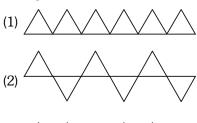

- In which of the dimerisation process, the 1. achievement of the octet is not the driving force.

  - $\begin{array}{c} \text{(1) 2AlCl}_3 \longrightarrow \text{Al}_2\text{Cl}_6 \\ \text{(2) BeCl}_2 \longrightarrow \text{BeCl}_2 \text{ (solid)} \\ \text{(3) 2ICl}_3 \longrightarrow \text{I}_2\text{Cl}_6 \\ \text{(4) 2NO}_2 \longrightarrow \text{N}_2\text{O}_4 \\ \end{array}$
- 2. Column I

# Column II


- (A) B<sub>2</sub>H<sub>6</sub>
- (P)  $(3C-4e^{-})$  bond
- (B) Be<sub>2</sub>H<sub>4</sub>
- (Q)  $(3C-2e^{-})$  bond
- (R) Vacant orbital (C) Be<sub>2</sub>Cl<sub>4</sub>participation in
  - hybridisation
- (D) Al<sub>2</sub>(CH<sub>3</sub>)<sub>6</sub>
- (S) sp<sup>3</sup> hybridisation (T) sp<sup>2</sup> hybridisation
- (1) (A)-Q,R,S;(B)-Q,R,T;(C)-P,R,T;(D)-Q,R,S
- (2) (A) Q,R,S,T;(B) R,T;(C) P,R,T;(D) R,S
- (3) (A) S,T; (B) R,T; (C) P,R,T; (D) R,S,T
- (4) (A) Q,S,T; (B) R,T; (C) P,R; (D) R,S,T
- 3. A mineral contain following tetrameric anion in which  $\bullet$  = Si,  $\bigcirc$  = oxygen



Select correct option (s) about anion in mineral-

- (1) Formula of anion is  $(SiO_3)_n^{2n}$  (where n = 4).
- (2) The total 10 negative charges are present in this anion.
- (3) It has three shared oxygen/corners and ten unshared oxygen/corners.
- (4) It is non planar
- Silicate are existing mainly in the polymeric form. 4. Several categories are available with us which depend on the mode of sharing of corners of SiO<sub>4</sub><sup>4</sup>tetrahedron.

Which of the following pyroxene chain silicate is having same formula.





(4) All of these

5. The geometry with respect to the central atom of the following molecules are:

$$N(SiH_3)_3$$
;  $Me_3N$ ;  $(SiH_3)_3P$ 

- (1) planar, pyramidal, planar
- (2) planar, pyramidal, pyramidal
- (3) pyramidal, pyramidal, pyramidal
- (4) pyramidal, planar, pyramidal
- 6. Column-I

#### Column-II

- (A)  $\underline{N}(SiH_3)_3$
- (P)  $p\pi$ - $d\pi$  back bonding
- (B)  $\underline{N}(CH_3)_3$
- (Q) sp<sup>3</sup> hybridisation for underlined atom
- (C)  $\underline{B}_2H_6$ (D) <u>B</u>F<sub>3</sub>
- (R)  $p\pi$ – $p\pi$  back bonding
- (S) neither  $p\pi-p\pi$  nor pπ-dπ back bonding
  - (T) Underlined atom combine with electron
    - rich molecule
- (1) (A) P; (B) Q,S; (C) Q,S,T; (D) R,T
- (2) (A) P,Q; (B) Q,S,T; (C) R,T; (D) S,T
- (3) (A) P,Q; (B) R,T; (C) S,T; (D) R,S,T
- (4) (A)-R,S,T;(B)-Q,R,S,T;(C)-S,T;(D)-P,Q,S,T
- **7**. Choose the correct on the Cl-O bond length in  $NaClO_4$ .
  - (1) All Cl-O bonds are of equal length.
  - (2) Three Cl-O bonds are of equal of length one longer.
  - (3) Two Cl-O bonds are of same length which are longer compound to other two Cl-O bond length.
  - (4) All Cl-O bond lengths are different

