 \times 3$

$$\frac{5}{\sqrt[3]{3}} = \frac{5}{\sqrt[3]{3}} \times \frac{\sqrt[3]{3} \times \sqrt[3]{3}}{\sqrt[3]{3} \times \sqrt[3]{3}}$$

$$=\frac{5}{\sqrt[3]{3}}\times\frac{\sqrt[3]{9}}{\sqrt[3]{9}}$$

Hence C is the answer

6. Question

Which one of the following is not true?

A.
$$\sqrt{2}$$
 is an irrational number

B.
$$\sqrt{17}$$
 is an irrational number

C. 0.10110011100011110... is an irrational number

D.
$$\sqrt[4]{16}$$
 is an irrational number

Answer

As we know an irrational number are those number which cannot be represented in a simple fraction

A. $\sqrt{2}$ cannot be represent in simple fraction hence it is an irrational number

Hence A is true

B. $\sqrt{17}$ cannot be represent in simple fraction hence it is an irrational number

Hence B is true

 $\text{C.}\ 0.10110011100011110....cannot$ be represent in simple fraction hence it is a irrational number . Hence C is true

D. on simplification

$$\sqrt[4]{16} = \sqrt[4]{2 \times 2 \times 2 \times 2} = \sqrt[4]{2^4} = 2$$

Hence is rational number and not irrational.

Hence D is the right answer

7. Question

The order and radicand of the surd $\sqrt[8]{12}$ are respectively

- A. 8,12
- B. 12,8
- C. 16,12
- D. 12,16

Answer

As we know

 $\sqrt[3]{n}$ here a is the order of surd and n is the radicand

$$\sqrt[8]{12}$$
 order = 8

Radicand = 12

A is the answer

8. Question

The surd having radicand 9 and order 3 is

- A. ∜3
- B. $\sqrt[3]{27}$
- C. ³√9

D. $\sqrt[3]{81}$

Answer

As we know

 $\sqrt[3]{n}$ here a is the order of surd and n is the radicand

 $\sqrt[3]{9}$ is the answer

Hence C is the option

9. Question

 $5\sqrt[3]{3}$ represents the pure surd

- A. $\sqrt[3]{15}$
- B. $\sqrt[3]{375}$
- C. ³√75
- D. $\sqrt[3]{45}$

Answer

$$5\sqrt[3]{3} = \sqrt[3]{5 \times 5 \times 5 \times 3} = \sqrt[3]{125 \times 3} = \sqrt[3]{375}$$

Which is B

Hence B is the answer

10. Question

Which one of the following is not true?

A. $\sqrt{2}$ is an irrational number

B. If a is a rational number and \sqrt{b} is an irrational number

C. Every surd is an irrational number.

D. The square root of every positive integer is always irrational

Answer

Option A is incorrect because $\sqrt{2}$ cannot be written in simple fraction.

hence is irrational number, hence true.

option B is incorrect as it can be written in simple form hence it is a rational number

And also \sqrt{b} cannot be written in simple form hence it is a irrational number

Option C

As we know surd is a number in which we cant remove its square root(cube root ...etc) hence cannot represent, in simple fraction hence it is irrational number

Hence C is true

Option D

D is not true as square root of every positive integer is not always irrational

For example, square root of 4 is 2 which is rational number hence D is not true.

Hence D is the answer

11. Question

Which one of the following is not true?

A. When x is not a perfect square, \sqrt{X} is an irrational number

B. The index form of
$$\sqrt[m]{X^n}i_SX^{\frac{n}{m}}$$

C. The radical form of
$$\left(x^{\frac{1}{n}}\right)^{\frac{1}{m}}is^{\frac{mn}{\sqrt{X}}}$$

D. Every real number is an irrational number

Answer

As in

Option A

As we know an irrational number are those number which cannot be represented in simple fraction

Hence they are not perfect square

For example 3 is not a perfect square

also $\sqrt{3}$ is irrational number

hence A is true

option B

index form of number means power form

as
$$\sqrt[m]{x^n} = \sqrt[m]{x}^n = x^{\frac{m}{n}}$$

hence B is true

Option C

Radical form means surd form

$$x_{n}^{\frac{1}{m}} = x_{m \times n}^{\frac{1}{m}} = {}^{mn}\sqrt{x}$$

Hence C is also true

Option D

It is not true that every real number is a rational number

For example 2 is real number but not irrational number

Hence D is not true

Hence D is the right answer

12. Question

$$(\sqrt{5}-2)(\sqrt{5}+2)$$
 is equal to

- A. 1
- B. 3
- C. 23
- D. 21

Answer

using identity

$$(a + b)(a-b) = a^2 - b^2$$

$$(\sqrt{5}-2)(\sqrt{5}+2)=((\sqrt{5})^2-2^2)$$

$$= (5-4)$$

= 1

Hence A is the answer.