#### 8. Column I

# Column II

## (Pair of species) (Identical Property in pairs of species)

- (A) PCl<sub>3</sub>F<sub>2</sub>, PCl<sub>2</sub>F<sub>3</sub>
- (P) Hybridisation of central atom
- (B) BF<sub>3</sub> & BCl<sub>3</sub>
- (Q) Shape of molecule / ion
- (C)  $CO_2 \& CN_2^{-2}$
- (R) μ (dipole moment)
- (D)  $C_6H_6 \& B_3N_3H_6$  (S) Total number of
  - electrons
- (1) (A)-P,Q;(B)-P,Q,R;(C)-P,Q,RS;(D)-P,Q,R,S
- (2) (A) P,Q,R,S; (B) P,Q; (C) R,S; (D) P,Q
- (3) (A) P,Q; (B) S,R; (C) Q,R,S; (D) R,S
- (4) (A) P.Q; (B) S.R; (C) P.R; (D) P.Q.R

#### **9.** Match the Column:

# Column-I (A) $(CH_3)_2PF_3$ (P) Lone pair of electrons on central atom = 1 (B) $SF_4$ (Q) Central atom is $sp^3d$ hybridised (C) $XeF_4$ (R) Equal length of all central atom-fluorine bond (D) $BrF_3$ (S) Total number of lone pair of electrons is more than 9

- (1) (A) Q; (B) P,Q,S; (C) R,S; (D) Q,S
- (2) (A) P,Q; (B) P,Q,S; (C) S,R; (D) P,S
- (3) (A) R,S; (B) P,Q,S; (C) S,R; (D) P,S
- (4) (A) Q,S; (B) P,Q,S; (C) S,R; (D) P,Q,R,S
- 10. Select correct statement about hydrolysis of  $\mathrm{BCl}_3$  and  $\mathrm{NCl}_3$ 
  - (1)  $NCl_3$  is hydrolysed and gives HOCl but  $BCl_3$  is not hydrolysed.
  - (2) Both NCl<sub>3</sub> and BCl<sub>3</sub> on hydrolysis gives HCl
  - (3) NCl<sub>3</sub> on hydrolysis gives HOCl but BCl<sub>3</sub> gives HCl
  - (4) Both NCl<sub>3</sub> and BCl<sub>3</sub> on hydrolysis gives HOCl
- **11.** Which of the following statements are correct for  $SOF_4$  molecule.
  - (1) It is square pyramidal in shape
  - (2) On hydrolysis it produces H<sub>2</sub>SO<sub>4</sub> and HF
  - (3) All S-F bond lengths are of identical length
  - (4) Two S–F bond lengths are longer compared to other two S–F bond lengths
- **12. Statement-1**: H<sub>3</sub>BO<sub>3</sub> in water behaves as monobasic acid.

**Statement-2:** The ionisation reaction is:

$$H_3BO_3 + H_2O \Longrightarrow B(OH)_4^- + H^+$$

- (1) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.
- **13.** For  $H_3PO_3$  and  $H_3PO_4$ , the correct choice is
  - (1)  $H_3PO_3$  is dibasic and reducing agent.
  - (2) H<sub>3</sub>PO<sub>3</sub> is dibasic and non reducing agent.
  - (3) H<sub>3</sub>PO<sub>4</sub> is tribasic and reducing agent
  - (4)  $H_3PO_4$  is tribasic and non reducing agent.

- **14.** Which of the following statement is **incorrect**?
  - (1) Oxidizing power order :  $SiCl_4 < SnCl_4 < PbCl_4$
  - (2) Ionic character order : CsBr > RbBr > KBr > NaBr > LiBr
  - (3) The ionic character of lead (II) halides decreases with increase in atomic no. of halogen
  - (4) The oxidation state of T/ in  $T/I_3$  is +3.
- 15. Choose the correct statement regarding bond angle:-
  - (1)  $\widehat{FCF}$  in  $F_2CO < \widehat{HCH}$  in  $H_2CO$
  - (2)  $\widehat{\text{BrPBr}}$  in  $\text{PBr}_3 < \widehat{\text{FPF}}$  in  $\text{PF}_3$
  - (3)  $\widehat{FSF}(eq) > \widehat{FSF}(ax) \text{ in } SF_4$
  - (4) All  $\widehat{\text{FIF}}$  angles in  $\text{IF}_5$  are identical

# 16. Column I Column II

- (A) Dithionous acid (P) S–O–S bond is not present
- (B) Thiosulphuric acid (Q) All S atom in the molecule has oxidation state +3
- (C) Caro's acid

  (R) Acidic strength of

  OH groups present
  in the molecule is
  different
- (D) Pyrosulphurous acid (S) at least one S atom has oxidation state +5 in molecule
- (1) (A) P,Q; (B) P; (C) P,Q; (D) P,R,S
- (2) (A) P; (B) P, Q; (C) P, R, S; (D) P, Q, R, S
- (3) (A) P,Q; (B) R,S; (C) P,Q,S; (D) P,Q,R,S
- (4) (A) P, Q, R, S; (B) R, S; (C) P, Q, R, S; (D) P, Q
- **17.** Structure of  $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$  contains
  - (1) Two triangular and two tetrahedral units
  - (2) Three triangular and one tetrahedral units.
  - (3) All tetrahedral units.
  - (4) All triangular units.
- **18.** Which of the following statement is incorrect :-
  - (1) The free electron of  ${\rm ClO_3}$  molecule is present in d-orbital of  ${\rm Cl ext{-}atom}$
  - (2) The free electron of  $\overset{\bullet}{C}F_3$  is present in sp<sup>3</sup> hybrid orbital
  - (3) NO is polar
  - (4) The free electron of ClO<sub>2</sub> molecule is present in d-orbital of Cl-atom

- Which of the following statement is incorrect regarding the structure of XeO<sub>2</sub>F<sub>4</sub> molecule :-
  - (1) Xe = O bonds are present in axial position
  - (2) All Xe-F bond lengths are identical
  - (3) FXeF angles are 90°
  - (4) Shape of the molecule is octahedral

#### 20. Column I

#### Column II

- (A) ClO<sub>2</sub>
- (P) Non planar
- (B) ClO<sub>3</sub>
- (Q)  $\mu \neq 0$
- (C) NO<sub>2</sub>
- (R) Linear
- (S) planar
- (D) NO
- (T) sp<sup>3</sup> hybridisation
- (1) (A) Q,S; (B) P,Q,T; (C) Q,S; (D) Q,R,S
- (2) (A) P,Q,S; (B) P,Q,T; (C) P,Q,S; (D) Q,S
- (3) (A) Q,S; (B) P,Q,T; (C) P,Q,R,S,T; (D) P,T
- (4) (A)-P,Q,R,S;(B)-P,Q,S;(C)-Q,S;(D)-P,Q,R,S

## 21.

|   | Compound                                                    | Properties        |  |  |  |
|---|-------------------------------------------------------------|-------------------|--|--|--|
| A | B <sub>2</sub> H <sub>6</sub> , H <sub>3</sub> <sup>+</sup> | 3c 2e bond        |  |  |  |
| В | HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub>           | pp bond           |  |  |  |
| С | AlF <sub>3</sub> , AlCl <sub>3</sub>                        | Hypovalent        |  |  |  |
| D | NCl <sub>3</sub> , SbCl <sub>3</sub>                        | Equal bond angles |  |  |  |

#### Correct code is:

- (1) A
- (2) A.C
- (3) A, D
- (4) All
- **22**. In which of the following options all species contain X-O-X bonds in structure (X = central atom)
  - (1)  $H_2S_2O_5$ ,  $S_3O_9$ ,  $S_2O_6^{-2}$
  - (2)  $P_4O_{10}$ ,  $P_4O_6$ ,  $H_3P_3O_9$
  - (3)  $N_2O_5$ ,  $N_2O$ ,  $N_2O_4$
  - $(4) H_4 P_2 O_7, H_4 P_2 O_6, H_4 P_2 O_5$
- Which is not correct? **23**.
  - (1) Borax : Cyclic, 2-(six member ring)
  - (2) Calgon: Cyclic, (10 member ring)
  - (3) Beryl: Cyclic silicate
  - (4) P<sub>4</sub>O<sub>10</sub>: Cyclic, four -(Six member ring)

- 24. Which of the following reaction is nonspontaneous:-
  - (1)  $2F_2 + 2H_2O \longrightarrow 4HF(aq) + O_2$
  - (2)  $Cl_2 + H-OH \longrightarrow HCl + HOCl$
  - (3)  $Br_0 + H-OH \longrightarrow HBr + HOBr$
  - $(4) 2I_2 + 2H_2O \longrightarrow 4HI + O_2$
- **25**. Which of the following group of molecules can act both as oxidant as well as reductant :-
  - (1)  $KMnO_4$ ,  $O_3$ ,  $SO_3$
  - (2) HC(O<sub>4</sub>, HNO<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>
  - (3) HNO<sub>3</sub>, SO<sub>2</sub>, O<sub>3</sub>
  - (4) HNO<sub>2</sub>, SO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>
- Which of the following order is not correct :-**26**.
  - (1)  $CO_2 < SiO_2 < GeO_2 < SnO_2 < PbO_2$ (Oxidising nature)
  - (2)  $MnO_4^- > TeO_4^- > ReO_4^-$  (Oxidising nature)
  - (3)  $CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$ (Reducing nature)
  - (4) HOCl < HClO<sub>2</sub> < HClO<sub>3</sub> < HClO<sub>4</sub> (Oxidising nature)
- **27**. Which of the following halides cannot be hydrolysed?
  - (1) TeF<sub>c</sub> (2) SF<sub>c</sub>
- (3) PCl<sub>=</sub>
- (4) PCl<sub>o</sub>
- Which of the following is not correctly matched 28.
  - (1)  $XeF_2$  and  $XeF_4 \Rightarrow Non polar but planar.$ 
    - (2)  $XeF_6 \Rightarrow exists$  in solid state as  $XeF_5^+$  and  $F^-$
    - (3)  $XeOF_4 \Rightarrow sp^3d^2$ , square pyramidal shape, all identical B.L.
    - (4)  $XeO_3 \Rightarrow pyramidal$ , all bond angles are identical.
- $S^{2}$ -and  $SO_{3}^{2}$  can be distinguished by using:
  - (1) (CH<sub>2</sub>COO)<sub>2</sub>Pb
- (2) Na<sub>o</sub>[Fe(CN)<sub>E</sub>NO]
- (3) both (1) and (2)
- (4) none of these
- **30**. Chromyl chloride test is given by -
  - (1) CH<sub>2</sub>Cl
- (2) AgCl
- (3) Hg<sub>2</sub>Cl<sub>2</sub>
- (4) NH<sub>4</sub>Cl

|      |     |    |     | ANSWER KEY |    |    | Exercise-I |    |    |    |  |
|------|-----|----|-----|------------|----|----|------------|----|----|----|--|
| Que. | 1   | 2  | 3   | 4          | 5  | 6  | 7          | 8  | 9  | 10 |  |
| Ans. | 3   | 1  | 2,3 | 4          | 2  | 1  | 1          | 1  | 1  | 3  |  |
| Que. | 11  | 12 | 13  | 14         | 15 | 16 | 17         | 18 | 19 | 20 |  |
| Ans. | 2,4 | 1  | 1,4 | 4          | 1  | 1  | 1          | 1  | 1  | 1  |  |
| Que. | 21  | 22 | 23  | 24         | 25 | 26 | 27         | 28 | 29 | 30 |  |
| Ans. | 1   | 2  | 2   | 4          | 4  | 4  | 2          | 3  | 3  | 4  |  |

# **PREVIOUS YEARS' QUESTIONS**

# **EXERCISE-II**

- 1. Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite: [AIEEE-2003]
  - (1) Has molecules of variable molecular masses like polymers
  - (2) Has carbon atoms arranged in large plated of rings of strongly bonded carbon atoms with weak interplate bonds
  - (3) Is a non crystalline substance
  - (4) Is an allotropic form of diamond
- 2. The soldiers of Napolean army while at Alps during freezing winter suffered a serious problem as regards to the tin buttons of their uniforms. White Metallic tin buttons get converted to grey powder. [AIEEE-2004] This transformation is related to:-
  - (1) An interaction with water vapour contained in humid air
  - (2) A change in crystalline structure of tin
  - (3) A change in the partial pressure of  $O_2$  in air
  - (4) An interaction with  $N_2$  of air at low temperature
- 3. Which is the most thermodynamically stable allotropic form of phosphorus? [IIT- 2004]
  - (1) Red (2) White (3) Black (4) Yellow
- 4. The number of hydrogen atoms attached to phosphorus atom in hypophosphorous acid is:

[AIEEE-2005]

- (1) Zero (2) Two
- (3) One (4) Three
- 5. Which one of the following is the correct statement

[AIEEE-2005]

- (1) Boric acid is a protonic acid
- (2) Beryllium exhibits coordination number of six
- (3) Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase
- (4) B<sub>2</sub>H<sub>6</sub>, 2NH<sub>3</sub> is known as "inorganic benzene"
- 6. In silicon dioxide: [AIEEE-2005]
  - (1) Each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bonded to two
  - (2) Each silicon atom is surrounded by two oxygen atoms and each oxygen atom is bonded to two
  - (3) Silicon atom is bonded to two oxygen atoms
  - (4) There are double bonds between silicon and oxugen atoms
- **7**. Which of the following is not oxidised by  $O_3$ ?

[IIT- 2005]

(1) KI

- (2) FeSO<sub>4</sub>
- $(3) KMnO_4$
- $(4) K_2MnO_4$

- 8. When PbO<sub>2</sub> reacts with conc. HNO<sub>3</sub> the gas evolved may be: [IIT 2005]
  - (1) NO<sub>2</sub> (2)  $O_{2}$
- (3)  $N_{2}$
- (4) N<sub>o</sub>O
- 9. The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence:
  - (1)  $GeX_9 \ll SiX_9 \ll SnX_9 \ll PbX_9$
  - (2)  $SiX_2 << GeX_2^- << PbX_2^- << SnX_2^-$
  - $(3) \operatorname{SiX}_2 << \operatorname{GeX}_2 << \operatorname{SnX}_2 << \operatorname{PbX}_2$
  - (4)  $PbX_9 \ll SnX_9 \ll GeX_9 \ll SiX_9$
- **10**. Among the following, the paramagnetic compound is -[IIT- 2007]
  - (1)  $Na_2O_2$  (2)  $O_3$
- (3)  $N_2O$
- (4) KO<sub>2</sub>
- Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is [AIEEE-2008]
  - (2) RSiCl<sub>2</sub> (3) R<sub>2</sub>SiCl<sub>2</sub> (4) R<sub>2</sub>SiCl (1) R<sub>4</sub>Si
- **12**. Which of the following statements regarding sulphur is incorrect? [AIEEE-2011]
  - (1) At  $600^{\circ}$ C the gas mainly consists of  $S_2$ molceules
  - (2) The oxidation state of sulphur is never less than +4 in its compounds
  - (3)  $S_2$  molecule is paramagnetic
  - (4) The vapour at 200°C consists mostly of S<sub>8</sub> rings
- **13**. The number of S–S bonds in  $SO_3$ ,  $S_2O_3^{2-}$ ,  $S_2O_6^{2-}$ and S<sub>2</sub>O<sub>8</sub><sup>2-</sup> respectively are :-

[JEE Main(Online)-2012]

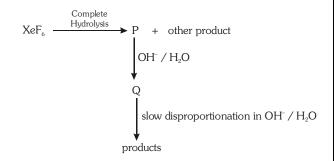
- (1) 1, 0, 1, 0
- (2) 0, 1, 1, 0
- (3) 1, 0, 0, 1
- (4) 0, 1, 0, 1
- 14. Which one of the following depletes ozone layer? [JEE Main(Online)-2012]

(2)  $SO_2$ 

- (1) NO and freons

- (3) CO  $(4) CO_2$
- **15**. The formation of molecular complex  $BF_3 - NH_3$ results in a change in hybridisation of boron :-

[JEE(Main) Online-2012]


- (1) from  $sp^3$  to  $sp^3d$
- (2) from  $sp^2$  to  $dsp^2$
- (3) from  $sp^3$  to  $sp^2$
- (4) from  $sp^2$  to  $sp^3$
- **16**. Which of the following xenon-OXO compounds may not be obtained by hydrolysis of xenon fluorides? [JEE Main(Online)-2014]
  - (1)  $XeO_2F_2$  (2)  $XeO_3$
- $(3) XeO_4$ (4) XeOF<sub>4</sub>
- Consider the reaction [JEE Main(Online)-2014]

 $H_2SO_{3(aq)} + Sn^{4+}_{(aq)} + H_2O_{(I)} \longrightarrow Sn^{2+}_{(aq)} + HSO^{-}_{4(aq)} \quad 3H_{(aq)}$ Which of the following statements is correct?

- (1)  $H_2SO_3$  is the reducing agent because it undergoes oxidation
- (2)  $H_2SO_3$  is the reducing agent because it undergoes reduction
- (3) Sn<sup>4+</sup> is the reducing agent because it undergoes
- (4) Sn<sup>4+</sup> is the oxidizing agent because it undergoes oxidation

18. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is

[JEE Adv. 2014]



- (1) 0
- (2) 1
- (3) 2
- (4) 3
- 19. Which of the following compounds has a P-P bond:-

## [JEE Main(Online)-2015]

- $(1) H_4 P_2 O_5$
- $(2) (HPO_3)_3$
- $(3) H_4 P_2 O_7$
- $(4) H_4 P_2 O_6$
- 20. Which among the following is the most reactive?

#### [JEE Main-2015]

- $(1) I_2$
- (2) ICl
- (3) Cl<sub>2</sub>
- (4) Br<sub>2</sub>
- 21. From the following statements regarding  $H_2O_2$ , choose the incorrect statement: [JEE Main-2015]
  - (1) It has to be stored in plastic or wax lined glass bottles in dark
  - (2) It has to be kept away from dust
  - (3) It can act only as an oxidizing agent
  - (4) It decomposes on exposure to light
- **22**. The reaction of zinc with dilute and concentrated nitric acid, respectively produces:

#### [JEE (Main) 2016]

- (1) NO<sub>2</sub> and N<sub>2</sub>O
- (2)  $N_2O$  and  $NO_2$
- (3) NO<sub>2</sub> and NO
- (4) NO and N<sub>2</sub>O
- **23**. Which intermolecular force is most responsible in allowing xenon gas to liquefy?

#### [JEE (Main) Online 2016]

- (1) Ionic
- (2) Instantaneous dipole-induced dipole
- (3) Dipole dipole
- (4) Ion dipole

The crystalline form of borax has **24**.

[JEE Adv. 2016]

- (1) Tetranuclear  $[B_4O_5(OH)_4]^{2-}$  unit
- (2) All boron atoms in the same plane
- (3) Equal number of sp<sup>2</sup> and sp<sup>3</sup> hybridized boron
- (4) One terminal hydroxide per boron atom
- **25**. Which of the following reactions is an example of a redox reaction? [JEE (Main) 2017]

  - (1)  $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$ (2)  $XeF_2 + PF_5 \rightarrow [XeF]^+PF_6^-$

  - (3)  $XeF_{6}^{2} + H_{2}O \rightarrow XeOF_{4} + 2HF$ (4)  $XeF_{6} + 2H_{2}O \rightarrow XeO_{2}F_{2} + 4HF$
- The products obtained when chlorine gas reacts with **26**. cold and dilute aqueous NaOH are :-

#### [JEE (Main) 2017]

- (1) ClO and ClO a
- (2)  $ClO_2^-$  and  $ClO_3^-$
- (3) Cl and ClO
- (4)  $Cl^-$  and  $ClO_2^-$
- **27**. The order of the oxidation state of the phosphorus atom in  $H_3PO_2$ ,  $H_3PO_4$ ,  $H_3PO_3$  and  $H_4P_2O_6$  is [JEE Adv. 2017]

$$PO > \dot{H} PO$$

- (1)  $H_3PO_4 > H_4P_2O_6 > H_3PO_3 > H_3PO_2$ (2)  $H_3PO_3 > H_3PO_2 > H_3PO_4 > H_4P_2O_6$
- (3)  $H_3PO_2 > H_3PO_3 > H_4P_2O_6 > H_3PO_4$
- $(4) H_3PO_4 > H_3PO_2 > H_3PO_3 > H_4P_2O_6$
- **28**. The option(s) with only amphoteric oxides is (are):

[JEE Adv. 2017]

- (1) Cr<sub>2</sub>O<sub>3</sub>, CrO, SnO, PbO
- (2) NO, B<sub>2</sub>O<sub>3</sub>, PbO, SnO<sub>2</sub>
- (3) Cr<sub>2</sub>O<sub>3</sub>, BeO, SnO, SnO<sub>2</sub>
- (4) ZnO, Al<sub>2</sub>O<sub>3</sub>, PbO, PbO<sub>2</sub>
- The colour of the X<sub>2</sub> molecules of group 17 **29**. elements changes gradually from yellow to violet down the group. This is due to -

### [JEE Adv. 2017]

- (1) the physical state of  $X_2$  at room temperature changes from gas to solid down the group
- (2) decrease in HOMO-LUMO gap down the group
- (3) decrease in  $\pi^*$ - $\sigma^*$  down the group
- (4) decrease in ionization energy down the group
- **30**. Xenon hexafluoride on partial hydrolysis produces compounds 'X' and 'Y' Compounds 'X' and 'Y' and the oxidation state of Xe are respectively:

#### [JEE (Main) ONLINE 2018]

- (1)  $XeO_2F_2(+6)$  and  $XeO_2(+4)$
- (2)  $XeOF_4(+6)$  and  $XeO_2F_2(+6)$
- (3)  $XeOF_4(+6)$  and  $XeO_3(+6)$
- (4)  $XeO_2(+4)$  and  $XeO_3(+6)$

| PREVIOUS YEARS QUESTIONS |    |    |    | ANSWER KEY |    |    | Exercise-II |     |     |    |
|--------------------------|----|----|----|------------|----|----|-------------|-----|-----|----|
| Que.                     | 1  | 2  | 3  | 4          | 5  | 6  | 7           | 8   | 9   | 10 |
| Ans.                     | 2  | 2  | 3  | 2          | 3  | 1  | 3           | 2   | 3   | 4  |
| Que.                     | 11 | 12 | 13 | 14         | 15 | 16 | 17          | 18  | 19  | 20 |
| Ans.                     | 2  | 2  | 2  | 1          | 4  | 3  | 1           | 3   | 4   | 2  |
| Que.                     | 21 | 22 | 23 | 24         | 25 | 26 | 27          | 28  | 29  | 30 |
| Ans.                     | 3  | 2  | 2  | 1,3,4      | 1  | 3  | 1           | 3,4 | 2,3 | 2  |